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Abstract: We present an analytic calculation of Branching Ratio (BR) and Charge-Parity (CP) violating
asymmetries of the B0

s meson decay into the two light vectors φφ. In doing this we calculate the helicity
amplitude of the present decay in the framework of QCD factorization approach. We find the BR of
B0

s → φφ = (1.56± 0.23)× 10−5. We also calculate the direct CP violation, CP violation in mixing
and CP violation due to interference which are Adir

CP = 0.00355± 0.00152, Amix
CP = −0.00629± 0.03119

and A∆Γ
CP = 0.99997± 0.00019, respectively. Our results are in agreement with the recent theoretical

predictions and experimental measurements.
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1. Introduction

The Standard Model (SM) of Particle Physics describes the fundamental building blocks of
matter and their interactions. One of the deficiencies in the SM is that it does not accommodate
the matter-antimatter asymmetry of the universe. One of three proposed conditions to explain this
asymmetry is the violation of Charge Conjugation-Parity (CP) symmetry [1]. In 1973, Kobayashi and
Maskawa (KM) proposed an explanation of CP violation in the B meson and in doing so, predicted the
existence of the third generation of quarks [2]. In recent years, sizable CP violation has been observed
in the decay of Bd meson [3–5]. The charmless two-body non-leptonic Bs decay is another important
choice in exploring CP violation. At the B-factories [6–10] ( Belle, BaBar, CDF and LHCb) both Bd-B̄d
and Bs-B̄s systems are produced. Both systems exhibit the particle-antiparticle mixing phenomenon.
Because of the Bs-B̄s system has higher mass difference (∆ms = 17.69± 0.08 ps−1) than that of Bd-B̄d
system (∆md = 0.510± 0.004 ps−1), the Bs meson has faster oscillations than Bd meson [11]. The study
of the CP violation in the Bs system with the benefit of faster oscillation offers an excellent opportunity
to detect the possible deviations from SM predictions and may lead to a new physics beyond the
SM. Many authors have studied the decays of Bs → PP, PV, VV [3,5,12–24], with V being a light
vector meson and P being a pseudoscalar meson. The decay of Bs → VV reveals more dynamics than
Bs → PV or Bs → PP.

In order to get a clear idea of CP violation, one needs to know the exact BR of the decay modes
which motivates us to make an analytic calculation of the BR(B0

s → φφ). The analytic calculation of the
BR of Bs → VV decays is achieved by many approaches as Quantum Chromodynamics Factorization
(QCDF) [5,18], the Perturbative QCD (PQCD) [20,21], the Soft-Collinear Effective Theory (SCET) [22,23]
and Factorization-Assisted Topological amplitude (FAT) [24].

This paper focuses on the calculation of the BR and CP violation of the B0
s → φφ decay in the

framework of QCDF approach. In 2003, X. Li et al. [12] studied B0
s → φφ decay and predicted
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BR(B0
s → φφ) as 1.79 × 10−5 and 3.68 × 10−5 within the naive factorization (NF) and QCDF

approaches, respectively. The present decay mode can be used as normalization for the studies of
some other channels of charmless B0

s meson decays [10]. The first observation of the BR(B0
s → φφ) =[

1.4+0.6
−0.5(stat.)± 0.6(syst.)

]
× 10−5 was performed by CDF in 2005 [8]. Later on, they updated their

result to [2.32± 0.18(stat.)± 0.82(syst.)]× 10−5 in 2011 [9]. Recently, LHCb collaboration reported
that BR(B0

s → φφ) = [1.84± 0.05(stat.)± 0.07(syst.)± 0.11( fs/ fd)]× 10−5 [10]. A recent theoretical
calculation was performed by Yan et al. [20] and they found that BR(B0

s → φφ) =
(

1.88+0.49
−0.38

)
× 10−5

with a Adir
CP(%) = 0.7± 0.2.

In this paper, we report the calculation of the BR and CP violation of BR(B0
s → φφ) within QCDF

using Mathematica packages.
Since BR(B0

s → φφ) is a vector decay, we need to find the helicity amplitude to calculate the BR.
We formulate the helicity amplitude with neglecting both the annihilation and chiral contributions
since they are negligibly small. The calculated BR(B0

s → φφ) is (1.56± 0.23)× 10−5. Furthermore,
we calculated the CP violation in the SM for B0

s → φφ decay via pure penguin diagram within
QCDF. We find that direct CP violation (Adir

CP), CP violation in mixing (Amix
CP ) and CP violation due

to interference (A∆Γ
CP) are 0.00355± 0.00152, −0.00629± 0.03119 and 0.99997± 0.00019, respectively.

We find that the reported results are consistent with other available predictions and experimental
observation [5,8–10,18,20,21,23–25].

2. Theoretical Framework

2.1. The Effective Hamiltonian

The effective Hamiltonian (Heff) describing the transition amplitude of an initial state to a final
state follows the Fermi’s Golden Rule. In terms of the effective Hamiltonian, the BR of B0

s decays to
two vector mesons can be written as [12,16]:

BR(B0
s → V1V2) =

τB0
s
pcs

8πm2
B0

s

∣∣∣〈V1(h1)V2(h2)|Heff|B0
s 〉
∣∣∣2 , (1)

where h1,h2 are the helicities of the final-state vector mesons V1 and V2 with four-momentum p1 and

p2, respectively, the mB0
s

and τB0
s

are the mass and lifetime of B0
s meson, the statistical factor s =

1
2

, 1

for two identical and different meson final states, respectively. In the rest frame of B0
s system, since B0

s
meson has spin 0, we have h1 = h2 = h and pc = |−→p1 | = |−→p2 | is the momentum of either of the two
outgoing vector mesons.

Only the penguin operators can contribute to the B0
s → φφ decay channel which is b → s

transition, so the relevantHeff can be written as [12]

Heff = −
GF√

2
λ
(s)
t

10

∑
i=3

Ci(µ)Oi(µ), (2)

where GF is the Fermi constant and λ
(s)
t = VtbV∗ts is the CKM factor. The Oi(µ) are the local four-fermion

operators (Wilson operators). The Ci(µ) are the effective Wilson coefficients which have been reliably
evaluated to the next-to-leading logarithmic order (NLL) with µ ∼ mb being the renormalization
scale. The O3,...,6 and O7,...,10 are the QCD and electroweak penguin operators, respectively and can be
expressed as follows [12,26]:
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O3 = (s̄b)V−A ∑
q
(q̄q)V−A,

O4 = (s̄ibj)V−A ∑
q
(q̄jqi)V−A,

O5 = (s̄b)V−A ∑
q
(q̄q)V+A,

O6 = (s̄ibj)V−A ∑
q
(q̄jqi)V+A,

O7 =
3
2
(s̄b)V−A ∑

q
eq(q̄q)V+A,

O8 =
3
2
(s̄ibj)V−A ∑

q
eq(q̄jqi)V+A,

O9 =
3
2
(s̄b)V−A ∑

q
eq(q̄q)V−A,

O10 =
3
2
(s̄ibj)V−A ∑

q
eq(q̄jqi)V−A, (3)

where i and j are the color indices, q denotes all the active quarks at the scale µ ∼ mb, i.e., q ∈
{u, d, s, c, b} and eq are the corresponding quark charges. Also, the (q̄1q2)V±A = q̄1γµ(1± γ5)q2 are
the right and left-handed vector-axial currents, respectively.

2.2. The Factorizable Amplitude for B0
s → V1V2

The BR for B0
s → V1V2 decays can be calculated by inserting Equation (2) into Equation (1).

The calculation of the resulting hadronic matrix elements of the local four fermion operators
i.e., 〈V1(h)V2(h)|Oi|B0

s 〉 represents a theoretical challenge. In order to solve this problem, naive
factorization (NF) in which the hadronic matrix elements is replaced by the product of the matrix
elements of two currents is carried out as follows [12,16]:

〈V1V2|(q̄2q3)V±A(q̄1b)V−A|B0
s 〉 −→ 〈V2|(q̄2q3)V±A|0〉〈V1|(q̄1b)V−A|B0

s 〉, (4)

with the vector meson V2 being factored out. The quark content of the two vectors in the above

equation are (q1q̄4)V1 and (q2q̄3)V2 . The Equation (4) represents factorizable amplitude, χ(B0
s V1,V2) which

is expressed by

χ(B0
s V1,V2) = 〈V2|(q̄2q3)V±A|0〉〈V1|(q̄1b)V−A|B0

s 〉. (5)

The massive vector of spin 1 has three z-components sz = ±1, 0 corresponding to three possible
helicity states h = ±, 0. So, it can exist in three possible orthogonal polarization states ε∗µ(±) and
ε∗µ(0). These states represent two transverse polarization modes ε∗µ(±) corresponding to sz = ±1 and
a longitudinal one ε∗µ(0) corresponding to sz = 0 [27]. For a vector meson V, let pµ, ε∗µ, fV and mV
be its momentum, polarization vector, decay constant and mass, respectively. Let pB0

s
and mB0

s
be the

momentum and mass of the B0
s meson. If we choose, the coordinate systems in the Jackson convention;

that is, in the B0
s rest frame, one of the vector mesons is moving along the +z-axis of the coordinate

system and the other along the −z-axis, while the x-axes of both daughter particles are parallel [17]:

ε
∗µ(0)
1 = (pc, 0, 0, E1) /mV1 , ε

∗µ(0)
2 = (pc, 0, 0, E2) /mV2 ,

ε
∗µ(±)
1 =

1√
2
(0,∓1,−i, 0) , ε

∗µ(±)
2 =

1√
2
(0,∓1,+i, 0) ,

pµ
1 = (E1, 0, 0, pc), pµ

B0
s
= (mB0

s
, 0, 0, 0), (6)
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with

pc =

√[
m2

B0
s
− (mV1 −mV2)

2
] [

m2
B0

s
− (mV1 + mV2)

2
]

2mB0
s

,

E =
√

p2
c + m2. (7)

By combining Equations (6) and (7), we obtain

ε∗1. p1 = 0, and ε∗. pB0
s
=

mB0
s
pc

mV
, (8)

ε
∗(0)
1 . ε

∗(0)
2 = −

m2
B0

s
−m2

V1
−m2

V2

2mV1 mV2

and ε
∗(±)
1 . ε

∗(±)
2 = −1, (9)

(ε
∗(0)
1 . pB0

s
)(ε
∗(0)
2 . pB0

s
) =

m2
B0

s
p2

c

mV1 mV2

and (ε
∗(±)
1 . pB0

s
)(ε
∗(±)
2 . pB0

s
) = 0. (10)

The first part of Equation (5) is given by [12]

〈V2(p2, ε∗2)|q2γµ q̄3|0〉 = −i fV2 ε∗2µmV2 , (11)

where 〈V2|q̄2γµγ5q3|0〉 = 0. Whereas, the second part of Equation (5) can be written as [12,17,19]

〈V1(p1, ε∗1) |(q̄1b)V−A| B0
s (pB0

s
)〉 = −ε∗1µ(mB0

s
+ mV1)AB0

s V1
1 (q2)

+ (pB0
s
+ p1)µ(ε

∗
1. pB0

s
)

AB0
s V1

2 (q2)

mB0
s
+ mV1

+ qµ(ε
∗
1. pB0

s
)

2mV1

q2 [AB0
s V1

3 (q2)− AB0
s V1

0 (q2)]

− iεµναβ ε∗ν1 pα
B0

s
pβ

1
VB0

s V1(q2)

mB0
s
+ mV1

, (12)

where AB0
s V1

0 , AB0
s V1

1 , AB0
s V1

2 and AB0
s V1

3 are the transition form factors of the B0
s → V1V2 decay via the

axial current while VB0
s V1 is the transition form factor via the vector one. To cancel the poles at q2 = 0

in Equation (12) we have the relation

AB0
s V1

3 (0) = AB0
s V1

0 (0). (13)

Using Equation (13) in Equation (12) we obtain

〈V1(p1, ε∗1) |(q̄1b)V−A| B0
s (pB0

s
)〉 = −ε∗1µ(mB0

s
+ mV1)AB0

s V1
1 (q2)

+ (pB0
s
+ p1)µ(ε

∗
1. pB0

s
)

2AB0
s V1

2 (q2)

mB0
s
+ mV1

− iεµναβ ε∗ν1 pα
B0

s
pβ

1
2VB0

s V1(q2)

mB0
s
+ mV1

. (14)

Thus, the factorizable amplitude χ(B0
s V1,V2) is the product of Equations (11) and (14) which can be

written as
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χ
(B0

s V1,V2)
h = i fV2 mV2 [ε

∗(h)
1 . ε

∗(h)
2 (mB0

s
+ mV1)AB0

s V1
1 (m2

V2
)

− (ε
∗(h)
1 . pB0

s
)(ε
∗(h)
2 . pB0

s
)

2AB0
s V1

2 (m2
V2
)

mB0
s
+ mV1

+ iεµναβ ε
∗µ(h)
2 ε

∗ν(h)
1 pα

B0
s

pβ
1

2VB0
s V1(m2

V2
)

mB0
s
+ mV1

], (15)

where the momentum transfer is q = pB0
s
− p1 and the totally antisymmetric Levi-Civita tensor is

normalized by ε0123 = −1. By the sum over the non-zero 24 components of the Levi-Civita tensor with
the definitions in Equation (6), and for h = 0 we find

iεµναβ ε
∗µ(0)
2 ε

∗ν(0)
1 pα

B pβ
1 = 0 (16)

and for h = ± the only survived terms are the two terms of {µ, ν, α, β} = {1(2), 2(1), 0, 3}. Thus we
can easily get

iεµναβ ε
∗µ(±)
2 ε

∗ν(±)
1 pα

B pβ
1 = ±mB0

s
pc. (17)

Substituting from Equations (8)–(10), (16) and (17) into Equation (15), one can get

χ
(B0

s V1,V2)
0 = −

i fV2 b
2mV1

[
aAB0

s V1
1 (m2

V2
)− c2 AB0

s V1
2 (m2

V2
)

]
,

χ
(B0

s V1,V2)
± = −i fV2 mV2

[
bAB0

s V1
1 (m2

V2
)± c VB0

s V1(m2
V2
)

]
, (18)

with

a = m2
B0

s
−m2

V1
−m2

V2
,

b = mB0
s
+ mV1 ,

c =
2mB0

s
pc

b
. (19)

2.3. The Helicity Amplitude of B0
s → φφ

In general, the B0
s → V1V2 amplitude can be decomposed into three independent helicity

amplitudes A0, A+ and A− corresponding to h = 0,+ and −, respectively. We use the notation

Ah = 〈V1(h)V2(h) |Heff| B0
s 〉. (20)

Then, Ah(B0
s → φφ) can be written as

Ah = − GF√
2

λ
(s)
t 〈φφ|

10

∑
i=3

Ci(µ)Oi(µ)|B0
s 〉. (21)

The dynamical details of the decay process are coded in the so-called effective parameters ai(µ)

which are related to the Wilson coefficients Ci(µ) through the relation

ai(µ) = Ci(µ) +
Ci±1(µ)

Nc
, (22)

where Nc = 3 is the number of colors and the upper (lower) sign apply when i is odd (even).
The helicity amplitude can be written as a linear combination of the ai(µ) parameters as follows

Ah = − GF√
2

λ
(s)
t

10

∑
i=3

ah
i χ

(B0
s φ, φ)

h . (23)
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To calculate the exact formula of Ah(B0
s → φφ), we need to write down the corresponding

factorizable amplitude. Moreover, the even and odd terms of ai that contribute to Equation (23) must
be calculated. From Equation (5), the factorizable amplitude of B0

s (bs̄) → φ(ss̄)φ(ss̄) process with
V1 = V2 = φ can be written as:

χ
(B0

s φ, φ)
h = 〈φ|(s̄s)V±A|0〉〈φ|(s̄b)V−A|B0

s 〉. (24)

Since there are some of the quark flavors of the operators in Equation (3) do not match the quark
flavor in Equation (24). So, they must be Fierz-transformed to contribute to the decay using the
following transformations [28]

(m̄n)V−A(k̄l)V−A → (k̄n)V−A(m̄l)V−A,

(m̄n)V−A(k̄l)V+A → −2(k̄n)S−P(m̄l)S+P, (25)

where (m̄n)S±P = m̄(1± γ5)n. Also, the color singlet-singlet term of the operators can be obtained by [29]

(m̄inj)V−A(k̄ jli)V±A =
1

Nc
(m̄n)V−A(k̄l)V±A. (26)

In the calculation of the Ah(B0
s → φφ), following up H. Y. Cheng et al. [16,18], the contribution of

the odd and even terms of the effective operators ai(µ) in Equation (23) can be derived as following:
For the odd terms of ai, one can directly use the penguin operators from Equation (3) to get

〈O3〉 = 〈O5〉 = χ
(B0

s φ, φ)
h ,

〈O4〉 = 〈O6〉 =
1

Nc
χ
(B0

s φ, φ)
h ,

〈O7〉 = 〈O9〉 = −
1
2

χ
(B0

s φ, φ)
h ,

〈O8〉 = 〈O10〉 = −
1

2Nc
χ
(B0

s φ, φ)
h , (27)

where the short-hand notation 〈Oi〉 stands for 〈φφ |Oi| B0
s 〉. Then, substitution from Equation (27) into

(21) and using Equation (22) yields(
ah

3 + ah
5 −

1
2

ah
7 −

1
2

ah
9

)
χ
(B0

s φ, φ)
h . (28)

For the even terms of ai, we can rewrite the operators O3, O4, O9 and O10 in Equation (3) in the form

O3 = ∑
q
(s̄ibj)V−A(q̄jqi)V−A,

O4 = ∑
q
(q̄b)V−A(s̄q)V−A,

O9 = ∑
q

3
2

eq(s̄ibj)V−A(q̄jqi)V−A,

O10 = ∑
q

3
2

eq(q̄b)V−A(s̄q)V−A. (29)

According to Equation (24), only the quark flavors with q = s contribute to the present decay.
A straightforward calculation with using Equation (25) and Equation (26) yields

〈O3〉 = −2〈O9〉 =
1

Nc
χ
(B0

s φ, φ)
h ,

〈O4〉 = −2〈O10〉 = χ
(B0

s φ, φ)
h , (30)
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Again, substitution from Equation (30) into (21) and using Equation (22) yields(
ah

4 −
1
2

ah
10

)
χ
(B0

s φ, φ)
h . (31)

Finally, substituting from Equation (28) and Equation (31) into Equation (23), one can get

Ah = − GF√
2

λ
(s)
t

{
ah

3 + ah
4 + ah

5 −
1
2
(ah

7 + ah
9 + ah

10)

}
χ
(B0

s φ, φ)
h . (32)

Now using Equation (1) and Equation (32) we can write the BR formula of the present decay
mode with expanding the helicity amplitude as [12]:

BR(B0
s → φφ) =

τB0
s
pcs

8πm2
B0

s

[
|A0|2 + |A+|2 + |A−|2

]
. (33)

For the calculation of the BR(B0
s → φφ) in the framework of QCDF, we define the effective

parameters ah
i (µ) with i = 3, 4, 5, 7, 9, 10 in the next subsection.

2.4. QCD Factorization for B0
s → φφ Process

In the framework of QCDF approach the general form of the effective parameters ah
i (µ) in the

naive dimensional regularization (NDR) scheme at the next-to-leading order (NLO) is given by [12]

ah
i (µ) = Ci(µ) +

Ci±1(µ)

Nc
+ Ni

Ci±1(µ)

Nc

αsCF
4π

(
f h
1 + f h

2

)
+ Ph

i=4, (34)

with

Ni =


1 for i = 1, 2, 3, 4, 9, 10

−1 for i = 5, 7

0 for i = 6, 8

, (35)

where the quantities f h
1 account for one loop vertex corrections, f h

2 for hard spectator interactions
and Ph

i=4 for penguin contribution which has been calculated only for i = 4. We now write down the
explicit expressions for ah

i (µ) with i = 3, 4, 5, 7, 9, 10 which are given by [12]

ah
3(µ) = C3 +

C4

Nc
+

αsCF
4πNc

C4( f h
1 + f h

2 ),

ah
4(µ) = C4 +

C3

Nc
+

αsCF
4πNc

C3( f h
1 + f h

2 )

+
αsCF
4πNc

(
C3 −

C9

2

)[
Qh(βs) + Qh(βb)−

(
4
3
2
3

)]

− αsCF
4πNc

C1

[
λu

λt
Qh(βu) +

λc

λt
Qh(βc) +

(
2
3
1
3

)]

+
αsCF
4πNc

{[
(C4 + C6) +

3
2
(C8 + C10)

]
Qh(βs) + G8gQh

g

}
,

ah
5(µ) = C5 +

C6

Nc
− αsCF

4πNc
C6( f h

1 + f h
2 ),

ah
7(µ) = C7 +

C8

Nc
− αsCF

4πNc
C8( f h

1 + f h
2 ),

ah
9(µ) = C9 +

C10

Nc
+

αsCF
4πNc

C10( f h
1 + f h

2 ),

ah
10(µ) = C10 +

C9

Nc
+

αsCF
4πNc

C9( f h
1 + f h

2 ), (36)



Atoms 2020, 8, 22 8 of 15

where CF = 4
3 and βq = m2

q/m2
b. In the expression ah

4(µ), the upper (lower) value in parenthesis
corresponds to h = 0 (±) state.

In Equation (36), the contribution from the vertex corrections f h
1 are given by

f 0
1 = −12 log

(
µ

mb

)
− 18 +

∫ 1

0
ΦV2
‖ (u)$(u)du,

f±1 = −12 log
(

µ

mb

)
− 16 +

∫ 1

0
duξ±V2

(u)
[

$(u) + 2
∫ 1

0
κ±(u, x, y)dxdy

]
, (37)

where

$(u) = 3
(

1− 2u
1− u

log(u)− iπ
)

, (38)

ξ±V (z) = g(υ)V⊥ (z)∓ η
g
′(a)V
⊥ (z)

4
, (39)

κ±(u, x, y) =
1− x− y

xy
− u

xu + y
∓ (1− x)u

y(xu + y)
, (40)

with z ∈ {u, v} is the light-cone momentum fraction of the quark in the vector. For V = V2

in Equation (39), the η = + or − corresponding to (V − A) ⊗ (V − A) or (V − A) ⊗ (V + A)

current, respectively.
For hard spectator interactions f h

2 are given by [12]

f 0
2 = −4π2

Nc

i fB0
s

fV1 fV2

χ
(B0

s V1,V2)
0

mB0
s

λB0
s

∫ 1

0
dυdu

ΦV1
‖ (υ)ΦV2

‖ (u)

uῡ
,

f±2 =
4π2

Nc

i fB0
s

f⊥V1
fV2 mV2

λB0
s
χ
(B0

s V1,V2)
±

2(1± 1)
∫ 1

0
dυdu

ΦV2
⊥ (υ)ξ±V2

(u)

ῡ2

− 4π2

Nc

i fB0
s

fV1 fV2 mV1 mV2

mB0
s
λB0

s
χ
(B0

s V1,V2)
±

∫ 1

0
dυduξ±V1

(υ)ξ±V2
(u)

u + ῡ

uῡ2 , (41)

where z̄ = 1− z and the quantity λB0
s

is the parametrization parameter of the distribution amplitude of

the B0
s meson. Also, the functions ΦV

‖ (z), ΦV
⊥(z), g(υ)V⊥ (z) and g(a)V

⊥ (z) are the light-cone distribution
amplitudes (LCDAs) of the vector meson and we adopt them in the following asymptotic form [12]

ΦV
‖ (z) = ΦV

⊥(z) = g(a)V
⊥ (z) = 6zz̄,

g(υ)V⊥ (z) =
3
4

[
1 + (2z− 1)2

]
. (42)

Also

g
′(a)V
⊥ (z) =

dg(a)V
⊥ (z)
dz

. (43)

The non-factorizable corrections induced by local four-quark operators Oi can be described by
the function Qh(βq) which is given by [12,19]

Q0(βq) = −2
3
+

4
3

log
(

µ

mb

)
− 4

∫ 1

0
duΦV2

‖ (u)g(u, βq),

Q±(βq) = −2
3
+

2
3

log
(

µ

mb

)
− 2

∫ 1

0
duξ±V2

(u)g(u, βq), (44)

with the function
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g(u, βq) =
∫ 1

0
dx xx̄ log[βq − xx̄ū− iε]. (45)

In Equation (36), we also take into account the contributions of the dipole operator O8g which
will give a tree-level contribution described by the function Qh

g defined as [12,19]

Q0
g =

∫ 1

0
du

ΦV2
‖ (u)

ū
, Q+

g =
∫ 1

0
duξ−V2

(u), and Q−g =
∫ 1

0
du

ξ−V2
(u)

ū
. (46)

Finally, one can calculate the effective parameters ah
3(µ), ah

4(µ), ah
5(µ), ah

7(µ), ah
9(µ) and ah

10(µ) by
substitution the equations from (37) to (46) into Equation (36). Consequently, the the three helicity
amplitudes A0, A+ and A− can be calculated from Equation (32) which leads to the calculation of the
BR by Equation (33).

2.5. CP Violation

We derive the equations for time dependence of the CP asymmetry (ACP(t)), direct CP violation
(Adir

CP), CP violation due to mixing (Amix
CP ) and CP violation due to interference (A∆Γ

CP) as [4]:

ACP(t) =
Adir

CP cos (∆mst) +Amix
CP sin (∆mst)

cosh (∆Γst/2)−A∆Γ
CP sinh (∆Γst/2)

, (47)

where ∆Γs = (Γ(s)
L − Γ(s)

H )/2 = τ−1
B0

s
is the difference decay width of the Bs system with Γ(s)

H and Γ(s)
L

being the decay widths of the “heavy” and “light” mass eigenstates of the Bs system, respectively.
The ∆ms = msL −msH is the mass difference of Bs system. The three CP observables in Equation (47)
are defined by [4]

Adir
CP(Bs → f ) ≡

1−
∣∣∣ζ(s)f

∣∣∣2
1 +

∣∣∣ζ(s)f

∣∣∣2 , (48)

Amix
CP (Bs → f ) ≡

2 Im(ζ
(s)
f )

1 +
∣∣∣ζ(s)f

∣∣∣2 , (49)

A∆Γ
CP(Bs → f ) ≡

2 Re(ζ(s)f )

1 +
∣∣∣ζ(s)f

∣∣∣2 , (50)

where

ζ
(s)
f = e−iφs

Ā(Bs → f )
A(Bs → f )

. (51)

In the SM, for the amplitude of the penguin Bd decays, we can write [4]

A(Bd → f ) ∝
[
1 + λ2beiθeiγ

]
(52)

Using Equation (52) and in analogy to the penguin Bd system [4], one can rewrite Equation (51)
as follows

ζ
(s)
f = e−iφs

[
1 + λ2beiθe−iγ

1 + λ2beiθe+iγ

]
, (53)

where φs is the mixing phase of Bs system, beiθ is a penguin parameter, γ is the angle of the unitarity
triangle of the CKM matrix and λ (= Vus) is the Wolfenstein parameter with Vus is the CKM matrix
element. The values of φs, γ and Vus are given in Table 1. According to the Ref. [4], one can define the
parameter beiθ by
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beiθ ≡ Rb
1− λ2

Au
h

Ac
h

. (54)

Here Rb =
(
1− λ2/2

)
|Vub/Vcb| /λ, where Vub and Vcb are the CKM matrix elements which are

given in Table 1. Substitution from Equation (32) into Equation (54) yields

beiθ ≡ Rb
1− λ2

[
au,h

3 + au,h
4 + au,h

5 −
1
2 (au,h

7 + au,h
9 + au,h

10 )

ac,h
3 + ac,h

4 + ac,h
5 −

1
2 (ac,h

7 + ac,h
9 + ac,h

10 )

]
. (55)

From Equation (36), only the definition of the ap,h
4 (µ) parameter can be rewritten as follows

ap,h
4 (µ) = C4 +

C3

Nc
+

αsCF
4πNc

C3( f h
1 + f h

2 )

+
αsCF
4πNc

(
C3 −

C9

2

)[
Qh(βs) + Qh(βb)−

(
4
3
2
3

)]

− αsCF
4πNc

C1

[
λp

λt
Qh(βp) +

(
2
3
1
3

)]

+
αsCF
4πNc

{[
(C4 + C6) +

3
2
(C8 + C10)

]
Qh(βd) + G8gQh

g

}
, (56)

where p = u, c. Moreover, we use the same definitions for the other parameters in Equation (36) so that

ap,h
i (µ) = ah

i (µ) for i = 3, 5, 7, 9, 10. (57)

Hence, the penguin parameter beiθ can easily be calculated by combining Equations (36) and
(55)–(57).

3. Numerical Results and Discussions

3.1. Numerical Results of the Branching Ratio for B0
s → φφ

To calculate the effective parameters ah
i with i = 3, 4, 5, 7, 9, 10 of Equation (36), we use the

Mathematica packages. The used input parameters are given in Tables 1 and 2 where the renormalization
scale µ = mb is used in the calculations. Since there are a logarithmic infrared divergence integrals in
the f±2 expression in Equation (41), so we use the following approximations [5,12]

∫ 1

0

dz
z

= log
(

mb
Λh

)
and

∫ 1

0

dz
z2 =

mb
Λh

, (58)

with Λh = 0.5 GeV. The results of ah
i with i = 3, 4, 5, 7, 9, 10 corresponding to the three helicities

h = 0,± are listed in Table 3.
Table 4 shows the calculated values of the helicity amplitudes A0, A+ and A−. One can calculate

them by computing the corresponding factorizable amplitudes χ
(B0

s φ, φ)
0 , χ

(B0
s φ, φ)

+ and χ
(B0

s φ, φ)
− from

Equation (18) with using the results of Table 3 into Equation (32).
Finally, we get the BR(B0

s → φφ) by using Equation (33) and Table 4 to be

BR(B0
s → φφ) = (1.56± 0.23)× 10−5. (59)

The main sources of uncertainty of the calculated BR come from the uncertainties of both the
decay constants and the form factors.



Atoms 2020, 8, 22 11 of 15

Table 1. Inputs Parameters.

Parameter The Value Ref.

Mass of B0
s meson (mB0

s
) 5366.88± 0.17 MeV [30]

Mean life time of B0
s (τB0

s
) 1.510± 0.004 ps [30]

Mass of φ meson (mφ) 1019.461± 0.016 MeV [30]
Fermi coupling constant (GF) 1.1663787× 10−5 GeV−2 [30]

The fine-structure coupling (α) 1/128 [30]
The strong coupling constant (αs) 0.01181± 0.0011 [30]

The CKM matrix element Vub 0.00394± 0.00036 [30]
The CKM matrix element Vus 0.2243± 0.0005 [30]
The CKM matrix element Vcb 0.0422± 0.0008 [30]
The CKM matrix element Vcs 0.997± 0.017 [30]
The CKM matrix element Vtb 1.019± 0.025 [30]
The CKM matrix element Vts 0.0394± 0.0023 [30]

The mass difference of B0
s system (∆ms) 17.757± 0.021 ps−1 [30]

The decay width difference of B0
s system (∆Γs) 0.090± 0.005 ps−1 [30]

Decay constant of B0
s meson ( fB0

s
) 240± 30 MeV [21]

Longitudinal decay constant of φ meson ( fφ) 215± 5 MeV [21]
Transverse decay constant of φ meson ( f⊥φ ) 186± 9 MeV [21]

The form factor ABs→φ
1 260± 10 [18]

The form factor ABs→φ
2 230± 10 [18]

The form factor VBs→φ 300± 10 [18]
The parametrization parameter λB0

s
350± 150 MeV [15]

Mass of b quark (mb) 4660 MeV [12]
Mass of c quark (mc) 1470 MeV [12]
Mass of u quark (mu) 0 [12]
Mass of d quark (md) 0 [12]
Mass of s quark ( ms) 0 [12]
The phase mixing φs −0.021± 0.031 rad [31]

The CKM angle γ (71.1+4.6
−5.3)

o [31]

Table 2. Wilson coefficients in the NDR scheme at NLO with µ = mb [12].

Wilson Coefficient The Value

C1 1.078
C2 −0.176
C3 0.014
C4 −0.034
C5 0.008
C6 −0.039

C7/α −0.011
C8/α 0.055
C9/α −1.341
C10/α 0.264

C8g −0.146

Table 3. The effective parameters in QCDF approach at NLO.

ah
i h = 0 h = + h = −

ah
3 0.00529251 + 0.00133847i −0.354452 + 0.00133847i −0.00587474 + 0.00133847i

ah
4 −0.0536064− 0.00756553i 0.0957453− 0.00233928i −0.0406903− 0.0188806i

ah
5 −0.008012− 0.0015353i 11.765− 0.0015353i 0.00654938− 0.0015353i

ah
7 0.0000904768 + 0.0000169154i −0.12962 + 0.0000169154i −0.0000699551 + 0.0000169154i

ah
9 −0.00994835− 0.0000811938i 0.0118744− 0.0000811938i −0.00927093− 0.0000811937i

ah
10 −0.000620574 + 0.000412427i −0.11147 + 0.000412427i −0.00406159 + 0.000412427i
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Table 4. Helicity amplitudes in QCDF approach at NLO.

Ah The Value

A0 −0.00521217 + 0.0335507i
A+ −0.000572798− 2.45607i
A− −0.000571254 + 0.000988547i

Table 5 shows a comparison between the present calculation of BR(B0
s → φφ) in Equation (59) and

the available experimental and other theoretical values. This table shows that the present predicted
results are very much consistent with the theoretical and experimental ones.

Table 5. Theoretical and experimental BR(B0
s → φφ) in units of 10−5.

Theory/Experiment The Value

Present Work 1.56± 0.23
QCDF [5] 2.18+3.04

−1.71
QCDF [18] 1.67+1.19

−0.91
PQCD [20] 1.88+0.49

−0.38
PQCD [21] 1.67+0.49

−0.38
SCET [23] 1.90± 0.65
FAT [24] 2.64± 0.76

CDF Experiment [8] 1.4+0.6
−0.5(stat.)± 0.6(syst.)

CDF Experiment [9] 2.32± 0.18(stat.)± 0.82(syst.)
LHCb Experiment [10] 1.84± 0.05(stat.)± 0.07(syst.)

Particle Data Group [25] 1.87± 0.15

3.2. Numerical Results for the CP Violation for B0
s → φφ

To calculate the observables of the CP violation, we have estimated the effective parameters using
the Equation (56). For h = ±, we found that the results of these observables are negligibly small,
so we report only the calculations for h = 0. In this case the estimated effective parameters using
Equation (56) are

au,0
4 = −0.0373402− 0.000321103i,

ac,0
4 = −0.0537056− 0.00735794i, (60)

and according to Equation (57), the parameters ap,0
i with i = 3, 5, 7, 9, 10 are listed in Table 3.

Substitution from Equation (60) into Equation (55), one can get the corresponding value of the penguin
parameter to be

beiθ = 0.282421− 0.0369209i. (61)

By imposing the value of Equation (61) into Equation (53) we obtain

ζ
(s)
φφ = 0.996437− 0.00626556i. (62)

Using Equation (62) with Equations (48)–(50) one can get

Adir
CP(B0

s → φφ) = 0.00355± 0.00152, (63)

Amix
CP (B0

s → φφ) = −0.00629± 0.03119, (64)

A∆Γ
CP(B0

s → φφ) = 0.99997± 0.00019. (65)

The main sources of uncertainty of the CP asymmetries in Equations (63)–(65) come from the
uncertainties of the mixing parameters (i.e., ∆ms, ∆Γs, φs, and γ).
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Table 6 summarizes the results for Adir
CP of the present calculation and for comparison we list the

available theoretical values. This table shows that the present calculated value is consistent with the
other theoretical ones.

The three CP asymmetries Adir
CP, Amix

CP and A∆Γ
CP are related observables by the relation [4]∣∣∣Adir

CP

∣∣∣2 + ∣∣∣Amix
CP

∣∣∣2 + ∣∣∣A∆Γ
CP

∣∣∣2 = 1. (66)

Because the B0
s → φφ mode is induced only by penguin operators, its direct CP asymmetry

(Adir
CP) is naturally zero at leading order (LO) contributions [18,20]. After the inclusion of the NLO

contributions, its direct CP asymmetry is nonzero but still very small. Also, in the standard model
mixing-induced CP asymmetry of pure penguin decays is predicted to be small [18]. Then, the value
of A∆Γ

CP is naturally large as shown in Equation (65).

Table 6. The predicted values of the direct CP asymmetry Adir
CP(%).

Approach Adir
CP(%)

Present Work 0.35± 0.15
QCDF [18] 0.2+0.6

−0.3
PQCD [20] 0.7± 0.2
SCET [23] −0.39± 0.44
FAT [24] 0.83± 0.28

The asymmetry as a function of time is shown in Figure 1. To show the asymmetry we use our
calculated values in Equations (63)–(65). From this figure one can see a clear CP asymmetry with time
for the present decay process.

Figure 1. Time dependent CP asymmetry ACP(t).

Even though some previous theorists employed QCDF approach [5,18] but the present work is
different in several aspects from them. In the present work, the structure of the effective parameters
(ah

i ) is different from the one of Refs. [5,18]. We also have reported the CP violation which has not
been done before for the present decay channel. Finally we include the error analysis of the BR and CP
violation calculations. Therefore we think that the reported results in this paper will be helpful for
future experiment as well as theoretical studies.

4. Conclusions

In this work, we studied the B0
s → φφ decay mode in the framework of the QCDF approach.

In doing this we employed QCDF approach in the NDR scheme at NLO contributions. In this study,
we calculated the branching ratio and the CP violation. After numerical evaluation, we found that the
BR of B0

s → φφ decay is (1.56± 0.23)× 10−5. This value for BR is consistent with the experimental
values as well as with the other theoretically predicted ones. We also calculated the CP violation
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asymmetries and we found that the present decay mode is governed by the longitudinal amplitude (i.e.,
for h = 0). The calculated values for Adir

CP, Amix
CP and A∆Γ

CP are 0.00355± 0.00152, −0.00629± 0.03119
and 0.99997± 0.00019, respectively. These values are consistent with the available theoretical ones.
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