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Abstract: Owing to their distinguished properties, titanium difluoride (TiF2) and the crystallographic
structure of Cu2O have attracted a great deal of attention in the field of quantitative structure–property
relationships (QSPRs) in recent years. A topological index of a diagram (G) is a numerical quantity
identified with G which portrays the sub-atomic chart G. In 1972, Gutman and Trinajstić resented
the first and second Zagreb topological files of atomic diagrams. In this paper, we determine
a hyper-Zagreb list, a first multiple Zagreb file, a second different Zagreb record, and Zagreb
polynomials for titanium difluoride (TiF2) and the crystallographic structure of Cu2O.

Keywords: hyper Zagreb index; first multiple Zagreb index; second multiple Zagreb index; Zagreb
polynomials; titanium difluoride TiF2; crystallographic structure of Cu2O

1. Introduction

Mathematical chemistry is a hypothetical science in which synthetic structures are observable by
the use of scientific instruments. The synthetic diagram hypothesis is a part of this field where chart
hypothesis devices are applied to scientifically demonstrate concoctions. This hypothesis noticeably
contributes to the field of concoction science [1].”

A diagram G (V, E), with a vertex set V and an edge set E, is shown to be associated if an association
between any pair of vertices in G exists. A system is essentially an associated diagram with no distinct
edges and no circles. For diagram G, the level of vertex V is the quantity of edges with respect to V
and is referred to as deg (v). A sub-atomic diagram is a synthetic structure in which vertices signify
iotas and edges refer to bonds.

Atomic diagrams are typically described by various topological records regarding the relationship
between the substance structures of a particle with natural, synthetic, or physical properties. Studies
have determined a few applications of various topological files in quantitative structure–action
relationships (QSARs), quantitative structure–property relationships (QSPRs), virtual screening,
and computational medication planning.

A topological list is a numerical quantity, related to a chart, which describes the topology of a
diagram and is invariant under diagram automorphism. A topological list (Top(G)) of a diagram (G) is
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a number with the property that, for each chart H isomorphic to G, Top(H) = Top(G). The idea of a
topological file originated from the work done by Wiener [2] when he was attempting to determine
the breaking point of paraffin. He named this value the way number. Later on, the way number was
renamed in the Wiener file. The Wiener record is the first and most concentrated topological list, both
from a hypothetical perspective and by its applications, and is characterized as the entirety of the
separations between all the sets of vertices in G (see [3] for details).

One of the most seasoned topological records is the main Zagreb list, which was presented by
Gutman and Trinajstic in 1972 and is based on the level of vertices of G. In 2013, Shirdel, Reza Pour,
and Sayadi [4] presented a degree-based Zagreb list called the hyper-Zagreb record. It is as follows:

HM(G) =
∑

uv∈E(G)
[deg(u) + deg(v)]2. (1)

In 2012, Ghorbani and Azimi [5] characterized two new forms of Zagreb record for diagram G.
The principal Zagreb records PM1(G), the second numerous Zagreb list PM2(G), and the following files
are characterized below:

PM1(G) =
∏

ue∈E(G)
[deg(u) + deg(v)], (2)

PM2(G) =
∏

uv∈E(G)
[deg(u) × deg(v)]. (3)

In Reference [6], the Zagreb polynomials were defined as

M1(G, x) =
∑

uv∈E(G)

x [deg(u)+deg(v)], (4)

M2(G, x) =
∑

uv∈E(G)
x [deg(u)+deg(v)]. (5)

Recently, there has been extensive research activity into the HM(G), vPM1(G), and PM2(G) indices,
as well as M1(G, x) and M2(G,x) polynomials and their variants (see also [7–13]). For further research
regarding the topological indices of various graph families, see [14–26].

2. Main Results and Methods

To process our results, we used the techniques of combinatorial figuring, the vertex segment
strategy, the edge segment strategy, diagram hypothetical apparatuses, and the degree tallying
technique. Further, we used MATLAB software for numerical calculations and checks. Additionally,
we used Maple software to plot these numerical results. Furthermore, we processed the hyper-Zagreb
file, the first various Zagreb file, the second numerous Zagreb file, and the Zagreb polynomials
regarding the crystallographic structure of Cu2O and titanium difluoride (TiF2).

3. Crystallographic Structure of Cu2O

Among the different metal oxides, Cu2O has recently attracted a great deal of attention due
to its recognized properties, non-poisonous nature, ease, abundance, and straightforward creation
process. Currently, the promising applications of Cu2O mostly center around concoction sensors,
sun-oriented cells, photocatalysis, lithium-particle batteries, and catalysis. The concoction chart of the
crystallographic structure of Cu2O is depicted in Figures 1 and 2. For more data about this structure,
see [3,22].
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3. Crystallographic Structure of Cu2O 

Among the different metal oxides, Cu2O has recently attracted a great deal of attention due to 
its recognized properties, non-poisonous nature, ease, abundance, and straightforward creation 
process. Currently, the promising applications of Cu2O mostly center around concoction sensors, sun-
oriented cells, photocatalysis, lithium-particle batteries, and catalysis. The concoction chart of the 
crystallographic structure of Cu2O is depicted in Figure 1 and Figure 2. For more data about this 
structure, see [3,22]. 

 
Figure 1. Crystallographic structure of Cu2O. (a) Structural attributes of Cu and O particles in the
Cu2O cross section. The Cu2O cross section is shaped by interpenetrating the Cu and O grids with one
another. (b) Unit cell of Cu2O. Copper particles appear as small blue circles, and oxygen iotas appear
as large red circles. In the Cu2O cross section, every Cu iota is composed of two O particles, and every
O molecule is facilitated by four Cu iotas.
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Methodology of Cu2O Formulas

Let G = Cu2O[m, n, t] be the substance diagram of Cu2O with m× n unit cells in the plane and t
layers. We first develop this chart by taking m× n joins in the m× n-plane and then accumulating it in t
layers. The quantity of vertices and edges of Cu2O[m, n, t] are (m + 1)(n + 1)(t + 1) + 5mnt and 8mnt,
individually. In Cu2O[m, n, t], the quantity of vertices of degree 0 is 4, the quantity of vertices of degree
1 is 4m + 4n + 4t − 8, the quantity of vertices of degree 2 is 4mnt + 2mn + 2mt + 2nt − 4n − 4m − 4t + 6,
and the quantity of vertices of degree 4 is 2nmt − nm – nt − mt + n + m + t − 1.

We divide the edge set on the basis of degrees of endpoints of edges in the graph and compute the
number of edges in each set of the partition. All vertices have degree of one, two, or three. Thus, when
we compute the edges of all possible combinations of these vertices, the total is 4n + 4m + 4t − 8
edges with endpoints having degrees. Next, we analyzed the number of edges with endpoint degrees,
which are 4nm + 4nt + 4mt − 8n − 8m − 8t + 12. Then, excluding these two types of edges from the
total edges, we find the edges 4(2nmt − nm − nt − mt + n + m + t − 1) with endpoint degrees. This is
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summarized in the table below. Liu et al. [20] computed the atom bond connectivity index, Zagreb
indices; geometric arithmetic index and general Randić index for Cu2O[m, n, t].

We compute the hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index,
and Zagreb polynomials for Cu2O[m, n, t] in the following theorem.

Theorem 1. Considering the graph of G � Cu2O[m, n, t] with m, n, t ≥ 1, then its hyper-Zagreb index is
equal to,

HM(G) = 4[72mnt20(mn + mt + nt) + 13(m + n + t)6].

Proof. Let G be the graph of the crystallographic structure of Cu2O[m, n, t]. The hyper-Zagreb index is
computed using Table 1 and Equation (1).

HM(G) = (4m + 4 n + 4t− 8) (l + 2)2 + (4mn + 4mt + 4nt− 8m− 8n− 8t + 12) (2 + 2)2+

(8mnt− 4mn− 4mt− 4nt + 4m + 4n + 4t− 4) (2 + 4)2 = 4 [2mnt− 20(mn + mt + nt) + 13(m + n + t) − 6].

�

Table 1. Edge partition of Cu2O[rn, n, t] based on the degrees of the end vertices of each edge.

Number of edges 4n + 4m + 4t − 8 4nm + 4nt + 4mt − 8n −
8m − 8t + 12

4(2nmt − nm − nt − mt +
n + m + t − 1)

Set of Edges E1 E2 E3

Theorem 2. Consider the graph of G � Cu2O[m, n, t] with m, n, t ≥ 1. Its first and second multiplicative
Zagreb indices are equal to:

PM1(G) = (6)8mnt
× (24

× 3−4)
(mn+mt+nt)

× (2−12
× 38)

(m+n+t)
× (220

× 3−12)

PM2(G) = (2)24mnt
× (2−4)

(mn+mt+nt−1)

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The first multiplicative Zagreb index is
computed using Table 1 and Equation (2):

PM1(G) = (6)8mnt
× (24

× 3−4)
(mn+mt+nt)

× (2−12
× 38)

(m+n+t)
× (220

× 3−12)

�

The second multiplicative Zagreb index is computed using Table 1 and Equation (3):

PM2(G) = (2)24mnt
× (2−4)

(mn+mt+nt−1)
.

The graphical representation of above results are depicted in Figure 3.
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Theorem 3. Consider the graph of G � Cu2O[m, n, t] with m, n, t ≥ 1. Its first and second Zagreb polynomials
are equal to:

M1(G,x) = (4m + v4n + 4t − 8)x3 + (4mn + 4mt + v4n- 8m − 8n − 8t + 12)x4

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)x6,

M2(G,x) = (4m + 4n + 4t − 8)x2 + (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)x4

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)x8.

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The first Zagreb polynomial is computed
using Table 1 and Equation (4):

M1(G,x) = (4m + 4n + 4t − 8)x(1+2) + (4mn + 4mt + v4nt − 8m − 8n − 8t + 12)x(2+2)

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)x(2+4)

= (4m + 4n + 4t − 8)x3 + (4mn + 4mt + 4n − 8m − 8n − 8t + 12)x4

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)x6.

The second Zagreb polynomial is computed using Table 1 and Equation (5):

M2(G,x) = (4m + 4n + 4t − 8)x(1×2) + (4mn + 4mt + 4nt − 8m −8n − 8t + 12)x(2×2)

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)x(2×4)

= (4m + 4n + 4t − 8)x2 + (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)x4

+ (8mnt − 4mn − v4mt − 4nt + 4m + 4n + 4t − 4)x8.

�

The graphical representation of above results are depicted in Figure 4.
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Titanium difluoride is a water-insoluble titanium hotspot used in oxygen-sensitive applications 
such as metal creation. Fluoride mixes have various applications in current innovations and science, 
from oil refining and drawing to engineered natural science and the assembly of pharmaceuticals. 
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n, t] for t = 10 = m = n. Blue and red lines represent M1(G, x) and M2(G, x), respectively. M2(G, x) is
shown to grow more rapidly than M1(G, x).

4. Crystal Structure of Titanium Difluoride TiF2[m, n, t]

Titanium difluoride is a water-insoluble titanium hotspot used in oxygen-sensitive applications
such as metal creation. Fluoride mixes have various applications in current innovations and science,
from oil refining and drawing to engineered natural science and the assembly of pharmaceuticals.
The substance chart of the precious stone structure of titanium difluoride TiF2[m, n, t] is depicted in
Figure 5. For more subtleties, see [12,20].
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Methodology of TiF2[m, n, t] Formulas

Let TiF2[m, n, t] be the synthetic chart of TiF2 with m × n unit cells in the plane and t layers.
We develop this chart by first by taking m× n joins in the m× n-plane and then putting it away in the
upper part of the t layers. The quantity of vertices and edges of TiF2[m, n, t] are 12mntv + 2mn + 2mt +

2nt + m + n +1 + 1 and 32mnt, individually. In TiF2[m, n, t], the quantity of vertices of degree 1 is 8,



Atoms 2019, 7, 100 7 of 11

the quantity of vertices of degree 2 is 4m + 4n + 4t − 12, the quantity of vertices of degree 4 is 8mnt +

4mn + 4mt + 4nt − 4n − 4m − 4t + 6, and the quantity of vertices of degree 8 is 4mnt − 2(mn + mt + nt) +

m + n + 1 − 1.
Then, we divide the edge set on the basis of the degrees of the end points of edges in the graph

and also compute the number of edges in each set of the partition. All the vertices have degrees one,
two, three, or four. Thus, when we compute the edges of all possible combinations of these vertices,
there are a total of 8 edges whose endpoints have degree. Next, we analyze the number of edges with
endpoint degree 8(m + n + t − 3). The third type of edge had endpoint degree 16(mn + mt + nt) − 16(m
+ n + t) + 24. Further, excluding these three types of edges from the total number edges, we find edges
32mnt − 16(mt + mn + nt) + 8(m + n + t) − 8 with endpoint degrees. This is summarized in the table
below. Liu et al. [20] computed the atom bond connectivity index, Zagreb indices; geometric arithmetic
index and general Randić index for TiF2[m, n, t]

We compute the hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index,
and Zagreb polynomials for TiF2[m, n, t] in the following theorems.

Theorem 4. Consider the graph of G � TiF2[m, n, t] with m, n, t ≥ 1. Its hyper-Zagreb index is equal to:

HM(G) = 8 [576mnt − 160(mn + mt + nt) + 52(m + n +1) − 35].

Proof. Let G be the crystal structure of titanium difluoride TiF2[m, n, t]. The hyper-Zagreb index is
computed using Table 2 and Equation (1):

HM(G) = (8) (1 + 4)2 + (8m + 8n + 8t − 24) (2 + 4)2 + [l6(mn + mt + nt) − 16(m + n + t) + 24] (4 + 4)2

+ [32mnt − 16(mn + mt + nt) + 8(m + n +1) − 8] (4 + 8)2

HM(G) = 8 [576mnt − 160(mn + mt + nt) + 52(m + n +1) − 35].

�

Table 2. Edge partition of TiF2[m, n, t] based on the degrees of end vertices of each edge.

Number of edges 8 8(m + n + t − 3) 16(mn +mt + nt) −
16(m + n + t) + 24

32mnt − 16(mt +
mn + nt) + 8(m + n

+ t) − 8

Set of Edges E1 E2 E3

Theorem 5. Consider the graph of G � TiF2[m, n, t] with m, n, t ≥ 1. Its first and second multiplicative-Zagreb
indices are equal to:

PM1(G) = (12)32mnt
× (216

× 3−16)
(mn+mt+nt)

× (2−14
× 316)

(m+n+t)
× (232

× 3−32
× 58)

PM2(G) = (2)162mnt−16(mn+mt+nt)

Proof. Let G be the crystal structure of titanium difluoride TiF2[m, n, t]. The first multiplicative Zagreb
index is computed using Table 2 and Equation (2):

PM1(G) = (12)32mnt
× (216

× 3−16)
(mn+mt+nt)

× (2−14
× 316)

(m+n+t)
× (232

× 3−32
× 58)

�
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The second multiplicative Zagreb index is computed using Table 2 and Equation (3):

PM2(G) = (2)162mnt−16(mn+mt+nt).

The graphical representation of above results are depicted in Figure 6.
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Figure 6. First and second multiplicative Zagreb indices PM1(G) and PM2(G) of G, equivalent to TiF2[m,
n, t] for t = 2. The blue and red colors represent PM1(G) and PM2(G), respectively. We can see that, in
the given domain, PM1(G) is more dominant than PM2(G).

Theorem 6. Consider the graph of G � TiF2[m, n, t] with m, n, t ≥ 1. Its first and second Zagreb polynomials
are equal to:

M1(G,x) = (8)x(5) + (8m + 8n + 8t − 24)x(6)+ (16mn + 16mt + 16nt − 16m − 16n − 16t + 24)x(8)

+ (32mnt − 16mn − 16mt − 16nt + 8m + 8n + 8t − 8)x(12),

M2(G,x) = (8)x(4) + (8m + 8n + 8t − 24)x(8) + (16mn + 16mt + 16nt − 16m − 16n − 16t + 24)x(16)

+ (32mnt − 16mn − 16mt − 16nt + 8m + 8n + 8t − 8)x(23).

Proof. Let G be the crystallographic structure of TiF2[m, n, t]. The first Zagreb polynomial is computed
using Table 2 and Equation (4):

M1(G,x) = (8)x(1+4) + (8m + 8n + 8t − 24)x(2+4) + (16mn + 16mt + 16nt − 16m − 16n − 16t + 24)x(4+4)

+ (32mnt − 16mn − 16mt − 16nt + 8m + 8n + 8t − 8)x(4+8)

= (8)x(5) + (8m + 8n + 8t − 24)x(6) + (16mn + 16mt + 16nt − 16m − 16n − 16t + 24)x(8)

+ (32mnt − 16mn − 16mt − 16nt + 8m + 8n + 8t − 8)x(12).

The second Zagreb polynomial is computed using Table 1 and Equation (5):

M2(G,x)= (8)x(1×4) + (8m + 8n + 8t − 24)x(2×4) + (16mn + 16mt + 16nt − 16m − 16n − 16t + 24)x(4×4)

+ (32mnt − 16mn − 16mt − 16nt + 8m + 8n + 8t − 8)x(4×8)

= (8)x(4) + (8m + 8n + 8t − 24)x(8) + (16mn + 16mt + 16nt − 16m − 16n − 16t + 24)x(16)

+ (32mnt − 16mn − 16mt − 16nt + 8m + 8n + 8t − 8)x(23).

�
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The graphical representation of above results are depicted in Figure 7.
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n, t], for t = 10 = m = n. The blue and red represent M1(G, x) and M2(G, x), respectively. We can see that
M2(G, x) grows more rapidly than M1(G, x).

5. Comparisons and Discussion

The examination of the first and second various Zagreb lists and Zagreb polynomials of Cu2O[m,
n, t] are graphical portrayals, in Figure 4, that can be used for specific estimations of m, n, and t.
By fluctuating the estimation of m, n, and t in the given area, the principal, second various Zagreb files
and Zagreb polynomials carried on in an unexpected way.

The correlation of the first and second various Zagreb files and Zagreb polynomials of TiF2[m, n, t]
are graphical portrayals in Figure 7 for specific estimations of m, n, and t. By changing the estimations
of m, n, and t in the given space, the primary, second numerous Zagreb lists and Zagreb polynomials
carried on in an unexpected way.

Since the first and second Zagreb records were found to occur for calculations of the absolute π

electron vitality of the atoms, on account of Cu2O[m, n, t] and TiF2[m, n, t], their qualities gave complete
π electron vitality in expanding the request for higher estimations of m, n, and t.

6. Conclusions

In this paper, we dealt with titanium difluoride (TiF2) and the crystallographic structure of Cu2O,
and studied their topological indices. We determined the hyper-Zagreb index, first multiple Zagreb
index, second multiple Zagreb index, and Zagreb polynomials for titanium difluoride, as well as
the crystallographic structure of Cu2O. Additionally, by using MATLAB, we plotted these computed
results numerically and discussed their behavior regarding their monotonicity.
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