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Abstract: Orthogonal operators can successfully be used to calculate eigenvalues and eigenvector
compositions in complex spectra. Orthogonality ensures least correlation between the operators and
thereby more stability in the fit, even for small interactions. The resulting eigenvectors are used
to transform the pure transition matrix into realistic intermediate coupling transition probabilities.
Calculated transition probabilities for close lying levels illustrate the power of the complete orthogonal
operator approach.
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1. Introduction

Since its first introduction [1], the orthogonal operator technique has appeared to be a powerful
tool in reducing the deviations between calculated and experimental energy values in complex spectra
(Z > 20). Due to its orthogonality, the operator set is stable enough to introduce small (thus far neglected)
higher-order magnetic and electrostatic effects in the fitting procedure. By this extension, deviations
between calculated and experimental energy values frequently approach experimental accuracy [2].
More recent use is found in the FERRUM project [3] and in the analysis of 5d-spectra [4]. Origin and
subsequent developments underlying the method are discussed. The operator inner product is shown
to be a property of operators rather than of its accidental matrix elements by a general progression
formula as a function of the number of electrons. Linear algebra can now fruitfully be used to project a
variety of contributions onto the orthogonal operator set, both analytically and numerically. The actual
construction of an orthogonal operator set is illustrated for dn p configurations. Also, the orthogonal
operator method is positioned (as to overlap and differences) with respect to other approaches
for describing complex spectra, such as large-scale use of Cowan’s code or Multi-Configuration
Dirac-Hartree-Fock (MCDHF) calculations. The description of the odd and even spectra of Fe VI are
used as a running example, but other regions of application are mentioned. Ab initio calculations as
well as conversion of operator sets are considered, and the interplay between explicit and implicit
configuration interaction is discussed. Possibly controversial issues such as (over)completeness,
term dependency and a truncation of the model space are reviewed. The accurate description of the
energy structure is expected to result in optimally calculated eigenvector compositions. Naturally,
this property can be exploited to calculate accurate electric dipole (E1), magnetic dipole (M1) and
electric quadrupole (E2) transition probabilities. How polarization, core and valence excitations and
full relativity are presently implemented and can be improved in the near future, will be discussed.
We recently reinstalled our original database with transition arrays of the 3d and 5d shell [5]. We
intend to cooperate with other groups and increase the accessibility of the method.
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2. Applications

Why should one use orthogonal operators when a conventional Slater–Condon approach such
as Cowan’s code [6,7] is so easy-to-use as a universal tool? Cowan’s code has been a blessing for
the experimental atomic physicist for the last 50 years, and it will no doubt continue to be so for
many years to come. The orthogonal operator approach may be considered as both an extension and
a refinement of the conventional least-squares fitting (LSF) approach, but it also raises the need of
finding physically acceptable initial estimates for quite a number of small parameters, especially with
an incomplete spectrum. The stability of a parameter versus change or addition of others, on the other
hand, is a great asset of the method. Figure 1 provides a clear picture of this aspect [8].

Figure 1. (a) The values of the Eav parameter in a number of LSF to the 3d3 configuration in Cr IV.
In the first fit (from left to right) only the Eav parameter was allowed to vary with all other parameters
fixed at zero while in subsequent fits the parameter indicated on the abscissa was added. (b) The values
of the Eav parameter using the same procedure as in (a), but using a set of orthogonal equivalents.

Both the conventional and the orthogonal operator approaches are based on semiempirical LSF
of physical parameters. The mean error can be interpreted as the ’blobsize’ used by painters (Seurat
and others) of the art-movement ’Pointillism’ [9]. They used blobs for their paintings and could not
represent details smaller than the blobsize. In the same way we cannot describe level structures in
detail when the spacing between levels is smaller or comparable to the mean error.

In quite a number of cases, the mean error of an orthogonal operator LSF is smaller by an order of
magnitude w.r.t. a conventional LSF. In principle, this leads to better eigenvector compositions and
thus better transition probabilities. In some cases, refinements are expedient and they will be discussed
below. In Table 1, some of the characteristics of both methods are set side by side.

The term analysis of complex spectra like Mn IV [10], Re III [11] and Os III [12] only came within
reach by the accuracy of orthogonal operator predictions. Such predictions concern both energy levels
and electric dipole intensities.

In addition, reliable calculations of forbidden magnetic dipole and electric quadrupole intensities
are enabled by the accurate eigenvectors from an orthogonal operator LSF of the pertinent system.
On a more theoretical level, use of orthogonal operators allows establishing small and thus far
neglected interactions that reflect many-body, relativistic and correlation effects. Fully relativistic
ab initio perturbation or Configuration Interaction (CI) calculations can subsequently be compared to
the parameter values found.
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Table 1. Characteristics of the conventional and the orthogonal operator LSF methods.

Conventional Orthogonal Operators

# configurations large limited
parameter interdependence yes no
2-body electrostatic yes yes
3-body electrostatic only T1 and T2 yes
4-body electrostatic no yes
1-body magnetic yes yes
2-body magnetic no yes
mean error medium small
initial preparation small medium
transition probabilities generally sufficient close to experiment
use automated more case to case

2.1. Oscillator Strengths Involving Close Lying Levels

To illustrate the importance of accurate eigenvectors, two examples in the spectra of Fe III and Fe
II are given below. The effect is especially striking for close lying levels, when the actual separation
may be smaller than the mean error of the fit: the ’blobsize’ is here too large for a reliable calculation.

First, the eigenvectors of the conventional and the orthogonal method in the Fe III case are
compared in Table 2 [13]:

Table 2. Two close lying levels in the J = 5 matrix of the 3d54p configuration of Fe III calculated by the
conventional and the orthogonal method.

Conventional Method, Overall Mean Error σ = 139 cm−1

Exp Calc Diff. Eigenvector composition

139509.2 139407.4 101.8 49% (
2H)3 I + 21%(4F)3G

139463.0 139378.4 84.7 49% (
2H)3 I + 32%(4F)3G

Orthogonal method, overall mean error σ = 12 cm−1

Exp Calc Diff. Eigenvector composition

139509.2 139504.1 5.0 83% (
2H)3 I + 6%(2H)3H

139463.0 139476.0 −13.0 44% (
4F)3G + 29%(2G)3G

With deviations lower by an order of magnitude, it is seen that the eigenvector composition
changes appreciably. Next, the corresponding transition probabilities (gA-values) are compared to
experiment in Table 3:

Table 3. Transition probabilities (gA) in Fe III calculated by the conventional (Conv.) and the orthogonal
(Orth.) method, compared to experiment [14]: B. are estimates of photographic blackening on a
logarithmic scale, Int. are scaled intensities calculated from B.

The 3d54s-3d54p Array

λ (Å) B. Int. Conv. (108 s−1
) Orth. (108 s−1

) Transition

2041.203 14 22.3 18.3 26.3 (
4F)3F4 − 139463.0

2039.283 11 2.8 17.2 4.40 (
4F)3F4 − 139509.2

2012.901 10 1.4 6.95 2.58 (
2G)3G4 − 139463.0

2011.034 13 11.2 6.07 11.0 (
2G)3G4 − 139509.2

The conventional method calculates two equally strong lines and then two equally weaker lines,
while the experiment shows a strong line, a weaker line, a little bit weaker line and then again a
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stronger line but not as strong as the first line. This pattern is exactly described by the orthogonal
operator approach.

Another striking example of the impact of the mixing percentages, i.e. the eigenvector accuracy,
on the oscillator strengths is given by Hibbert [15,16] in the spectrum of Fe II. Two lines at 2507 Å and
2509 Å originating from the same (even) lower level 4F7/2 are considered; the two close (odd) upper
levels are given in Table 4:

Table 4. Mixings in J = 9/2 levels of Fe II.

Percentages

Level↓ (4p)4G (5p)6F (5p)4F

Raassen and Uylings [17] 90040.5 16 36 41
90072.7 76 9 8

Corrégé and Hibbert [15] 90042.8 43 29 13
90067.4 41 27 16

Uylings and Raassen * 90042.7 44 26 22
90067.4 48 23 22

∗This work.

In Table 5, the eigenvector percentages are from our original calculation [17], a calculation of
Corrégé and Hibbert [15] fine-tuned to the experimental energy levels, and our present contribution
with a similar manipulation of the Eav parameter. The effect of the fine-tuning is obvious: the level
percentages are seen to approach each other very closely and turn out to be quite sensitive to the
eigenvalue calculation, even at the sub- cm−1 level.

The corresponding oscillator strengths are given in Table 5, together with the result of a
conventional calculation [18]. As to be expected, the oscillator strengths are accordingly sensitive to
the eigenvector composition, and finally turn out to become about equal. This result is consistent with
an earlier successful modeling of the emission spectrum of η Carinae [19].

Table 5. Oscillator strengths of the 2507, 2509 Å lines in Fe II.

Source 2507.552 2509.097 Sum

Kurucz [18] 0.001 0.297 0.298
Raassen and Uylings [17] 0.237 0.045 0.282
Corrégé and Hibbert [15] 0.138 0.136 0.274
Uylings and Raassen∗ 0.148 0.134 0.282

∗This work.

2.2. Interplay with ab initio Calculations

The inner product of two operators t and u is defined as:

t ∶ u = ∑
Ψ,Ψ′

⟨Ψ ∣ t ∣ Ψ′⟩ ⟨Ψ′ ∣ u ∣ Ψ⟩ (1a)

where the summation runs over all states Ψ, Ψ′ of the system; it is basically the (double) contraction of
the two matrices. The inner product is commutative by definition.

Taking magnetic degeneracy into account, it can be reduced to:

t ∶ u = ∑
ΨJ ,Ψ′J

(2J + 1) ⟨ΨJ ∣ t ∣ Ψ′

J⟩ ⟨Ψ
′

J ∣ u ∣ ΨJ⟩ (1b)



Atoms 2019, 7, 102 5 of 14

or, in the case of electrostatic operators:

t ∶ u = ∑
ΨSL ,Ψ′SL

(2S + 1)(2L + 1) ⟨ΨSL ∣ t ∣ Ψ′

SL⟩ ⟨Ψ
′

SL ∣ u ∣ ΨSL⟩ (1c)

Equating t ∶ u to zero is used to define a set of orthogonal operators to be used in a LSF procedure:
as a result, each parameter is now equipped with its own unique ’behavior’. However, use of the
concept of operator inner product does not stop there. The resulting linear algebra allows the definition
of an operator projection and this opens up new possibilities that can fruitfully be exploited in
ab initio calculations. Let the operator space be spanned by a set of orthogonal operators Hi = piPi with
pi ∶ pj = 0 (i ≠ j) , where the angular operators form an orthogonal set {pi} and the radial factors Pi are
treated as parameters. Any arbitrary operator U = vV can now be expressed in terms of the complete
basis set of orthogonal operators:

v =∑
i

αi ⋅ pi =∑
i

v ∶ pi

pi ∶ pi
⋅ pi (2)

The expression for the individual contribution ∆Pi of a single operator U to a parameter Pi and (when
summed over all possible contributing operators U) its complete ab initio calculation follows:

∆Pi = αi ⋅V =
v ∶ pi

pi ∶ pi
⋅V → Pi = ∑

U=vV

v ∶ pi

pi ∶ pi
⋅V (3)

Moreover, the projection of any physical operator U = vV on a finite (and possibly incomplete) basis
{pi} is complete if and only if the magnitude of the operator equals the sum of the magnitudes of
its projections:

v ∶ v =∑
i

(v ∶ pi)
2

pi ∶ pi
(4)

The simple projection formula (3) can be used to derive analytical expressions, e.g. for the contribution
of a variety of two-particle effects, relativistic and perturbative, to the spin-orbit parameter ζ [20].
Analytic expressions for the important [4] orthogonal dns operators Tdds (3-body electrostatic) and
Amso (2-body magnetic) were derived in this way as well [2,21].

Alternatively, equation (3) is readily programmed to allow numerical projections, e.g., of Slater
integrals or perturbative effects onto the orthogonal operator set to calculate the contributions to any
parameter of your choice.

Earlier ab initio calculations of parameters, whether analytical or numerical, could only take into
account contributions that are directly proportional to the operator concerned. Equation (3), on the
other hand, allows us to calculate all ab initio contributions with a non-zero inner product.

This is exemplified in Table 6 by an ab initio calculation of the Trees operator T1 in Fe VI (3d3).
Nominally, T1 ’only’ accounts for s → 3d and 3d → s excitations. Using Equation (3), one finds that there
are also non-zero contributions from 3d → d′, g, i excitations with a different spin-angular character.
A second example of this method is the ab initio calculation of Tdds and Amso in Fe VI (3d24s), given in
Table 7.

Another fruitful strategy is fitting to MCDHF calculated energy levels (single configuration).
Keeping the parameters associated with effective operators fixed to zero, the mean error of such fits
is generally well below 1 cm−1 . This demonstrates the completeness of the orthogonal operator
description in the case of full relativity. The resulting parameter values may be compared to a direct
ab initio calculation from wavefunction integration. The results turn out to be completely equivalent,
as illustrated by the below example of Fe VI (3d3).
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Table 6. Second-order contributions ∆T1 ∝ RkRk′
/∆E to the three-particle Trees parameter in Fe

VI (3d3).

Exc. (kk′) 22 24 44

s → 3d −12.067 - -
3d → s 0.209 - -
3d → d′ −0.198 0.405 −0.129
3d → g 2.391 0.710 −1.107
3d → i - - 0.037

Total calc. −9.727
Fitted value −8.452

Table 7. Calculated contributions to Tdds and Amso in Fe VI (3d24s) compared with experiment.

Tdds Amso

3d → d′ 27.8 3d → d′ 1.60
4s → d′ −118.9 − 6

5 ⋅W
1

−0.18
4s → g 3.0 4 ⋅ N0 1.78

Total calc. −88.1 3.20
Fitted value −91.2 2.98

The general relativistic form of the traditional Slater integral [21]:

Rk(ab, cd) = 1
4 ∑

ja ,jb ,jc ,jd

[ja, jb, jc, jd] {
ja k jc
lc 1

2 la
}

2

{jb k jd
ld 1

2 lb
}

2

×∫
∞

0
∫

∞

0
dr1dr2 (FaFc +GaGc)1 rk

<
/rk+1
>

(FbFd +GbGd)2 (5)

is straightforwardly integrated with the MCDHF wavefunctions of Fe VI (3d3) to yield: F2(3d, 3d) =
112493.69. On the other hand, a fit of orthogonal operators to the corresponding Dirac energy levels
gives: O2 = 12312.72 and O′

2 = 8814.92, from which F2(3d, 3d) = 9
20 ⋅

√
140 ⋅ (O2 +O′

2) = 112493.53. The
closeness of the results demonstrates the ability of the orthogonal operator method to retrieve the
correct physical information from the data.

This property may also be used to obtain initial values for two-body magnetic parameters.
Two-body magnetic parameters describe mutual spin-orbit (MSO) and electrostatic spin-orbit (EL-SO)
interactions. These interactions are both included in a MCDHF calculation: the first in the (Dirac-)Breit
interaction and the second by the fact that single electron excitations of the type nl → n′l are to a large
extent included in the Hartree-Fock potential (Brillouin’s theorem) [6]. In addition, there are two-body
magnetic operators for spin-spin effects (included in the Breit interaction) as well.

The impact of the values of the one- and two-body magnetic parameters on the mean error σ of
the fit is shown in Table 8 for Fe VI (3d3).

The operators associated with Ac to A6 have spin-orbit character while A1 and A2 describe
spin-spin effects. In each case, all other (electrostatic) parameters were left free to vary. In the column
Fit(1), the two-body parameters Ai were fixed to zero. The Ai values of a pure Dirac-Fock (DF)
calculation only deteriorate the fit: it can be concluded that addition of the Breit interaction (DF+Breit)
is essential for improvement; the DF and DF+Breit calculations are carried out with the GRASP92
package [22].

In the column headed B-splines, a complete first and second order Hartree-Fock (HF) calculation
of ζd and the Ai parameters is carried out; the channel for the 3d → nd excitations is calculated with a
B-splines program developed in Amsterdam [23,24]. This program employs the effective completeness
of B-splines to calculate channels of one-electron excitations from a frozen HF core potential. All values
can be compared with the results of the final fit Fit(2).
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Table 8. Values of one- and two-body magnetic operators in Fe VI 3d3.

Fit(1) DF DF + Breit B-splines Fit(2)

ζd 578.63 636.97 579.56 598.09 594.52
Ac 0 4.43 2.95 3.16 2.84
A3 0 0.18 2.07 1.97 2.41
A4 0 4.39 4.37 4.31 3.86
A5 0 1.64 7.18 7.05 6.86
A6 0 2.33 −9.22 −9.08 −9.85

A1 0 −0.12 0.41 0.88 0.90
A2 0 0.12 −2.31 −2.73 −2.90

σ 28.3 73.4 14.2 5.8 1.9

2.3. Configuration Interaction

It is well known that the central field model is flawed by configuration interaction (CI). This is
particularly relevant in the spectra of doubly ionized, singly ionized and neutral atoms, where the
single configuration model is increasingly breaking down. For the iron group elements, this is mainly
due to energetically favorable 3d → 4s substitutions. More specifically, effective parameters that
account for weak configuration interactions with large numbers of high-lying configurations, are not
able to do a reliable job in the spectra with a lower degree of ionization. Higher order electrostatic and
magnetic effects (described by effective orthogonal operators) can only be determined reliably if the
first order model is reasonably accurate. Evidently, the model space has to be expanded to include
nearby configurations. Yet, in the balance between (perturbative) effective parameters and (variational)
explicit interactions, with orthogonal operators we like to retain the first and limit the second to the
ones most necessary. Still, in Fe II, this implies already at least 6 configurations of the same parity for
the lower even and odd systems.

The orthogonal operator approach is at its best for operators with many diagonal matrix elements,
so the inherent off-diagonal character of CI admittedly reduces the strength of the approach. To obtain
consistent iso-electronic parameter extrapolations, it is necessary to keep the same configurations in the
model space over the entire sequence [4] or to subtract the explicit configuration-interaction from the
effective parameter. Proceeding in this way, we conclude that it is possible to meaningfully combine
perturbation theory (using effective parameters) and a diagonalization approach (using interaction
integrals) into one orthogonal operator description of an atomic system. The convincing comparison
of recent branching fractions and log(g f ) measurements to our calculations in Co II [25] illustrates
this point.

Another case of strong CI occurs for higher ionization in the odd system, when the p-shell
opens up. The resulting wide 3p53dN+1 configurations seem to be a problem for any atomic physics
approach [26], even for the impressive large scale MCDHF calculations that have recently been
undertaken [27,28]. We are presently developing orthogonal operators suited for those systems,
with special attention to the particularly large magnetic configuration interactions involving ζ(3p, np).

2.4. Transition Probabilities Improved

To obtain relatively accurate transition probabilities, both the eigenvectors to be used in the
intermediate coupling transformation and the transition integrals should be optimized. While an
orthogonal operator LSF is already optimized to produce satisfactory eigenvectors, work has to be
done to obtain reliable transition integrals and to incorporate the most important core and valence
excitations. To achieve this, several steps are taken:

• Use of core-polarization to account for the induced dipole moment, which is particularly
important in the case of large, loosely bound (lower ionization stages) ionic cores.
This usually decreases the E1-integral by 5-10%: d⃗ → d⃗ (1− αd

r3 ) where the dipole polarizability αd
(in terms of a3

0) is either taken from literature or calculated ab initio . A cutoff radius is introduced
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here to avoid divergence at r = 0.
For E2 transitions, the electric quadrupole polarization αq is used.

• Use of MCDHF calculated transition integrals.
• Inclusion of essential configurations in the model space for full diagonalization.
• Use of perturbation theory: let Ψ and Ψ′ refer to the full odd and even states of the system, to

be approximated by the model states α and α′ respectively, and β, γ.. far-lying configurations to
be summed over. The first order expression ⟨α′∣ r ∣α⟩ of the dipole operator r can be corrected to
second order by linking the virtual configurations β, γ to the model configurations α, α′ with the
Coulomb operator V:

⟨Ψ′∣ r ∣Ψ⟩ = ⟨α′∣ r ∣α⟩+∑
β

⟨α′∣ r ∣β⟩ ⟨β∣V∣α⟩
Eα − Eβ

+∑
γ

⟨α′∣V∣γ⟩ ⟨γ∣ r ∣α⟩
Eα′ − Eγ

(6)

To elaborate further on the last two points: with orthogonal operators, energy effects of
unobserved configurations are accounted for by effective operators, while the number of strongly
interacting configurations required in the model space is limited. Effects of unobserved configurations
on the transition probabilities, however, are not automatically included in this way. This means
that core-polarization effects are not absorbed by orthogonal operators and have to be included as
corrections to the transition integrals. Also, second order corrections to the transition matrix elements
may be added to take into account the valence effects of large numbers of far-away configurations [29].
The new radial factors entering this approach involve complete channels of single electron orbitals and
can effectively be calculated with a B-splines program based on a frozen HF core [23,24].
Below, we use the 3d → 4s excitation as a example: ⟨α′∣ = ⟨3d9∣ , ∣α⟩ = ∣3d84p⟩ and ∣γ⟩ = ∣3d84s⟩:

⟨Ψ′∣ r ∣Ψ⟩ ≈ ⟨3d9∣ r ∣3d84p⟩+
⟨3d9∣V∣3d84s⟩ ⟨3d84s∣ r ∣3d84p⟩

E3d − E4s
(7a)

The above expression turns out to give good agreement with a full diagonalization approach:

⟨Ψ′∣ r ∣Ψ⟩ ≈ ⟨3d9+3d84s∣ r ∣3d84p⟩ (7b)

Another important example of this point concerns the excitations 3s → 3d and 3p2 → 3d2 within the
Layzer complex n = 3: especially for higher ionization they should be included [30] either explicitly or
by the above perturbative approach of equation (6).

3. Origin

To get a feel for the increased stability of orthogonal operators in a LSF and why they are least
correlated, one may look at the simple high school project of Figure 2 for comparison.

To find the center of mass of an extended object like a bicycle, one may suspend this object under
various angles, determine the plumb line in each case and preserve them like the yellow lines in
the picture. The intersection of the plumb lines is the center of mass. Mathematically, this means
finding the best intersection of a number of straight lines, a problem to be solved with least squares.
Orthogonal plumb lines (being most independent) do the most accurate job.
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Figure 2. Determining the center of mass of a bicycle: orthogonal lines are the most accurate.

We recall a little linear algebra to describe the fitting process in a simplified way. Let Pi be one
parameter of a vector P of parameters and Ek one energy of a vector E of energies. All energy operators
will be contained in the matrix A.

To solve for P, multiply with the transpose AT from the left and invert:

AP = E → P = (AT A)
−1

ATE (8)

The matrix (AT A)ij is now the matrix of the inner products of all operators: (AT A)ij = pi ∶ pj. For

orthogonal operators, this matrix is diagonal and even orthonormal if AT = A−1. Thus, the final
solution in the orthogonal case becomes:

P = ATE or in index notation: Pi =∑
k

aikEk (9)

As there is no reference in the solution of Pi to any other parameter Pj, they turn out to be
completely uncorrelated! Actually, this derivation only holds for diagonal matrix elements, which
explains why orthogonal operators are least correlated instead of uncorrelated.

Orthogonal operators are normalized in batches of operators of the same type (2-body magnetic,
3-body electrostatic, etc.), which means that (AT A)ii = pi ∶ pi is the same for all operators in the batch.
From the formula for the LSF error on the parameter Pi:

δPi =
√

(AT A)−1
ii ⋅ σ (10)

it can now be understood, why parameter errors are equal (and minimal) for all parameters in the
same batch.

3.1. Construction of an Orthogonal Set

First, let us make a subdivision of possible energy operators, to be able to survey the field:

1. There are three subspaces of operators that are orthogonal by their tensorial character: expressed
as double tensors with ranks k = 0, 1, 2 in separate spin- and orbital spaces [31], one distinguishes:
T(00)0 → electrostatic, T(11)0 → spin-orbit and T(22)0 → spin-spin.

2. Operators acting on different electrons belong in different orthogonal subspaces as well. The `− `
and ` − `′ interactions are described, for example, by separate orthogonal operators.

3. In addition, each operator has a unique n−particle character, i.e., the number of electrons it acts
on (only the average energy is a 0-particle operator). We distinguish n = 2, 3, 4 in the electrostatic
space, n = 1, 2, (3) in the spin-orbit space and n = 2 in the spin-spin space. An operator may
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have different n−particle characters in different shells: the Trees operator T1 has a three-particle
character in the d-shell, while the Tdds operator has a two-particle character in the d-shell and a
1-particle character in the s-shell.

4. A further classification is the order of perturbation theory: preferably, we describe first- and
second (or higher) order effects by different operators. In line with the previous point: n-body
operators occur in the (n − 1) order of perturbation.

There are some useful properties of inner products that help defining a set of orthogonal operators.
First, the inner product is independent of the coupling scheme.
Second, the behavior of the inner product as a function of the number of electrons in the shell is
well-defined. If operators H1 and H2 occur together in the ln shell for the first time, then their inner
product in the lN shell is closely related:

H1 ∶ H(N)2 = α Tr H(n)1 ⋅Tr H(n)2 + β H1 ∶ H(n)2 (11)

The coefficients α and β only depend on N and on the n−particle characters of the two operators:
α and β are independent of the operators in question. In an orthogonal operator set, only the average
energy operator has a non-zero trace. As a result, once operators are orthogonal in their parent
configuration, i.e. the shell(s) where they first make their appearance, then they automatically remain
orthogonal in all other configurations. This statement is equivalent to the below group theoretical
result [32]:

If H1 and H2 belong to different irreducible representations Γ1 and Γ2 (differing symmetries) of a
group G ánd H1H2 does not contain the identity representation Γ0 of G, then → H1 ∶ H2 = 0.

This property has been used notably by Brian Judd to construct orthogonal operators based on
Lie groups such as U(4` + 2), Sp(4` + 2), S0(2` + 1) and G2 [33,34].

Except building operators with well-defined group-theoretical properties, one may also start
from elementary building blocks for inequivalent electrons that are orthogonal due to the well-known
properties of 9j-symbols. To build a first orthogonal basis, we use annihilation and creation tensor
operators [31] with ranks κ and k in spin- and orbital spaces, coupled to a total rank t:

⟨``′(SL) ∥ {(a†a)
κk

(b†b)
κ′k′

}

tt

∥ ``′(S′L′)⟩ = [t] [S, L, S′, L′]1/2
[κ, k, κ′, k′]1/2

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

1
2

1
2 κ

1
2

1
2 κ′

S S′ t

⎫
⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪
⎭

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

` ` k

`′ `′ k′

L L′ t

⎫
⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪
⎭

(12)

In the electrostatic t = 0 case, this simplifies to κ = κ′, k = k′ yielding a number of (4l′ + 2) eκk basic
orthogonal operators in ll′(l′ < l) [35].

Such a first orthogonal basis of six electrostatic operators is given in Table 9 for the dp configuration
as an example:

Table 9. Matrix elements of operators e′κk for dp.

e′00 e′10 e′01 e′11 e′02 e′12
1P 1 3 3 9 7 21
1D 1 3 1 3 −7 −21
1F 1 3 −2 −6 2 6
3P 1 −1 3 -3 7 -7
3D 1 −1 1 −1 −7 7
3F 1 −1 −2 2 2 −2

ηκk 1
√

3 2 2
√

3 2
√

7 2
√

21
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In order to avoid square roots in the entries, the common normalization factors ηκk are given
below each column: e′κk = ηκk ⋅ eκk.

The next step is to find linear combinations of these operators to distinguish between first order
direct and exchange (Fk, Gk) Coulomb interactions and higher order effects. The Coulomb parameters
are named Ci and the distinct higher order parameters Si (Sack), respectively [36,37]. Operators are
always written lower case to distinguish them from the corresponding parameters, e.g., the eav operator
is associated with the parameter Eav.

The below example describes the route from the original orthogonal basis given in Table 9 towards
the final orthogonal operator set used for dn p configurations [37] and may serve as a blueprint for any
ll′ configuration.

Properties: f k ∝ e′0k and (e′0k − e′1k) ∶ (3 ⋅ e′0k + e′1k) = 0.
Immediate use: eav = e′00, c1 = e′02 and s1 = (3 ⋅ e′01 + e′11). Property: gk ∝ (e′0k − e′1k) applies to all

exchange operators.
Use: we combine the remaining operators: e′10, e′12 and (e′01 − e′11) to: (7e′10 + e′12) and its orthogonal

counterpart (4e′10 − e′12). To check the whole procedure afterwards, we verify the inner products:

(e′01 − e′11) ∶ (3e′01 + e′11) = 0 and (7e′10 + e′12) ∶ (4e′10 − e′12) = 0.

Final results:
First order Coulomb: c1 = e′02, c2 = (7e′10 + e′12) and c3 = 11(e′01 − e′11)− (4e′10 − e′12)
Higher order: s1 = (3e′01 + e′11), and s2 = 3

2(e′01 − e′11)+ 2(4e′10 − e′12).
These final results are summarized in Table 10.

Table 10. Matrix elements of the ci and si operators for dp.

eav c1 c2 c3 s1 s2

1P 1 7 42 −57 9 −27
1D 1 −7 0 −55 3 63
1F 1 2 27 38 −6 18
3P 1 7 −14 63 3 15
3D 1 −7 0 33 1 −19
3F 1 2 −9 −42 −2 −10

ηi 1 2
√

7
√

231 2
√

517 2
√

3 2
√

141

All entries in a column are to be divided by the factors ηi to ensure common normalization:
eav ∶ eav = ci ∶ ci = si ∶ si = 60.

3.2. Completeness

An issue sometimes raised in connection with orthogonal operators is the comparatively large
number of parameters M versus the number of observed energy levels N. Usually N is equal or larger
than M, and ideally maybe even much larger. As each orthogonal operator describes an independent
physical effect, however, it may quickly be seen that with a small number of parameters, many effects
are inevitably omitted and one can not hope to obtain a physically reliable fit. On the other hand,
for each (n`)−configuration with one electron outside closed shells, we have two operators eav and ζl
and therefore: N = M = 2: for this case we seem to be used to a complete set already!

In fact, each complete set of operators may be shown to yield a unique joint solution to level
energies and level compositions. Consequently, an operator set that consists of more operators than the
number of levels in the configuration is actually not overcomplete. In principle there is, in addition to
the level energies, sufficient physical information dependent on the level compositions (Landé g-factors,
line strengths) to determine all parameter values unambiguously. In many cases the experimental
information is far from complete, but theoretical or empirical knowledge of the parameters can readily
be used to reduce the number of parameters to be varied. For a Hamiltonian consisting of angular
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operators and associated radial parameters to yield correct energies and level compositions, a complete
operator set should be used as a fact of principle, even though the number of operators may exceed
the number of fitted energy levels. Noble-gas configurations p5s, using Landé g-factors for additional
information on the level compositions, have been used to substantiate this point [38]. The fit with
M = 5 and N = 4 yielded physically realistic parameter values in line with ab initio results. In practice,
however, one can always neglect the smaller effects, or add them as non-variable quantities derived
from empirical or theoretical knowledge.

4. Outlook and Summary

The orthogonal operator approach is briefly reviewed and compared to the conventional LSF
approach. The increased stability of orthogonal operators creates room to meaningfully include
two-body magnetic operators and higher order effective electrostatic operators. The mean LSF error
is thereby substantially reduced, which should give better eigenvector compositions and improved
transition probabilities. However, ’orthogonal operators’ is certainly no plug-and-play method:
the initial estimates require iso-ionic/iso-electronic extrapolations, preliminary ab initio calculations or
both. Experience with neighboring spectra obviously helps. Little experience has been gained in the
open pn and the f n shells yet, though we recently implemented orthogonal operators for both cases;
applications for f n configurations with n > 2 are planned in the near future.

While large-scale calculations with Cowan’s code (including many individual configurations)
certainly lead in a quick and reliable way to satisfactory results, important magnetic effects are left
out and this may constitute a problem for close lying levels. Orthogonal operators (including many
effective operators) are more perturbative than variational in nature. As to higher order electrostatic
effects, it is not easy to compare the impact of a large number of unobserved, scaled configurations (that
indeed act as effective operators) to the effective 3- and 4-body orthogonal operators: they probably
represent the same effects only partially. When strong configuration interaction comes into play,
the orthogonal model space is extended with a limited number of configurations. The LSF mean error
is still clearly smaller but closer to the mean error of the conventional approach in these cases.

We look forward to cooperate both with experimental groups to support their work and with
theoretical groups to be able to implement more advanced ab initio methods. In the course of doing
this, we hope to make the method of orthogonal operators more generally accessible.
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