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Abstract: Charlotte Froese Fischer has been at the forefront of research in atomic structure theory
for over 60 years. She has developed many of the methods currently used by researchers and has
written associated computer programs which have been published and hence made accessible to
the research community. Throughout her career, she has consistently encouraged and mentored
young scientists, enabling them to embark on independent careers of their own. This article provides
an overview of the methods and codes she has developed, some large-scale calculations she has
undertaken, and some insight into the impact she has had on young scientists, and the leadership she
continues to show as she reaches her 90th birthday.
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1. Foundations

Charlotte Froese was born in the Ukraine, but soon after her birth, her family moved, via Germany,
to Canada. She grew up near to Vancouver, and undertook her undergraduate and masters studies,
in Mathematics along with Chemistry and some Physics, at the University of British Columbia (UBC)
in Vancouver [1]. From there, she moved to the University of Cambridge, England, to undertake
studies for her PhD under the supervision of Douglas Hartree. This interaction provided Charlotte
(and therefore us) with a link to the very beginnings of atomic structure calculations. These had begun
with the foundational paper of Schrödinger (1926) [2], which also dealt with the very simple case of
hydrogenic ions. This was extended by Hylleraas (1928) [3] to the case of the ground state of helium,
in which he incorporated the interelectronic distance r12 explicitly in a form of the wave function
which also contained variational parameters, determined by minimising the total energy. The use
of interelectronic coordinates, while possible for very simple atomic systems, did not lend itself to
extension to the calculations for many-electron atoms and ions. Instead, Hartree (1927, 1928) [4,5]
proposed a method which was capable of application to any number of electrons in an atom or ion.
In this, the N-electron wave function is represented by a product of N one-electron functions, or orbitals,
with the motion of an individual electron determined by a single orbital.

ψ̃(1, 2, .., N) = u1(1)u2(2)...uN(N) (1)

He used physical arguments to demonstrate that the orbital functions ui(i) should satisfy the
non-linear equations (
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2
∇2

i −
Z
ri

)
ui(ri) + ∑

j 6=i
ui(ri)

∫ |uj(r j)|2

rij
dτj = εiui(ri) (2)

He chose to take a spherical average of the final term of the potential so that the angular
dependence of the orbital functions took the form of single spherical harmonics, Ym

l , and also the
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radial parts of the orbital functions were assumed to be independent of m. The number of unknown
functions was thereby substantially reduced. Nevertheless, the non-linearity of the equations meant
that they had to be solved iteratively, with the aim of achieving self-consistency.

Hartree’s simple product form of the wave function did not satisfy the anti-symmetry requirement
for the wave function. Fock (1930) [6] therefore wrote the wave function as an anti-symmetrised product
of orbitals, represented by a determinant:

Ψ(LS) =
1√
N!

∣∣∣∣∣∣∣
φ1(1) · · · φN(1)

...
. . .

...
φ1(N) · · · φN(N)

∣∣∣∣∣∣∣ (3)

in which the one-electron functions (spin-orbitals) now incorporated a function describing the spin of
the electron:

φi(ri, msi) = ui(ri)[α(i) or β(i)] (4)

with ms = ± 1
2 respectively.

This led to more elaborate equations—the Hartree-Fock equations—particularly because of the
additional term in the potential, representing the possible exchange of the indistinguishable electrons:

(
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)
ui(ri) + ∑

j 6=i

[
ui(ri)

∫ |uj(r j)|2

rij
dτj − δ(msi , msj)uj(ri)

∫ u∗j (r j)ui(r j)

rij
dτj

]
= εiui(ri) (5)

Comparing the potential terms in Equations (2) and (5), that in Equation (2) has the same form
as the first of the two terms in Equation (5). It is referred to as the direct term, for it comprises the
direct interaction between electron i and the field arising from all the other electrons. Equation (5)
contains an additional term, arising from the antisymmetric nature of the wave function. Compared
with the first term, it can be seen that the function ui has been interchanged with one of the uj, so that
it appears inside the integral in the second term. Because of this exchanging of the placing of these
orbital functions, this second term is referred to as the exchange term. Its physical interpretation is that
it models the indistinguishability of electrons, a feature missing from Hartree’s formalism. In the case
of Hartree’s Equation (2), the potential is local, in that the equations can be expressed as(
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)
ui(ri) + V(ri)ui(ri) = εiui(ri)

where V, representing the potential, does not involve ui. By contrast, such a multiplicative potential
cannot be formed for Equation (5), since ui appears inside the integral in the second term. Therefore
the potential in this case is non-local.

In both cases, the equations are non-linear in the orbital functions, so must be solved iteratively.
Typically, at any iteration stage, the opening forms of the orbital functions are used to evaluate
the integrals, and so the integro-differential equations become linear differential equations. For (2),
each equation then involves just a single orbital function, whereas for (5), the exchange term means
that the equations are coupled, involving all the orbital functions. In both cases, the orbitals comprising
the solution at each stage of iteration become the input orbitals for the next stage, although in practice
the orbitals obtained at earlier stages might also be used in the formation of the input orbitals, in order
to speed up the convergence towards self-consistency.

Hartree set to work on solving, again self-consistently, these more elaborate equations,
and although Fock’s formalism did not require it, he chose to represent the angular dependence
of the space part of the orbital functions again by single spherical harmonics, and the radial functions
as being independent of ml and ms. The Hartree-Fock equations then became equations for the radial
parts of the orbital functions.
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For the next 25 years or so Hartree, alone (e.g., Hartree 1934 [7]) or with his father (Hartree and
Hartree 1938) [8] and with other co-workers (e.g., Hartree, Hartree and Swirles 1939 [9]), determined
wave functions for a variety of atoms and ions, with the radial functions being in tabular numerical
form. It was a laborious undertaking, demanding careful book-keeping of the set of numerical
functions, even though Hartree was later able to enlist some of the first computers that became
available, and indeed which he was instrumental in designing [10].

2. Hartree-Fock Calculations

It was into this scientific environment that Charlotte came in the mid-1950s. Her first paper with
Hartree concerned the solution of the Hartree-Fock (HF) equations for Ne IV and Ne V, (Froese and
Hartree 1957 [11]). It was important to understand in detail the steps which had to be taken, in a
systematic manner, for self-consistency to be achieved, in the solution of the HF equations. Charlotte’s
mathematical background equipped her well for the tasks of studying the equations themselves and
for programming the EDSAC computer in Cambridge. Sadly, it was to be her only paper with Hartree,
for he died early in 1958, shortly after his definitive book on the subject (Hartree 1957 [12]) was
published. His untimely death was a significant loss to the atomic structure community and of course
to Charlotte herself. But, picking up his mantle, she proceeded to publish further papers during the
same year ([13,14]), in which she completed the numerical solutions of the HF equations for a number
of ions, including some of astrophysical importance. Over the next few years, further studies of the HF
equations followed, but it is interesting to note her focus on aspects of the mathematical or numerical
solution of the equations, for example on applications to high Z-values ([15–17]). By then, Charlotte
had returned to UBC in Vancouver, where a new computer had just been installed—the first at UBC.
She was then able to follow up the approaches she had developed with Hartree during her time
in Cambridge, by investigating the numerical solution of the HF equations with emphasis on how
electronic computers could be used most effectively, as well as considering the ways in which accuracy
could be assured [18]. She was a pioneer in the use of electronic computers in atomic structure
calculations, and was becoming a world leader in the field—a position she still holds!

The 1960s proved to be very significant for Charlotte. In 1964, she was awarded an Alfred P. Sloan
Fellowship, a prestigious award given to those early-career researchers who show exceptional promise.
She was the first woman to be given that award and accolade. Clearly, the foresight of the awarders
has been fully vindicated!

Further HF calculations followed in those years, for a range of atoms and ions, of wave functions
and energies, and other atomic properties such as oscillator strengths and hyperfine structure.
In addition, issues affecting the rate of convergence of the iterative process in the solution of the
HF equations as well as other mathematical aspects of the HF equations were studied and resolved.

Above all, she met and married Patrick Fischer, and in 1968 they moved across Canada to the
computer science department of the University of Waterloo, Ontario. Since then, she has published
under the name of Charlotte Froese Fischer.

3. Extensions of HF

This detailed study of the mathematics of the solution of the HF equations, as well as her
development of an algorithmic approach, stood her in good stead for taking forward some of the
many ways of extending the HF method in order to achieve greater agreement with experimental
results, in energy differences, but also in the calculation of other properties such as oscillator strengths,
hyperfine structure or isotope shifts.

Hartree’s original method as well as the HF method can be expressed in terms of a variational
approach to calculating energies (Slater 1930 [19]). Consequently, HF energies are reasonably accurate,
at least for isolated and low-lying states, since the errors in the energies are of second-order for
first-order changes in the orbitals. However, in the case of other operators (for example the dipole
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operator encountered in the calculation of oscillator strengths), the errors in their matrix elements are
of first order.

A powerful and now widely used means of improving on HF is through the use of wave functions
which, in LS angular momentum coupling, are of configuration interaction format:

Ψ(LS) =
M

∑
i=1

ai Φi(αiLS) (6)

where αi represents the coupling of the angular momenta of the orbitals in each of the configuration
state functions (CSFs) Φi, and typically Φ1 is chosen to be the HF wave function. For any choice of the
form of the CSFs, the optimal values of the mixing coefficients ai are eigenvector components of the
Hamiltonian matrix whose typical element is < Φi|H|Φj >, with the corresponding set of eigenvalues
providing the calculated energy values. Froese (1964) [20] demonstrated the insufficiency of the
HF process in her study of multiplet transitions in Fe XV and Fe XVI. The Fe XVI ion, is essentially
hydrogenic with a single electron outside completely closed shells, and the HF method leads to
reasonably accurate oscillator strengths. By contrast, for some transitions in Fe XV, HF is not adequate.
Froese found that considerable improvement could be achieved by the inclusion of configuration
interaction, particularly for 1Po − 1D transitions. Even if the lower state 3s3p 1Po is represented by just
the HF configuration, there are two possible upper levels—3s3d and 3p2, and each state needs to be
represented by a linear combination of the two 1D configurations, and both configurations have large
mixing coefficients in each state. The radial functions of the orbitals were generated in HF calculations
on different states, and then used in a configuration interaction, or more precisely superposition of
configurations, calculation. Hartree, Hartree and Swirles (1939) [9] had incorporated configuration
interaction much earlier, albeit with the simpler system of oxygen ions. Froese incorporated the mixing
coefficients in the Hartree-Fock equations, thus providing an early example of the multi-configuration
Hartree-Fock (MCHF) calculation.

In the MCHF process, the variational method is used to generate the MCHF equations, using a
trial wave function in the form of equation (i6), and by setting to zero the first-order change in the
energy expression < Ψ|H|Ψ > subject to the orthonormality of the orbital functions. The MCHF
equations are similar to the HF equations in that they are the equations which determine the orbital
functions, but additionally incorporate the optimisation of the mixing coefficients, ai of Equation (6).
The MCHF method includes the additional process of the diagonalisation of the Hamiltonian
matrix, thus providing the optimal values of the mixing coefficients for the current forms of the
orbital functions.

The key difference between MCHF and the superposition of configurations method is that in
MCHF, the orbital functions are obtained as the solutions of the MCHF equations, whereas generally the
term configuration interaction implies that the orbital functions are pre-determined separately, though
with the same the diagonalisation of the Hamiltonian matrix to provide the CI mixing coefficients.
For example, in an MCHF calculation of a light element such as Be I, the MCHF orbitals as well
as the CI mixing coefficients would be determined directly by the two-stage process of solving the
MCHF equations (to a pre-determined level of consistency) followed by the diagonalisation of the
Hamiltonian matrix. The CI or superposition of configurations process might first fix those orbital
functions which are ‘occupied’ in the HF approximation, with further orbitals, added from a variety
of sources, to be used in the other CSFs. A bringing together of these somewhat different processes
is sometimes undertaken for larger atoms, when, for example, the orbitals for some of the subshells
might be fixed from simpler calculations, such as those of their HF forms or from an MCHF calculation
using just the CSFs with substantial mixing coefficients, while the additional orbitals introduced for
the other CSFs are treated as unknowns, to be determined by solving the MCHF equations. As a
consequence, generally the MCHF wave functions are more accurate than CI wave functions, because
of use of the variational principle in setting up the MCHF equations, though the difference can be
fairly small.
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A major application of the use of MCHF or CI wave functions is in the calculation of oscillator
strengths of transitions for atoms or ions. The oscillator strength, or f -value, for electric dipole
transitions is a dimensionless quantity, and therefore is usually evaluated in atomic units, and for an
N-electron atom or ion can be expressed, in velocity form, as

fv =
2
3

1
gi∆E

∣∣∣∣∣
〈

ψj

∣∣∣∣∣ N

∑
k=1
∇k

∣∣∣∣∣ψi

〉∣∣∣∣∣
2

(7)

where ∆E, given in atomic units, is the transition energy (the energy difference between the two
states) and gi is the g-value of the energetically lower state, which means that in LS coupling
gi = (2Li + 1)(2Si + 1). The emission transition rate Aji, sometime called the transition probability,
is related to the absorption oscillator strength f ij by, in the case of electric dipole transitions,

f ij = 1.4997× 10−16 λ2 gj

gi
Aji

with A expressed in units of s−1, and λ (in Å) is the wavelength of the transition. The equivalent length
form of the oscillator strength is

fl =
2
3

1
gi

∆E

∣∣∣∣∣
〈

ψj

∣∣∣∣∣ N

∑
k=1

rk

∣∣∣∣∣ψi

〉∣∣∣∣∣
2

(8)

Oscillator strengths appear in astrophysical modelling, for example in the determination of
element abundances in stellar atmospheres, in the combination log(g f ) so oscillator strengths are
frequently published as g f -values, with g as the g-value of the lower state/level of the transition.

When the wave functions of the two states involved are exact eigenfunctions of the Hamiltonian,
so that the Hamiltonian commutes with each rk, the length and velocity forms give the same
result. For HF, the potential is non-local, so these conditions are not satisfied. Hence in most cases,
the calculated length and velocity forms do not agree for HF wave functions. However, when a very
simple local model potential is used, with the two wave functions each being exact eigenfunctions
of this simple Hamiltonian, then length and velocity forms do agree, but the common value is not
necessarily correct. So, while it is necessary for length and velocity forms to agree, their doing so is not
a guarantee of accuracy. Rather, accuracy is achieved by studying the convergence of the two forms as
the numbers of CSFs in expansions (6) of the CI or MCHF wave functions are increased. It is sometimes
argued that the length value is the more reliable of the two, and so only the length is calculated or
provided. It is indeed often the case that the length value is the more stable as wave functions are
extended, as the velocity form is more affected by the degree of electron correlation included in the
calculation. But to omit the velocity value is to remove one measure of accuracy. If the two forms
converge at least closely to a common value, one can have confidence in the accuracy of that value.
It is this convergence process that Charlotte has endeavoured to achieve through her calculations.

4. Some Illustrative Examples

Configuration interaction calculations were undertaken for the some challenging transitions in
Al I (Froese 1965) [21] and for Si II (Froese and Underhill 1966) [22]. This work was extended [23] to
include a consideration of the very different 3d radial functions when optimised on the two 2D states
separately, and the effect of imposing conditions which ensure the orthogonality of the two 2D states.
The results for Si II are shown in Table 1.
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Table 1. CI calculations for Si II.

CI Coefficients for 2D States of Si II

Configurations 3s3p2 3s23d 3s23d (orthog)
3s3p2 0.7908 −0.5629 −0.5263
3s23d 0.5994 0.8016 0.8251
3p2(1S)3d 0.1146 0.1921 0.1977
3p2(1D)3d 0.0118
3p2(3P)3d −0.0603 −0.0563
3s3d2 0.0467

g f -values from the 3s23p 2Po ground state

Froese Fischer (1968) [23] 0.103 6.22
Froese Fischer (1981) [24] 0.006 6.83
Hibbert et al. (1992) [25] 0.011 6.69

In the first part of the table, it is clear that the two main 2D configurations have strong components
in each state. In an extension of [22], Froese Fischer [23] found state the mean radius of the optimal
MCHF 3d function when optimised on the 3s3p2 state was 3.215, whereas when optimised on the
3s23d state, the mean radius of 3d was 5.412. When the orthogonality constraint is imposed, some
changes in the mixing coefficients occur, but the strong CI mixing in both states is generally maintained.
The strong CI mixing has a pronounced effect on the oscillator strengths (shown in Table 1 as g f values,
with g = (2L + 1)(2S + 1) for the state with lower energy = 6). The oscillator strength between the
ground state and the 3s23d state is enhanced by the CI mixing, whereas that in the transition to the
3s3p2 state, strong CI cancellation occurs, resulting in an abnormally small g f value. In a much more
extensive calculation of these transitions, involving many configurations, including those representing
core polarisation [24], and the use of non-orthogonal orbitals to circumvent the problem of different
3d functions being optimal for the two 2D states, the cancellation is stronger still. That very small
oscillator strength agrees well with an independent calculation of my own [25]. This transition is of
astrophysical significance in the study of the abundance of Si in the interstellar medium, Shull et al.
(1981) [26]. They determined, from observations, a g f value of around 0.033, not quite in agreement
with the most recent calculations but, given the extent of the cancellation, it can be seen that calculated
values and results derived from observation are fairly close.

One important feature of Charlotte’s MCHF calculations is the demonstration of convergence of
results as the CI expansions of the wave functions are increased in size. While there is a variational
principle which ensures that a longer expansion leads to a monotonic lowering of energy for a particular
wave function, there is no such guarantee of monotonic improvement either for energy differences or
for oscillator strengths. One way of assessing the accuracy of results is to see the way in which these
quantities change as wave function expansions are extended in a systematic manner. Such a systematic
analysis is provided by Tong et al. (1995) [27] for low-lying quartet transitions in neutral nitrogen.
The basic way of providing a systematic analysis is first by constructing an active set of correlation
orbitals usually characterised by specifying the maximum n-value and allowing all possible orbitals
up to that maximum value. Ideally, the active space should consist of all possible CSFs which can be
formed using the active set of orbitals, but this would be a prohibitively large calculation. Instead,
Tong et al. [27] undertook a development of a sequence of increasingly complex models. in which the
active set is systematically increased.

The most challenging transition is 2s22p3 4So − 2s2p4 4P, because of quite severe CI cancellation
in the transition integral.

Some results are shown in Table 2, demonstrating ways in which the convergence of results as the
wave functions are increased in complexity can be studied. One of the features of this transition is that
the 2s2p4 4P state interacts very strongly with two other 4P states—2s22p23s and 2s22p23d—so that
all three states must be treated in an equivalent manner. In the first part of the table, the increase in
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complexity is achieved by extending the type of correlation effects included. Thus, model 1 includes
single and double replacements of n = 2 orbitals by an increasing number (up to n = 6) of correlation
orbitals (the active space) in the reference set comprising 2s22p3 and 2s2p4. Correlation effects are
therefore not included in an equivalent way in the three 4P states. This defect is corrected in model 2,
which includes configurations 2s22p23l in the reference set. Model 3 allows for CSFs with only one
orbital from the {2s,2p} set. In this analysis, a major improvement in the oscillator strength is achieved
through model 2. It is worth noting that even in model 1, the length and velocity forms of the oscillator
strength are in fairly good agreement (they differ only by about 3%), but the common value is clearly
incorrect. In the second half of the table, we see how Tong et al. [27] undertook a systematic analysis
of oscillator strength and transition energy values as the size of the active set is increased, within
model 3. At each stage, defined by the value of the largest n-value of the orbitals included in that stage,
all orbitals are computed using the MCHF program. Only when the n = 5 orbitals does any sense of
convergence appear. The change between n = 6 and n = 7, the latter denoted by model 3+ in the first
part of the table, is quite small. This analysis is characteristic of Charlotte Froese Fischer’s approach
towards achieving confidence in the accuracy of the results of her calculations.

Table 2. Oscillator strengths for the 2s22p3 4So − 2s2p4 4P transition in N I [27].

Model Number Configuration Complexes † ∆E fl fv

1 {2}3 {2,3,. . . ,6}2 87,271 0.3513 0.3628
2 {2}2 {2,3}1 {2,3,. . . ,6}2 88,524 0.0533 0.0563
3 {2}1 {2,3}2 {2,3,. . . ,6}2 88,375 0.0667 0.0693

3+ {2}1 {2,3}2 {2,3,. . . ,7}2 88,356 0.0658 0.0687

Within model 3 {2}1 {2,3}2 {2,3}2 89,760 0.3163 0.4062
{2}1 {2,3}2 {2,3,. . . ,4}2 89,324 0.1108 0.1171
{2}1 {2,3}2 {2,3,. . . ,5}2 88,446 0.0701 0.0717
{2}1 {2,3}2 {2,3,. . . ,6}2 88,375 0.0667 0.0693
{2}1 {2,3}2 {2,3,. . . ,7}2 88,356 0.0658 0.0687

Exp. [28] Average over J 88,132

† : The notation indicates the orbital occupancy of the 5 outer electrons; for example {2}2 {2,3}1 {2,3,. . . ,6}2

means two orbitals with n = 2, plus one from n= 2 or 3; plus two with any n value from 2 through to 6;
additionally, all CSFs contain 1s2.

5. Computer Programs for Atomic Structure

The publication of her HF code [18] was but the first example of her adoption of the principle
that if computer codes were of wide applicability, they should be made available to other users and
not simply retained for personal use. There was clearly a need to create a computer program for the
MCHF method, similar to that of the HF method [18], in which the processes were again automated
once the CSFs and the initial estimates for the radial functions of the orbitals were selected, and which
could readily be extended to any number of CSFs, or to any atomic system. During the 1960s, Charlotte
developed such a code. The energy functional was based on Equation (6), from which the MCHF
equations were derived using the variational principle. As with the HF process, these equations
were coupled integro-differential equations, but now the mixing coefficients ai were included. Again,
the solution comprised an iterative process. At each iteration, the integrals in the MCHF equations
were calculated from the previous iteration of the radial functions, and also the mixing coefficients
were taken from the previous iteration; the resulting (coupled) differential equations were then solved
to give a new set of radial functions, and with these new functions, the new mixing coefficients
were obtained by diagonalising the Hamiltonian matrix, although in early versions of the MCHF
code only one eigenvalue/eigenvector was allowed, with the eigenvector components computed
iteratively. Thus the orbital radial functions were obtained directly from these MCHF equations,
rather than from separate HF solutions, followed by a superposition of configurations process, as had
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been used in earlier calculations. Hence the MCHF orbitals themselves incorporated the effects of
configuration interaction.

In 1969 a new journal, Computer Physics Communications (CPC), was launched, with my colleague
in Belfast, Phil Burke, as Principal Editor and Charlotte as one of the subject editors for atomic structure.
This journal provided the vehicle for the dissemination of the MCHF code (Froese Fischer 1969 [29]),
updated a little later with the name MCHF72 (Froese Fischer 1972 [30]), and again later still (Froese
Fischer 1978 [31]). This journal provided assurance for both authors and users of the published codes.
Submissions to the journal required a description of the methods underlying the codes, as well as
details of how the codes were constructed—for example, the subroutines, procedures, modules from
which the code was built and how they linked together. In addition, sample input data had to be
provided, as well as the corresponding output and a statement of which type of computer had been
used in obtaining the output, and the size of the program. The codes and the papers describing them
were then rigorously refereed before acceptance for publication. Users could then compare the output
from the test data when they ran the code on their own machine against the output submitted with the
code. They could then be reasonably well assured that the code of interest was what they required,
and that it worked as expected. The authors had much more to do in preparing the paper and code for
publication than is customary for a standard research paper, but having done so, they were much less
likely to be asked for a copy of the code, or questioned about its reliability than if they had distributed
the code privately. The underlying assumption was (and is) that the authors’ codes become widely
available for others to use.

There are benefits to authors as well as safeguards for users. For example, their codes become
known and used by a wider community, so that due recognition of the authors’ work is accorded.
Unexpected or unforeseen ‘bugs’ might be eliminated at the journal’s checking stage. Requests for
copies of the codes can be directed to the journal.

One additional benefit I have found, both as a user and authors, is that users and authors might
and sometimes do work together on further code developments. It was this aspect that led me to begin
working actively with Charlotte Froese Fischer. The MCHF code aims to solve the integro-differential
equations for the radial functions of the orbitals. However, the Hamiltonian matrix elements in the
energy functional can be expressed as a weighted sum of radial integrals. The integrals over the
angular and spin coordinates can be achieved exactly and these data form part of the input to the
code. My own code, WEIGHTS, also published in the first volume of CPC (Hibbert 1970 [32]), together
with a follow-up the following year (Hibbert 1971 [33]), provided the weighting coefficients for the
two-electron part of the Hamiltonian, while a later code (Hibbert 1974 [34]) provided the same data for
the one-electron operators. This led to a strong collaboration between Charlotte and myself, which has
continued from time to time ever since.

In the early years, it was not self-evident that the new journal would be a success. Some sceptics
doubted whether authors would be willing to spend the time necessary for a thorough description
of their codes, or to subject them to the rigorous refereeing scrutiny that was required. Others
wondered how willing users would be to familiarise themselves with the detailed working of the
codes. Their fears were unfounded, as is evidenced by the fact that as the 50th anniversary of the
journal arrives, the volume count is almost at 250. This success is due in no small measure to the
enthusiasm and determination of Phil Burke, Charlotte Froese Fischer and others who were well
established researchers in their fields and whose involvement gave great credence to the value of the
journal and to the quality of the papers and programs it would be publishing: their names alone gave
the new journal considerable credibility. Over the next 50 years or so, Charlotte was to publish around
40 programs or procedures in CPC, and throughout that time, she maintained full support for the
principles on which the journal was developed, and of course her codes were very robust and reliable.
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6. Extensions and Enhancements of MCHF—Non-Relativistic Treatment

We consider here the extensions to the MCHF process, but still in the context of calculations in LS
angular momentum coupling. We will report on a relativistic approach in the following section.

6.1. Non-Orthogonal Orbitals

In using the MCHF process, it is customary to express all the atomic states in terms of a common
set of orbitals which are orthogonal to each other. But this is a restriction, which for elements with
only a small number of electrons outside closed shells can sometimes be overcome with additional
configuration interaction (essentially by extending the set of orbitals), but in other cases even very
extensive additional CI would be required and possibly the restriction cannot fully be overcome even
then. It is therefore necessary to consider the possibility of using orbitals which, for the same l-value,
are not orthogonal to each other (orbitals with different l-values are of course mutually orthogonal).

Some exemplars of where non-orthogonal orbitals are useful include:

1. He: 1s2 and 1s2p—radially, the 1s function of the 1s2p state is close to being hydrogenic whereas
the 1s function for the ground state resembles a screened hydrogenic function.

2. Be: [1s2]2s2 1S, 2s2p 3Po and 1Po—the 2s functions differ somewhat from state to state, but the
more significant feature is that the mean radii of the 2p functions in the two excited states differ
by around a factor of two.

3. Al-sequence: we have already noted in Table 1 that the optimal 3d function in the two lowest 2D
states is very state dependent. A more appropriate CI expansion would have configurations of
the form:

2D: 3s2
13d; 3p2

1(1S)3d, 3p2
2(1D,3P)3d1, 3s23p2

3

where the same nl orbital but with different subscripts need not be mutually orthogonal.
4. The 3d orbital in open d-shells, for example in the iron group elements, can be very

term-dependent even for an individual ion.

The lifting of the restriction that the same orbital set, comprising mutually orthogonal functions,
be used for all states can lead to substantial improvements in the accuracy of the results, and/or much
shorter CI expansions to achieve comparable effects. For example, even in the light element neutral
nitrogen, Robinson and Hibbert (1997) [35] found that just a few configurations could achieve for
quartet transitions an accuracy as good as, and in some cases much better—comparing length and
velocity values—than could be obtained with a much larger calculation using orthogonal orbitals
(Hibbert et al. 1985) [36]. The difficulty was obtaining agreement between the length and velocity
forms, and although the calculations of Robinson and Hibbert were not definitive, they did achieve
comparable agreement with Tong et al. (1994) [27], who found that it was necessary to use of some
thousands of CSFs. Some results are shown in Table 2.

To be able to undertake CI or more specifically MCHF calculations in the framework of
non-orthogonal orbitals, I renewed my collaboration with Charlotte as we worked out how to modify
the codes which undertake the angular and spin integrals, in order to incorporate the possibility of
using non-orthogonal orbitals. This resulted in work which was published in CPC (Hibbert et al.
1988) [37], work which also began my collaboration with Michel Godefroid (Brussels). The extent of
the non-orthogonality was limited: essentially we considered various pair correlations in any atomic
state and allowed non-orthogonality of the orbitals in different pairs.

In order to study transitions, it was also necessary to allow for non-orthogonality between the
orbitals in the two states or levels in the transition. In particular, the two wave functions used in the
calculation of the oscillator strength might be calculated separately, using different orbitals in each case.
This situation was allowed for by the use of a bi-orthonormal transformation of the orbital functions
by which the methods applicable to orthogonal orbitals can be used, before calculating the transition
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matrix elements. The general theory of this process was introduced by Olsen et al. (1995) [38], in which
the application to the MCHF codes was developed by Godefroid.

Its power was amply demonstrated by a study of the 2s22p 2Po − 2s2p2 2D transition in boron.
An example, given by Olsen et al. (1995) [38], of the success of the use of non-orthogonal orbitals,
when combined with the bi-orthonormal transformation of the orbitals is shown in Table 3 for the
2s22p 2Po – 2s2p2 2D transition in neutral boron.

Table 3. Oscillator strengths for the 2s22p 2Po − 2s2p2 2D transition in B I [38].

Active Set: max n ∆E(cm−1) g fl g fv

3 53,197 0.6876 0.8156
4 48,720 0.2456 0.2606
5 48,440 0.2625 0.2695
6 48,125 0.2891 0.2866
7 48,051 0.2928 0.2900

7 E 47,847 0.2916 0.2912

Other results

Method g fl g fv

MCHF [39] 0.243 0.274
Expt: LIF [40] 0.283 ± 0.020

E: Using a weighted average (over J) of the individual levels given in [28].

Table 3 exemplifies the process of making systematic improvements to the calculations.
Specifically, the concept of active space of orbitals is used, consisting of all possible orbitals with an
increasing value of n. The reference set of configurations consisted of (1s22s22p, 1s22p3; 2Po), (1s22s2p2,
1s22s23d; 2D). The CSF set included all which are obtained by single and double replacements of the
orbitals occupied in the reference set by any from the active set. The n = 3 results allow only for a
single 3d orbital, whereas the optimal 3d from the 1s22s23d differs substantially from the optimal 3d of
1s22s2p2, and that difference is not included at that stage of the calculation. This is substantially rectified
by n = 4. The trend from n = 4 to n = 7 shows a systematic improvement in the transition energy ∆E
and the agreement between the length and velocity forms of the g f -values. The final results, labelled
7E, are obtained from the n = 7 results by using the experimental rather than calculated transition
energy. We also give in Table 3 the MCHF results using orthogonal orbitals [39] and the experimental
result of O’Brian and Lawler [40] who used the laser-induced fluorescence method. The improvement
obtained by using non-orthogonal orbitals can be clearly seen, and the final calculation of g f lies
well inside the experimental error bars. (Incidentally, the MCHF result of [39] is an example of the
velocity form being closer than the length form to the experimental or converged calculated value of
the oscillator strength, a counter-example to the view that the length value is the better of the two).

6.2. Use of B-Splines

The MCHF method focuses on the best possible way of introducing short-range electron
correlation (assuming LS coupling) into the solution of the Schrödinger equation. It works well
when the active electrons (those in the outermost shells) have rather similar mean radii, so that electron
exchange is a significant effect. Equally, it works well for excited, but not too highly excited, states. But
for studying Rydberg series in atoms and ions, where the outer electron has a much larger mean radius
than all the other electrons, then electron exchange has a lower probability and representation of highly
excited states is not so easy to accomplish with the customary MCHF approach. Indeed, Hartree’s
original method, which ignores electron exchange, becomes an improving approximation. One of the
difficulties of the use of orthogonal orbitals in MCHF calculations is that an MCHF orbital nl with a
high n-value contains oscillations in the radial function arising from the requirement of orthogonality
to those with lower n, which the use of non-orthogonal orbitals would not introduce. To overcome
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this difficulty, Froese Fischer and co-workers (e.g., Brage and Froese Fischer 1994 [41]) have modified
the MCHF method by using B-splines to represent the orbitals, and particularly those of the outermost
electrons. The number of B-splines required can be adjusted to encompass the radial range even of
the outermost orbital. Each B-spline is a relatively localised function, being non-zero over only part
of the radial range covered by the orbitals, so each orbital function must be represented by a sum of
appropriate B-splines. While the B-splines are mutually orthogonal, the orbitals represented by these
sums are not necessarily orthogonal, so a non-orthogonal approach is necessary. This flexibility can
lead to more accurate representations of the wave functions. This use of B-splines is part of a vast field
of study well described by Bachau et al. (2001) [42]. An example of the use of B-splines in atomic
structure is given by Brage and Froese Fischer (1994) [41]. They studied several Rydberg series in
neutral calcium. They allowed for some limited non-orthogonality of the outer orbitals and added the
effect of core polarisation by means of a model potential. A small selection of their results is included
in Table 4.

Table 4. Binding energies (cm−1) of 4snp 1Po states in Ca II [41].

Label Exp [28] MCHF+BS MCHF

4s4p 25,654 25,472 24,689
4s5p 12,574 12,684 12,160
4s6p 7627 7638 7060
3d4p 5372 5269 4609
4s7p 3881 3799 3247
4s8p 2826 2786 2405
4s9p 2122 2102 1853
· · ·

4s 22p 271 271

It can be seen that the inclusion of the effects of core polarisation, together with the use of a B-spline
representation of the outer orbitals, (MCHF+BS), gives a substantially improved agreement with
experiment for the binding energies, compared with the conventional MCHF approach. In particular,
at the upper end of the Rydberg series, the agreement is excellent.

There are distinct similarities between this approach and that adopted in R-matrix
calculations [43,44], where the outer (free) electron is customarily represented by a linear combination
of basis set of continuum orbitals. Most R-matrix calculations to date have required the continuum
orbitals to be orthogonal to the orbitals describing the bound orbitals of the N-electron core, but
Zatsarinny and Froese Fischer [45] have undertaken an R-matrix calculation of the photoionisation of
Li using B-splines and non-orthogonal orbitals.

7. Inclusion of Relativity

The MCHF method is essentially non-relativistic. But in order to study both allowed and forbidden
transitions among levels, it was necessary for Charlotte to incorporate fine-structure effects into the
calculation. Two approaches were available: a multi-configurational formalism based on the Dirac
equation rather than Schrödinger’s equation, or an approximation to this approach in which the
non-relativistic Schrödinger Hamiltonian is augmented by the operators of the Breit-Pauli Hamiltonian.
For light atoms and ions, the latter process is adequate for the accuracy required in many applications.
For heavy elements as well as for highly ionised systems with fewer electrons, the fully relativistic
approach based on the Dirac equation is normally required.

7.1. Breit-Pauli Calculations

Since many of the applications being considered were for the lighter elements, Froese Fischer
chose the Breit-Pauli approach. Her calculations followed the following pattern.

• The radial functions were optimised in an LS MCHF calculation.
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• The angular and spin integrals of the relativistic operators were evaluated using the Racah algebra
analysis given by Glass and Hibbert (1978) [46] and are input to the MCHF+BP code.

• Then the full Breit-Pauli Hamiltonian matrix was diagonalised to give the LSJ wave functions.
These wave functions take the form

Ψ(J) =
M

∑
i=1

ai Φi(αiLiSi J) (9)

so that CSFs with different Li and Si can be combined to a common total J.

Initially, Charlotte studied fine structure separations of low-lying term energies and of the
forbidden magnetic dipole and electric quadrupole transitions between them. For example,
she calculated the splitting between the 2Po

0.5 and 2Po
1.5 of boron-like ions [47]. Some results are

shown in Table 5 and compared with the fully relativistic treatment.

Table 5. Term splitting (cm−1) of the ground state in B-like ions.

Method B N2+ Ne5+ Si9+ Fe21+

MCHF+BP [47] 15.0 170.0 1292 6961 119,175
MCDHF a 15.7 172.4 1298 6968 118,177
Exp b 15.3 174.5 1307 6990 118,255

a Huang et al. (1982) [48]; b NIST [28].

It can be seen that the Breit-Pauli approximation gives results which are very close to the fully
relativistic results of [48] near the neutral end of the sequence but, as expected, diverge as Z increases,
whereas the fully relativistic calculations are consistently close to the experimental values.

Similar calculations followed for the ground terms of other fairly light elements: C([49]),
N([50]) and O([51]), and these papers also included the rates of forbidden transitions between the
ground term levels. Around the same time, electric dipole transitions were studied, using the same
MCHF+Breit-Pauli formalism [52], and this work permitted the study of intercombination lines.
Of particular interest was the calculation of the 2s2 1S0 − 2s2p 3Po

1 line in C III [53], as displayed in
Table 6.

Table 6. MCHF+BP transition rates of the 2s2 1S0 − 2s2p 3Po
1 line in C III [53].

Degree of Correlation Active Space ∆E (cm−1) 1Po
1 − 3Po

1
3Po

2 − 3Po
0 A (s−1)

Val a n = 3 52,746 51,592 76.79 89.3
n = 6 52,733 50,684 77.08 95.6

+CP b n = 3 52,640 50,567 78.06 97.6
n = 6 52,520 50,098 80.18 105.7

+CC c n = 3 52,362 50,948 77.33 91.9
n = 6 52,343 50,230 79.53 103.1

CIV3 [54] 52,369 50,325 78.9 103.8

MCDHF [55] n = 8 52,384 50,098 79.86 102.72

Experiment [28] 52,391 49,961 80.05
[56] 121 ± 7
[57] 102.94 ± 0.14

a Valence correlation only; b a + core polarisation; c b + partial core correlation.

As in other calculations undertaken by Charlotte, a systematic development of the results can
be seen, both in the sense of growing complexity in the type of correlation included and, with each
type, the variation in results as the active space is enlarged. The final result differs from experiment
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by about 20%, but is in complete agreement with another, independent calculation [54]. A later
calculation [55] gave a transition rate of 102.72, which when extrapolated to take into account the slight
inaccuracies in the ab initio energy separations resulted in a recommended value of 102.87, lying within
the very narrow error bars of the recent heavy-ion storage ring experiment [57]. This calculation was
updated by Froese Fischer and Gaigalas [58] to yield a transition rate of 103.0 s−1, with an estimated
uncertainty of 0.4 s−1.

Many further calculations followed, for different ions, and this work culminated in the extensive
tabulations of energy levels and electric dipole oscillator strengths by Froese Fischer and Tachiev
(2004) [59] for the first row elements and their ions, and by Froese Fischer et al. (2006) [60] for the
second row elements and their ions. These important compendia provide a set of accurate atomic data
for transitions between a substantial number of levels of these elements. The data are characteristic of
Charlotte’s work: they are undertaken in a consistent manner, and consider all the main correlation
and relativistic effects appropriate for these elements. In the discussion in the papers, there is a strong
attention to detail and where possible, comparison is made with experiment, especially the energy
levels. They demonstrate why her work is considered to be first-rate and reliable for other researchers,
including astrophysical modellers, to use with confidence.

7.2. Other Atomic Properties

Once MCHF+BP wave functions are available, it is possible to determine atomic properties other
than transition rates. For example, Charlotte undertook calculations of isotope shifts and hyperfine
interactions [61], photoionisation [62], and autoionisation [63].

7.3. Further MCHF-Based Computer Packages

By the 1980s, CPC had begun to include papers on computational methods, as well as continuing
to publish computer codes and their descriptions. Accordingly, in order to pull together in one place
several of the developments in MCHF and BP procedures which had taken place during the 1980s,
Charlotte requested that almost the whole of one issue of CPC was devoted to these developments.
The details are summarised in Table 7.

Table 7. MCHF and Associated Codes.

Authors Short Title Type of Paper

Froese Fischer [64] The MCHF atomic structure package Methods
Froese Fischer [65] MCHF support libraries and utilities Package
Froese Fischer, Liu [66] Configuration-state lists Package
Hibbert, Froese Fischer [67] Angular integrals with non-orthogonal orbitals Package
Froese Fischer [68] General MCHF program Package
Hibbert, Glass, Froese Fischer [69] Angular integrals for Breit-Pauli Hamiltonian Package
Froese Fischer [70] General CI program Package
Froese Fischer, Godefroid, Hibbert [71] Angular integrals for transition operators Package
Froese Fischer, Godefroid [72] Programs for LS and LSJ transitions Package

These codes constitute a comprehensive package of codes allowing users to undertake a wide
range of MCHF calculations. Once again, Charlotte was demonstrating her continuing commitment to
making codes available to other users, codes which had been thoroughly tested.

8. Fully Relativistic Codes

The use of the Breit-Pauli Hamiltonian works well for lighter ions, but for transitions in heavy
ions or for heavy elements, the use of fully relativistic wave functions becomes more accurate.
In a multiconfigurational context, Desclaux (1975) [73] published the multiconfiguration Dirac-Fock
(MCDF) code, based on a Dirac rather than Schrödinger formalism. This nomenclature of MCDF
lacks the acknowledgement of the importance of Hartree’s work, and Charlotte preferred the
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designation MCDHF, the ‘H’ denoting ‘Hartree’. An enhanced version, GRASP, was published
by Dyall et al. (1987) [74]. One of the authors (Parpia) spent some time working with Charlotte and
as a consequence, Charlotte began to work with Grant’s group, culminating in an updated version
of GRASP: Parpia et al. (1996) [75,76], with a further update in 2007 [77]. Further enhancements
followed and were published in CPC, including the calculation of other properties using relativistic
wave functions, such as hyperfine structure [78] and isotope shifts [79].

Some of the enhancements involved the use of more efficient methods for the calculation of the
angular momentum integrals in GRASP. In this, Charlotte made use of the opportunity to collaborate
with the group in Vilnius, whose work she had long admired [80]. The following 20 years saw the
publication of many calculations of atomic properties for medium and heavy ions. Often, these were
the outcome of an on-going international research team—CompAS—comprising Charlotte and groups
based in Lund, Malmö, Vilnius, Krakow, Gdansk and Brussels. The group meets periodically to review
progress and plan for future collaborations. I was present for part of their discussions in Lund in
2018 and in Brussels in 2019. I found Charlotte thoroughly involved in those discussions, an amazing
degree of engagement at the age of 90.

9. In Summary

Charlotte Froese Fischer has been at the forefront of atomic structure developments for over six
decades. In her early years in research, she developed programs for the calculation of atomic properties
using electronic computers, which were only just becoming available. In subsequent years, the initial
Hartree-Fock methods were extended, characterised by

HF→MCHF→MCHF+BP→MCHF+BS→ Non-orthogonal→MCDHF→ GRASP.

Charlotte has consistently been keen to use the most up-to-date computer architecture available
to her, and to develop new numerical methods to exploit such facilities. This work involved the
study of the convergence of MCHF and MCDHF iterations, and the efficient calculation of the
angular momentum integrals (which are one of the most time-consuming parts of the calculations).
Additionally, efficient methods and codes for the diagonalisation of huge matrices were developed.
For large-scale MCHF or MCDHF calculations, with many thousands of CSFs included in the CI
expansion of the wave functions, the Hamiltonian matrices are very large, but only a relatively small
number of eigenvalues/eigenvectors, those which are the lowest in energy, are needed for subsequent
calculations. The iterative approach, initially developed by Davidson [81], was further developed and
programmed for this purpose [82].

Charlotte was part of the original team of scientists which set up the journal Computer Physics
Communications in 1969. The publication of her codes in this journal has amply demonstrated her
commitment to the ethos of the journal, not least in ensuring that others can make direct use of her
work in undertaking their own calculations. That commitment was one of the reasons why the journal
was able to develop in its early years, because other scientists could see the value of publishing their
programs in that new medium. The ongoing success of the journal is a tribute to the commitment
of Charlotte and the other editors, and of course to the long-term vision of its first Principal Editor
Phil Burke.

As well as her original research papers, Charlotte has also published a number of textbooks,
suitable for graduate students, which explain the methods she has developed and provide a detailed
explanation of how calculations are undertaken. Amongst these are a discussion of the general
Hartree-Fock method [83], and more recently an explanation of the computational approach to solving
the MCHF equations and the calculation of atomic properties [84]. These books facilitate other scientists,
including those starting out in the field, in developing an expertise in undertaking atomic structure
calculations for themselves.

Charlotte is the holder of a number of awards recognising her international reputation as a world
leader in the field of atomic physics. The Alfred P. Sloan Fellowship, awarded in 1964, was an early
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recognition of her promise. She was elected Fellow of the American Physical Society in 1991 for
her contribution to the discovery of the calcium negative ion and for her extensive and innovative
researches. Her research standing was also recognised overseas. In 1995, she was elected Fellow of
the Royal Physiographic Society in Lund, Sweden. In retirement, her research continues, and in 2004
she was elected a foreign member of the Lithuanian Academy of Sciences. Then as recently as 2015
she was awarded an honorary doctorate by the University of Malmö, while in 2016 she was elected a
Fellow of the Royal Society of Canada, especially appropriate as she returned to Vancouver.

But it is not just for her scientific contributions to the field of atomic structure, immense though
they are, that Charlotte should be applauded. She has also had a large influence on the careers
of many scientists, particularly on younger colleagues. As well as demonstrating her openness in
making her computer codes available to the entire community, and in providing support for users,
she has been keen to work with young scientists and to be a mentor to them, through the provision of
encouragement as well as guidance on the standards of research expected in the field. And she has
continued to collaborate with those who were young scientists and who have been able to develop
their careers and their activity in the field. As Charlotte reaches her 90th birthday, her enthusiasm and
commitment continue unabated.

Charlotte Froese Fischer is a remarkable woman, and I consider it a privilege to be able to count
her as a colleague and friend.
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