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Abstract: γ − γ correlation functions are mathematical expressions that describe the angular
distribution of cascade γ-rays emitted from an atomic nucleus. Cascade transitions may occur
in either a two-step deexcitation or through an excitation-deexcitation process of a particular energy
level inside the nucleus. In both cases, the nucleus returns to its ground energy state. Spin and
parity of the excited state can be determined experimentally using the asymmetry of the angular
distribution of the emitted radiation. γ− γ correlation functions are only valid for point-like targets
and detectors. In the real experiments, however, neither the target nor the detector is point-like. Thus,
misassignment of the spin-parity of energy levels may easily take place if only the analytical equations
are considered. Here, we develop a new Monte Carlo simulation method of the γ− γ correlation
functions to account for the extended target and detector involved in spin-parity measurements
using nuclear resonance fluorescence of nuclei. The proposed simulation tool can handle arbitrary
geometries and spin sequences. Additionally, we provide numerical calculations of a parametric
study on the influence of the detection geometry on the angular distribution of the emitted γ-rays.
Finally, we benchmark our simulation by comparing the simulation-estimated asymmetry ratios
with those measured experimentally. The present simulation can be employed as a kernel of an
implementation that simulates the nuclear resonance fluorescence process.

Keywords: angular distribution; nuclear resonance fluorescence; dipole transition; quadrupole
transition; spin-parity; Monte Carlo simulation; Geant4

1. Introduction

Resonance fluorescence of an atom or a nucleus is one of the richest sources of our information
about the structure of these too-small-to-see systems. Many aspects of quantum theory have been
proven by x-ray and γ-ray spectroscopies. The availability and developments of photon sources with
polarization capabilities have provided accurate means to measure the spin and parity of the nuclear
energy levels in the laboratory. As an example, the polarized γ-rays generated by laser Compton
scattering (LCS) are being used in nuclear structure studies that focus on the determination of spin
and parity [1,2]. The technique of using polarized γ-ray beams offers an unambiguous estimation
of the spin and parity, while the main detection system is simply γ-ray spectroscopy. Furthermore,
many applications rely on the resonance fluorescence, especially in nuclear safeguards and nuclear
security [3–5].

Owing to the significance of the nuclear resonance fluorescence (NRF), many simulation works
were conducted [6–8]. For example, Jordan and Warren [7] and Hayakawa et al. [8] developed a
Monte Carlo simulation for the NRF process. More recently, Vavrek et al. [9,10] have upgraded the
simulation model of Jordan and Warren to enhance its accuracy. They have tested the simulation
model, which lowered the discrepancy between the simulation and experiment to approximately 15%.
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However, all of these attempts considered the scattering of unpolarized photons limited by the specific
resonances of some nuclei. Other simulation works were performed by Omer and Hajima [11,12]
and Turturica et al. [13] on the elastic scattering as a beam background. Nonetheless, the literature is
missing a Monte Carlo simulation for γ− γ correlation functions, which are crucial for the nuclear
decays.

Monte Carlo simulation is an indispensable tool to represent the extended volumes of the targets
and detectors correctly. Here, we develop a Monte Carlo calculation framework of γ− γ correlation
functions as the basic constituent of the formalism of NRF interactions. The simulation is then exploited
to conduct a parametric study to investigate the effect of the detection geometry on the spin-parity
assignment of nuclear levels. We demonstrate that at certain geometries, the anisotropic parameters
may be changed by a factor of ≥ 100%, which certainly can lead to misassignment of the spin-parity
of the levels. Although our simulation focuses on γ− γ correlation functions, it can be extended to
include other correlation functions, such as α− γ or β− γ correlations.

In the following section, we briefly introduce the formalism of the angular correlation involved in
the NRF interaction. Then, we show in detail how we implement a Monte Carlo simulation-based of
this formalism. We discuss some examples of the simulation in Section 3. These examples are carefully
selected to match real NRF experiments. Finally, we summarize the results of the simulation and
provide an outlook for applying the simulation in future research works.

2. Method

2.1. Angular Correlation Formalism

The spins of the ground and excited states and the multipolarity involved in the transition are
fundamental quantities constructing the angular correlation function of the emitted photons. The level
diagram, shown in Figure 1, is a general case of an excitation involved in an NRF measurement.
The initial state Jπ

i represents the ground state of the nucleus, while Jπ
f is the final state stemming from

excitation of a multipolarity Li. After populating the final state, it deexcites either to the ground state
again or to a low-lying energy level. In the latter case, the nucleus may deexcite to an intermediate
level with a spin of Jπ

m. In such a situation, the NRF excitation is said to have a probability to deexcite
to a low-lying energy level, likely the first excited state. The multipolarity of the deexcitation is L f .

When the nucleus is excited with a well polarization-defined γ-ray photon, the angular
distribution of the re-emitted photons is given by [14]

W(θ, φ) = ∑
k=0,2

Ak(γi)Ak(γ f )Pk(cos θ) + (±)L cos 2φ ∑
k=0,2

Bk(γi)Ak(γ f )P2
k (cos θ), (1)

where θ is the angle between the direction of the first radiation γi and the second radiation γ f , denoted
here by the scattering angle. In the NRF process, γi and γ f are simply the incident and re-emitted
(or scattered) photons, respectively.
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Figure 1. Level diagram of an nuclear resonance fluorescence (NRF) process. γi is the absorption line,
while the emission line may only be γ f or γ f and its branching to a low-lying level γm. Li, L f , and Lm

are the multipolarities associated with the transitions.

Pk(cos θ) and P2
k (cos θ) are the ordinary and associated Legendre polynomials of the order k

respectively. The two summations of Equation (1) over k are over all even numbers for which the
transition coefficients, Ak (γ), and linear polarization coefficient, Bk (γ), do not vanish. The factor
(±)L is the parity coefficient, which is −1 for the magnetic dipole transition M1, and +1 for the electric
dipole transition E1. φ is the angle between the polarization of the incident photon and the scattering
plane, which is formed by the momentum direction of the incident and the scattered photons. It should
be noted that the first term of Equation (1) is the angular distribution function, W (θ), in case that the
incident photon is unpolarized. The excitation transition coefficient Ak (γi) is given by

Ak(γi) =
Fk

(
LiLi ji j f

)
+ 2δFk

(
LiL′i ji j f

)
+ δ2Fk

(
L′i L
′ ji j f

)
1 + δ2 (2)

where δ is the mixing ratio of the two multipolarities Li and L′i = Li + 1. For a pure dipole
or quardupole transition, δ = 0. This leads to Ak(γi) = Fk(LiLi ji j f ) where Fk(LiLi ji j f ) are the
F-coefficients, which may be given as

Fk

(
LiLi ji j f

)
= (−1)j f +ji−1 (2Li + 1)

[
(2j f + 1) (2k + 1)

]1/2
(

Li Li k
1 −1 0

)
︸ ︷︷ ︸

3j-symbol

{
j f j f k
Li Li j f

}
︸ ︷︷ ︸

6j-symbol

(3)

General expressions for the 3j-and 6j-symbol can be found in references [15,16], and are given by
Equations (4) and (5), respectively.

(
j1 j2 j3

m1 m2 m3

)
= (−1)j1−j2−m3 ×

[
(j1 + j2 − j3)! (j1 − j2 + j3)! (−j1 + j2 + j3)! (j1 + m1)! (j1 −m1)! (j2 + m2)! (j2 −m2)! (j3 + m3)! (j3 −m3)!

(j1 + j2 + j3)!

]1/2

×∑
k

[
(−1)k

k! (j1 + j2 − j3 − k)! (j1 −m1 − k)! (j2 + m2 − k)! (j3 − j2 + m1 + k)! (j3 − j1 −m2 + k)!

]
.

(4)
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{
j1 j2 j3

m1 m2 m3

}
= (−1)j1+j2+m1+m2 ∆ (j1 j2 j3)∆ (m1m2 j3)∆ (m1 j2m3)∆ (j1m2m3)×

∑
k

[
(−1)k (j1 + j2 + m1 + m2 + 1− k)

k! (j1 + j2 − j3 − k)! (m1 + m2 − j3 − k)! (m1 + j2 −m3 − k)! (−j1 −m1 + j3 + k)! (−j2 −m2 + j3 + k)!

]
,

(5)

where

∆ (xyz) =
[
(x + y− z)! (x− y + z)! (−x + y + z)!

(x + y + z + 1)!

]1/2

Similarly, one can easily write the deexcitation transition coefficient as Ak(γ f ) = Fk(L f L f j f ji).
Finally, to determine the polarization coefficient, it is convenient to use the expression Bk(γi) =

κ(LiLi)Fk(LiLi ji j f ), where the coefficient κ(LiLi) can be found in references [14,17].

2.2. Anisotropy

Anisotropy of the angular distribution of the emitted γ-rays is the key factor to identify the spin
of the excited states. The anisotropy is estimated by the experimental observables, which include the
asymmetry ratio A and the angular distribution ratio R. The asymmetry requires two simultaneous
measurements at a particular scattering angle. The first measurement is parallel to the polarization
plane of the incident photon (φ = 0), while the other one is orthogonal to the polarization plane
(φ = π/2). The asymmetry ratio is simply the ratio between the difference and the summation of the
two measurements,

A (θ) =
W (θ, 0)−W (θ, π/2)
W (θ, 0) + W (θ, π/2)

(6)

Unlike the asymmetry ratio, the angular distribution ratio requires four simultaneous
measurements with two of them at a scattering angle of θ1 parallel and orthogonal to the polarization
plane, while the other two follow the same manner at a different scattering angle, θ2. R (θ1, θ2)

is then defined by ratio of the summations over the parallel direction to the summation of the
orthogonal direction,

R (θ1, θ2) =
W (θ1, 0) + W (θ1, π/2)
W (θ2, 0) + W (θ2, π/2)

(7)

Interestingly, the symmetry properties of Legendre polynomials dictate that R (θ1, θ2) is
independent on the azimuth angle φ. Consequently, it can be used either in the case that the incident
beam is linearly polarized [18] or in the case that the incident beam in unpolarized [19]. In the latter
case, estimating R (θ1, θ2) requires only two simultaneous measurements at two different angles within
the scattering plane.

We calculated the angular correlation functions (see Appendix A for the final formulas) using the
method illustrated in the previous subsection. For the even-even nuclei, the spin of the ground state is
ji = 0+. The allowed transitions involved in the NRF interaction are limited to dipole and quadrupole.
The probability of magnetic quadrupole transition, M2, is too small to be considered. Therefore, the
spin of the excited state is j f = 1± for dipole or j f = 2+ for quadrupole transition. Ideal asymmetries
and radiation patterns of M1 and E2 transitions are shown in Figure 2. The E1 transition is identical
to the M1 transition but rotated by 90. Therefore, M1 and E1 transitions can be easily distinguished
by A (θ = π/2) which is +1 for M1 and −1 for E1. However, A (θ = π/2) cannot be used to
distinguish M1 from E2 because A (θ = π/2) = +1 for both. In this case, A (θ = 3π/4) = −1

(
+ 1

3

)
for quadrupole (dipole) can be exploited. Similarly, R (θ) can distinguish dipoles from quadrupole
transitions, but this is not the case for M1 and E1.
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Figure 2. Ideal asymmetry ratios of magnetic dipole M1 (solid line), and electric quadrupole E2 (dashed
line) transitions in even-even nuclei (left). Polar patterns of the dipole and quadrupole radiations
(right).

The situation is more complicated with odd nuclei, which are characterized by half-integer ground
state spin. Figure 3 demonstrates A (θ) and patterns of four possible transitions of a nucleus with a
ground state spin of 5

2 . The allowed spins of the excited state include 3
2 , 5

2 , or 7
2 for dipole and 9

2 for
quadrupole. Except for the spin sequence 5

2 →
3
2 →

5
2 with almost isotropic angular distribution, it is

easy to distinguish the parity of the dipole transition. In contrast, the sensitivity of A (θ) and R (θ) to
differentiate the dipole from the quadrupole transitions of the excited state is lower than the even-even
nuclei. For example, A (θ = π/2) for the spin sequence of 5

2 →
5
2 →

5
2 is 0.302, while it is 0.349 for the

spin sequence of 5
2 →

9
2 →

5
2 . Furthermore, A (θ = 3π/4) for the two spin sequences 5

2 →
7
2 →

5
2 and

5
2 →

9
2 →

5
2 is equal. Nonetheless, the closer the angular distributions of the spin sequences, the more

probability to misassign the spin and parity of a certain level and the greater the need to accurately
account for the geometrical conditions by Monte Carlo simulation.
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Figure 3. Ideal asymmetry ratios of possible magnetic dipole M1 (solid, dotted, and dotted-dashed
lines) and electric quadrupole E2 (dashed line) transitions in an odd nucleus of a 5

2
+

ground state (left).
Polar patterns of the possible dipole and quadrupole radiations (right).
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2.3. Monte Carlo Simulation

Geant4 [20] is a powerful Monte Carlo simulation toolkit dedicated to simulating particle transport
in matter. In Geant4, all particle interactions with matter are tracked. Parameters of the particle, such
as position, momentum, and energy, can be retrieved at almost every step from the generation of the
particle to the point where the particle is made to dump. Our procedure for the simulation model of
γ−γ correlation functions consisted of three major steps. The first step was to prepare the prerequisites
for the simulation. Then, we modeled the event generator. Finally, we modeled the detection geometry
and computed the asymmetries as a function of the scattering geometry and spin sequence.

2.3.1. Prerequisites

In the design of the simulation model, we considered that the geometrical parameters of the NRF
process were known prior to the simulation. The parameters include the following:

• Spin sequence of the expected NRF transition, which means the spin of the ground and
excited states.

• Dimensions of the target and the detectors.
• Detection geometry, including target and detector sizes and their positions with respect to

each other.

We introduced a new class within the frame of the Geant4 toolkit; namely, FCoefficients class.
The class returns F-coefficients based on the spin sequence, according to Equation (3). It should be
emphasized that we tested the FCoefficients class for the F-coefficients with all constituents, e.g.,
3j- and 6j-symbols, and compared them with the tabulated data of references [15,16]. We found no
differences between our coded calculations and the reference values.

2.3.2. Event Generator

We developed a new class, which is inherited from the Geant4 event generation class; namely,
G4PrimaryGeneratorAction. In this class, we introduced two functions aimed at generating the
position and momentum of photons emitted from the target. One function was dedicated to generating
the dipole transition patterns depending on the desired spin sequence, while the other function was
responsible for the generation of quadrupole patterns. In both functions, we employed the rejection
sampling method to sample the momentum of the emitted photons randomly.

The shape and size of the target were controlled by the G4PrimaryGeneratorAction class.
The positions from which the emitted photons started were homogeneously sampled over the whole
size of the target. In the present study, we considered a cylindrical target of radius Rt and length λt

whose axis coincides with the z-axis. However, the target shape may be changed to match any specific
experimental setup.

We adapted the G4PrimaryGeneratorAction class such that the emitted particles were of the
geantino virtual photons. Hence, there were no interactions considered through the virtual photons’
transport. The virtual photons, geantinos, are identical to the mathematical vectors. The particles
were generated at the beginning of the simulation and continued to move in straight lines until they
were counted by a detector located at the desired position.

2.3.3. Detection Geometry

In our simulation, we employed the G4DetectorConstruction class to build a detection geometry
similar to those usually used in typical NRF measurements [1,18]. In such detection geometry, we
positioned four detectors, each of radius Rd and length λd, such that their surfaces were at a distance
d from the center of the target. Furthermore, the center of the target was located at the center of the
detection system. The four detectors were positioned at (θ, φ) of (π/2, 0), (π/2, π/2), (3π/4, π), and
(3π/4, 3π/2). The numbers of geantinos arriving at each detector, C (θ, φ), were counted at the end
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of the simulation. Then, the simulation-expected values of the asymmetry ratios ASim (π/2) and
ASim (3π/4), and the angular distribution ratio RSim (π/2, 3π/4), were calculated from

ASim (π/2) =
C (π/2, 0)− C (π/2, π/2)
C (π/2, 0) + C (π/2, π/2)

(8)

ASim (3π/4) =
C (3π/4, π)− C (3π/4, 3π/2)
C (3π/4, π) + C (3π/4, 3π/2)

(9)

RSim (π/2, 3π/4) =
C (π/2, 0) + C (π/2, π/2)

C (3π/4, π) + C (3π/4, 3π/2)
(10)

The relative statistical uncertainty at a 95% confidence level of each count was calculated from the
following relation [21],

∆C(θ, φ)

C(θ, φ)
= 1.96

[
N − C(θ, φ)

N × C(θ, φ)

]1/2

(11)

where N is the number of the simulated events. In fact, depending on the geometric conditions and
the spin sequence of the transition, the number of the simulated events ranged from 1× 107 to 5× 109

such that the relative uncertainty was ≤ 1%.

3. Results and Discussion

Our method described in the previous section can generally be used for arbitrary spin sequences
and detection geometries. Here we show the results of Monte Carlo simulation of four examples.
Two of them are for the dipole and quadrupole transitions of even-even nuclei as examples of ground
states with integer spins. The spin sequences 0→ 1→ 0 and 0→ 2→ 0 are discussed. The other two
examples illustrate how the detection geometry affects the observed quantities for nuclei of ground
state with a spin of 5

2 , as example for ground states with half-integer spins. The spin sequences
5
2 →

5
2 →

5
2 and 5

2 →
9
2 →

5
2 are described.

3.1. Integer-Spin Ground States

To demonstrate the effect of the detection geometry on the angular distribution in an NRF
measurement, we performed a large number of simulations at different geometrical conditions. Figure 4
shows how the asymmetry and angular distribution ratios of the dipole transition corresponding to the
spin sequence 0→ 1→ 0 are affected by the detector radius and target-to-detector distance. Generally,
the asymmetry ratios decreases as the target-to-detector distance decreases. This is because when the
distance between the target and the detector decreases, the solid angle that the target subtends the
detector increases. Thus, the number of photons counted within the detector are not only those photons
emitted at an angle of θ but also photons emitted at θ ± ∆θ, where ∆θ is the angular acceptance of the
detector as seen by the target. However, the decrease of ASim(π/2) is faster than ASim(3π/4) when
decreasing the target-to-detector distance. For example, when the detector radius is 30 mm, ASim(π/2)
decreases to 80% of the ideal value when the d changes from 5 to 30 mm, while ASim(3π/4) decreases
only to 87% of the ideal value by the change over the same distance. This difference arises from the fact
that at π/2, there is a maximum value of ASim(θ), which means ASim(θ) has lower values at either side;
that is, ASim(θ < π/2) < ASim(θ = π/2) > ASim(θ > π/2), as shown in Figure 2. On the contrary,
at 3π/4 there is no maxima which leads to ASim(θ < 3π/4) < ASim(θ = 3π/4) < ASim(θ < π/2).
In practice, an NRF experiment may be conducted using a close geometry with small target-to-detector
distance and big detector aiming at enhancing the counting rates. For such close geometry (d = 6
mm and Rd = 60 mm) ASim(θ = π/2) drops to 53% of its ideal value, while ASim(θ = 3π/4) drops
to 63% of its ideal value. This reduction reflects the significance of taking the extended detector into
consideration.
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Figure 4. Dependence of the asymmetries ASim (π/2) and ASim (3π/4), and the angular distribution
ratios RSim (π/2, 3π/4) on the target-to-detector distance at different detector radii for the dipole
transition with a spin sequence of 0 → 1 → 0, while λt = 10 mm and Rt = 5 mm. The exact values
corresponding to the point target and point detector are expressed by dashed lines.
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Figure 5. Dependence of the asymmetries ASim (π/2) and ASim (3π/4), and the angular distribution
ratios RSim (π/2, 3π/4) on the target length at different target-to-detector distances for the dipole
transition with a spin sequence of 0→ 1→ 0. The detector radius is fixed at Rd = 45 mm while Rt = 5
mm. The exact values corresponding to the point target and point detector are expressed by dashed
lines.
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Figure 6. Dependence of the asymmetries ASim (π/2) and ASim (3π/4), and the angular distribution
ratios RSim (π/2, 3π/4) on the target length at different target-to-detector distances for the dipole
transition with a spin sequence of 0→ 1→ 0. The detector radius is fixed at Rd = 45 mm while λt = 5
mm. The exact values corresponding to the point target and point detector are expressed by dashed
lines.

In contrast to the asymmetry ratios, the angular distribution ratio RSim(π/2, 3π/4) increases
when the distance d gets shorter. From the definition of RSim(π/2, 3π/4), Equations (7) and (10),
the second term of the numerator, W(π/2, π/2), vanishes for the dipole transition with spin sequence
0 → 1 → 0. But for the extended detector, W(π/2, π/2) 6= 0 and gets larger for larger solid angles.
Therefore, RSim(π/2, 3π/4) increases at larger solid angle (smaller target-to-detector distance).

To demonstrate the effect of the dimensions of the target, we carried out some simulations at
different target lengths and radii while fixing the detector radius at 45 mm. Figure 5 shows the
variation of the asymmetry and angular distribution ratios when the target length is changed from 5 to
70 mm. It should be emphasized that, in real experiments, the target length is selected based on the
density of the target and the expected counting rates of the detectors. For dense targets, e.g., Pb or
Ta, several-millimeter-long targets are usually sufficient to produce reasonable counting rates in NRF
experiments. However, if the target is of low density, e.g., Al or Sn, several-centimeter-long targets
are usually used. Therefore, the range of target lengths shown in Figure 5 represents a wide range of
values that are used by the experiment. The target length decreases ASim(π/2) by a factor of 15% over
the whole range of target lengths considered in the present study. The effect of target length is smaller
at a greater target-to-detector distance (decrease of 15% and 11% at d = 7 and d = 12 cm, respectively).
RSim(π/2, 3π/4) decreases as well with the increase of the target length by a factor of 17% at d = 7
and 8% at d = 12 cm. Opposing ASim(π/2), ASim(3π/4) increases by a factor of approximately 20%,
almost independent of d, with the increase of the target length. This may be explained in terms of the
inclined position of the detector located at 3π/4 with respect to the target.

Figure 6 demonstrates that the target radius has almost no effect on the asymmetry and the
angular distribution ratios. Only a change of <3.5% occurs when the target radius changes from 2.5
to 15 mm. Actually, this change is too small to be observed experimentally because the experimental
uncertainties accompanying NRF experiments are in the order of 5%–8%. The negligible effect of the
target radius may be due to the symmetry of the target shape with respect to the radiation pattern of
the transition. Further study is required to investigate the effect of the target shape. The present Monte
Carlo simulation can be used to extract information about the effect of the target shape.

Similarly, the effects of the geometrical conditions on the angular distribution of the quadrupole
transition with a spin sequence of 0 → 2 → 0 are shown in Figures 7–9. As indicated in Figure 7,
both asymmetry ratios depart from the ideal values with shorter target-to-detector distances, following
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the same trend of the dipole transition. However, ASim(3π/4) decreases at much faster pace than
ASim(π/2), which is just the opposite to the case of spin sequence 0→ 1→ 0. Repeatedly, this can
be accounted for by the aid of Figure 2 in which the asymmetry of the quadrupole transition exhibits
almost a flat-top near π/2 while it changes rapidly near the minimum at 3π/4. For the close geometry
ASim(π/2), it drops to 41% of its ideal value. The reduction is greater than that which occurs for the
dipole radiation. This can be understood in terms of the versatility of directions that the quadrupole
transition is emitted in. Note that the ideal dipole transition is emitted within the scattering plane
while the quadrupole transition is emitted in two orthogonal planes.

Interestingly, at d = 6 mm and Rd = 60 mm, ASim(3π/4) is changed from the ideal value
of −1 (point detector) to +0.1 (extended detector) which represents a change of a factor of 110%.
More importantly, this value is very close to that of the dipole transition under the same conditions,
ASim(3π/4)|0→1→0 = 0.2. This indicates that unless the counting statistics are sufficiently high,
it is possible to misassign the spin-parity. Note that ASim(π/2) cannot be used to differentiate
dipoles and quadrupoles, as mentioned earlier. Furthermore, it would be more difficult to use the
angular distribution ratio in this case too. This is because, at the same conditions mentioned above,
RSim(π/2, 3π/4)|0→1→0 = 0.79, which is very close to RSim(π/2, 3π/4)|0→2→0 = 0.9. It is clear that
it would be too difficult to assign spin-parity using the angular distribution functions only correctly.
Indeed, in such close geometries, Monte Carlo simulation is necessary.

Unlike the dipole case, RSim(π/2, 3π/4) decreases when the target-to-detector distance decreases.
This can be interpreted in terms of the difference between the radiation patterns of the dipole and
quadrupole transitions. The radiation pattern of the dipole is limited to the scattering plane. But
the radiation pattern of the quadrupole includes the orthogonal plane in addition to the scattering
plane. Consequently, W(π/2, π/2) does not vanish and is affected by the target-to-detector distance
similar to W(π/2, 0). The effect of the target length becomes more apparent for the quadrupole case.
As shown in Figure 8, changing the target length from 5 mm to 70 mm causes an approximate change of
30% in ASim(π/2) when d = 7 cm and 18% at d = 12 cm, which is close to twice the change occurred
for the dipole transition at fixed detector radius. Furthermore, ASim(3π/4)|Rd=60 mm changes from
−0.14 to 0.07 over the considered range of target lengths. Additionally, the change of the target length
decreases RSim(π/2, 3π/4) by a factor of approximately 30%. Finally, the quadrupole transition
exhibits identical behavior to that of the dipole transition regarding the effect of the target radius.
The change over the target radius only alters the asymmetry ratios by ≤ 2.7%.
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Figure 7. The same as Figure 4 for the quadrupole transition with a spin sequence of 0→ 2→ 0.
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Figure 8. The same as Figure 5 for the quadrupole transition with a spin sequence of 0→ 2→ 0.
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Figure 9. The same as Figure 6 for the quadrupole transition with a spin sequence of 0→ 2→ 0.

3.2. Half-Integer-Spin Ground States

The effects of the geometrical parameters for the dipole transition with spin sequence of 5
2 →

5
2 →

5
2 follow the same trend of the even-even nuclei as is indicated in Figures 9–12. The asymmetry ratios
decrease with decreasing the target-to-detector distance, and also with increasing the detector radius.
The opposite occurs for the angular distribution ratio. Generally, it is clear that ASim(θ) ≤ AIdeal(θ),
while RSim(θ1, θ2) ≥ RIdeal(θ1, θ2) for the to dipole transitions regardless the spin sequence. However,
in odd nuclei, the ideal values of the asymmetry and angular distribution ratios are often lower than
those of even-even nuclei. Moreover, the selection rules of dipole transitions in odd nuclei increase
the possibilities of excitation to various levels with different spins. The ground state spin of 5

2 may be
excited to a state of spin 3

2 , which is almost isotropic.
The quadrupole transition with a spin sequence of 5

2 →
9
2 →

5
2 manifests a rather complicated

dependence on the geometrical parameters, as indicated in Figures 13–15. While ASim(π/2) is similar
to previously discussed quadrupole transition of even-even nuclei, ASim(3π/4) shows a dramatic
difference in comparison with the case of spin sequence 0→ 2→ 0. At small distances, ASim(3π/4)
increases with increasing target-to-detector distance. Then, at a distance that depends on the detector
radius, it decreases with increasing the target-to-detector distance. This behavior is more distinctive
than the case of 0→ 2→ 0, which showed a monotonic decrease with the target-to-detector distance.
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The irregular trend of ASim(3π/4) may be explained by nature of the quadrupole transition associated
with spin sequence 5

2 →
9
2 →

5
2 . There is a minimum value of the angular correlation function at

W(3π/4, 0), (see for example Equation (A6)). The effect of this minimum value may be propagated at
large solid angles when the detector is close to the target.

We performed further simulations with an asymmetry ratio at a different angle, which was
ASim(2π/3), where the angular correlation function shows no minima. The results of our simulations
are depicted in Table 1, along with those of ASim(π/2) and ASim(3π/4). The data of Table 1
demonstrates that both ASim(π/2) and ASim(2π/3) show the same trend, while only ASim(3π/4) is
different. As a result, it is obvious that ASim(3π/4) is a special case, and therefore, its irregular trend
may be reasonable. The minimum value of the angular correlation function at 3π/4 also affects the
angular distribution ratio for the present quadrupole transition, as inferred from Figure 13. The effects
of the target length and target radius are similar to even-even nuclei, either for the case of the dipole or
the quadrupole transitions.

Table 1. A comparison among ASim(π/2), ASim(2π/3), and ASim(3π/4) for the spin sequence
5
2 →

9
2 →

5
2 as affected by the target-to-detector distance d. The other parameters are fixed such that

Rd = 60 mm, λt = 10 mm, and Rt = 10 mm. Numbers in parentheses are the uncertainties referred in
the least significant digit(s).

d cm ASim(π/2) ASim(2π/3) ASim(3π/4)

6 0.18216 (6) 0.12650 (8) 0.07810 (3)
7 0.20651 (7) 0.13845 (7) 0.08184 (4)
8 0.22689 (3) 0.14784 (3) 0.08409 (4)
9 0.24395 (7) 0.15535 (9) 0.08532 (6)

10 0.25809 (8) 0.16121 (06) 0.08599 (5)
12 0.27981 (11) 0.16971 (14) 0.08635 (8)
14 0.29502 (14) 0.17549 (10) 0.08614 (9)
16 0.30585 (16) 0.17946 (13) 0.08564 (18)
18 0.31378 (22) 0.18224 (3) 0.08529 (10)
20 0.31993 (18) 0.18380 (87) 0.08499 (10)
25 0.32970 (19) 0.18765 (25) 0.08441 (82)
30 0.33528 (15) 0.18925 (13) 0.08388 (14)

Ideal value 0.3489 0.1937 0.0826
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5
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Figure 15. The same as Figure 6 for the quadrupole transition with a spin sequence of 5
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2 .

The irregular behavior of ASim(3π/4) affirms the significance of the Monte Carlo simulation as
a beneficial tool that strongly affects the success of experiments involving spin-parity assignments.
The spin-parity assignment of odd nuclei is a difficult task using NRF interaction [19]. Only a few
experimental works have investigated odd nuclei, such as Rusev et al. [22] and Shizuma et al. [1].
However, the present simulation tool opens the door to study the spin and parity of odd nuclei by
providing a precise estimation of the required geometry prior to the experiment. Furthermore, the
present Monte Carlo method of the γ − γ correlation functions has the advantages of simplicity,
generality, and, at the same time, accuracy over previously implemented methods based on
mapping [23] or parametrization [24,25]. It worth noting that the present study is limited to pure
transitions. An upgrade would be required to implement a simulation tool that can handle the
phenomenon of multipole mixing.

3.3. Benchmarking against Experimental Data

To validate our simulation, we compared the simulation-estimated asymmetry ratios with those
determined experimentally for 52Cr and 40Ar as examples of even nuclei, and for 27Al and 11B as
examples of odd nuclei. In each case, we could extract the dimensions of the target and the detector
from the corresponding reports, and then we precisely simulated the experimental setups. In a recent
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study, Wilhelmy et al. [26] assigned 35 parity quantum numbers of 52Cr to either M1 or E1 transition.
The asymmetry ratios AExp(π/2) averaged 0.878(313) overall assignments. The simulation-estimated
ASim(π/2) for the corresponding setup is 0.888, which agrees with measured asymmetry ratios within
the experimental uncertainty.

Using the results of previous experiments on 40Ar [27,28], the effect of the target length could
be appropriately benchmarked. In these experiments, a target of pressurized 40Ar of length 12 cm
and radius 6 cm was exploited in NRF measurements while the detector radius was 32 mm. The first
experiment on 40Ar reported that 17 dipole transitions with average AExp(π/2) = 0.544(126), while the
second measurement resulted in assignments of 18 dipole transitions with AExp(π/2) = 0.638(171).
Our simulation showed that ASim(π/2) = 0.616 and 0.619 for the first and second experiments,
respectively. The small difference between the simulation of the two experiments is due to the
difference between the diameters of collimators used to define the γ-ray beam size (2.54 cm for the
first experiment and 1.91 cm for the second experiment). Nonetheless, the asymmetry ratios predicted
by the simulation agree within the experimental uncertainty with the measured counterparts.

Shizuma et al. [1] have recently assigned the spin and parity of the 2.982 and 3.004 MeV levels
of 27Al. The first level was assigned to be M1 transition via a spin sequence of 5

2 →
3
2 →

5
2 with

AExp(π/2) = 0.02(5). The simulation-calculated value of this level is ASim(π/2) = 0.015. For the
3.004 MeV level, an E2 transition was identified, having AExp(π/2) = 0.34(5) with a spin sequence of
5
2 →

9
2 →

5
2 . This demonstrates a reasonable consistency with the value predicted by the proposed

simulation (ASim(π/2) = 0.331). Furthermore, the angular distribution ratio RExp(π/2, 3π/4) was
determined from the experiment amounted as RExp(π/2, 3π/4) = 0.98(7) for the spin sequence
5
2 →

3
2 →

5
2 and RExp(π/2, 3π/4) = 0.95(7) for the spin sequence 5

2 →
9
2 →

5
2 . Again, the

simulation-estimated angular distribution ratio is RSim(π/2, 3π/4) = 0.97 and RSim(π/2, 3π/4) =
0.91 for dipole and quadruple transitions, respectively.

Another example of the odd nuclei is the experiment performed by Rusev et al. [22] on 11B.
In this experiment the level at 8.916 MeV was assigned as M1 transition with AExp(π/2) = 0.215(20).
The spin sequence of this transition was found to be 3

2 →
5
2 →

3
2 . Our simulation resulted in a

consistent asymmetry ratio (ASim(π/2) = 0.223) for the given spin sequence.
A general feature of spin-parity measurements is the symmetry of the detection geometry. Usually,

two identical detectors are positioned at the same distance from the center of the target, with one
of them being parallel to the polarization plane while the other is perpendicular to the polarization
plane. In such geometry, NRF photons emitted from the target travel the same distance within the
target and through the target-to-detector distance before arriving at the detector. Therefore, the effects
of self-attenuation of photons within the target cancel each other out when asymmetry and angular
distribution ratios are calculated. This scenario enabled the proposed simulation to calculate the
asymmetry and angular distribution ratios without the need to track the propagation of photons
through the target. The consistency between the experimental observation of the asymmetry and
angular distribution ratios with the simulated-estimated values strengthens the fact that the proposed
simulation can be used as a planning utility prior to the experiment. Another utilization of the proposed
simulation is to estimate the corrections of angular distribution functions after the experiment as an
indispensable part of the data analysis procedure. More importantly, the present simulation can be
employed to sample the final states through a complete implementation that simulates the whole NRF
interaction. In this case, the angular distribution functions are invoked by the simulation code only for
the interacting nuclei. The simulation run within the Geant4 toolkit will then track the propagation of
NRF photons in detail.

4. Conclusions

In summary, we developed a new Monte Carlo simulation of the γ− γ correlation functions.
Our simulation is capable of accounting for the effects of detection geometry encountered in the
spin-parity assignments using NRF. The simulation can handle arbitrary shapes and sizes of the target
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and detector, and spin sequences. We showed that the spin-parity assignment is very sensitive to
detection geometry. Consequently, incorrect spin-parity, particularity for odd-nuclei, may be assigned
unless the detection geometry is carefully planned using the proposed method. The simulation
provides a tool to plan and predict the sufficient statistics for correct assignment of the spins and parities
of the nuclear energy states. In addition, we provided simulation examples for different geometrical
conditions and spin sequences. The effects of the target and detector sizes and target-to-detector
distance may lead to a deviation of the order of ≥ 100% of the ideal values of the γ− γ correlation
functions. Finally, we validated our simulation model by comparing the results of our simulations with
the observable quantities involved in spin-parity measurements using NRF; namely, asymmetry and
angular distribution ratios. Our validation against experimental data included a variety of detection
geometries and spin sequences.
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The following abbreviations are used in this manuscript:

E1 Electric dipole transition
E2 Electric quadrupole transition
Geant4 GEometry ANd Tracking: a particle transport simulation toolkit [20]
LCS Laser Compton scattering
NRF Nuclear resonance fluorescence
M1 Magnetic dipole transition
M2 Magnetic quadrupole transition
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