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Abstract: In recent work, the effect of a magnetic field on the line shapes via the modification of
electron perturber trajectories was considered. In the present paper we revisit this idea using a
variation of the Collision-time Statistics method, in order to account for all relevant perturbers.
We also obtain line profiles for the hydrogen Lα line for conditions of astrophysical interest.
Although the Collision-time statistics method works for both electrons and ions, we apply a
simplification here that results in an excessive number of ions having to be simulated. As a result,
the present, simplified version, is typically only appropriate for electrons.
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1. Introduction

Line shapes in random media, such as a plasma, are broadened and possibly shifted due to the
interaction with the random fields of the medium. The presence of an additional deterministic field in
the medium, such as an electric field for instance due to a laser, or a magnetic field, has three effects:
First, it dresses the random interaction, resulting in lineshape modification. This normally narrows the
lines, but can also result in satellite merging and hence line broadening compared to the no external
field case. Second, it may modify the distribution functions of the medium particles. Third, it may
modify the motion, for instance trajectories or equivalently dielectric properties of the medium. It is the
purpose of this work to investigate this last effect, and for this reason we keep other factors, such as the
shielding length and distribution functions unchanged by the magnetic field. It is not the purpose of
this paper to include all or even the most relevant effects (for example, ion broadening would normally
be dominant for tokamak conditions), but to isolate and investigate the effect of spiralling electron
trajectories as suggested in a recent paper [1], keeping all other things standard. For example, we do
not discuss whether quantum effects are enhanced or diminished in importance due to the smaller
effective velcocities or larger radii. We limit ourselves to electrons in the present work for reasons that
will be explained later.

2. Theoretical Formulation

We make the following assumptions in calculating the effects of the spiral orbits on the line
shapes in order to isolate the effect of spiralling trajectories and to make contact and comparisons with
previous work cited [1] that also made these assumptions:

a. The distribution functions, e.g., the Maxwellian velocity distribution is not affected by the B-field.
It has been known for a long time that the low frequency component of the electric microfield
(and thus the impact parameter or initial particle position distributions) is unaffected by a
magnetic field in a thermal plasma [2], but this is not the case here.

b. The shielding is also not affected, e.g., Debye screening. In principle, since shielding is provided
by the motion/rearrangement of plasma electrons and ions, any field that affects their motion
will also affect shielding. As discussed above, however, normal Debye shielding is assumed.
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2.1. Collision-Time Statistics

To include all and only the relevant perturbers, we use a modification of the collision-time
statistics method of Hegerfeld and Kesting [3] with Seidel’s improvement [4]—see Reference [5]
for details. This was also suggested in the context of preliminary calculations for the same effect
discussed here—“One major issue is the design of numerical simulation techniques which are suitable
for addressing the electrons in near-impact regime within a reasonable CPU time.” [6].

We start by introducing τ, which is the maximum time for which we need to compute the
autocorrelation function C(t), i.e., the Fourier transform of the line profile, which decays with time.
It may be a few times the inverse HWHM, but it could also be much shorter than that, if an asymptotic
form is realized before then. Next, we define as “relevant” perturbers those that come closer to the
emitter than a distance Rmax, defined so that the interaction is negligible for distances larger than Rmax

during the interval (0,τ). For a Debye interaction, we usually take Rmax ≈ 3λD, where λD denotes the
shielding(Debye) length. This is because the interation becomes negligible (≤ 3% for larger distances).

In this work we consider a neutral emitter at the origin of the coordinate system. With these
assumptions, perturbers move in a helical path characterized by the parallel constant velocity vz,
where the magnetic field direction defines the z-axis (passing through the emitter), the perpendicular
velocity with magnitude v⊥ and impact parameter ρ, which is the distance of the center of the spiral to
the z-axis, i.e., the perpendicular motion is a circular motion with the Larmor radius rL = v⊥

ωL
around

the center ρ, with ωL = |Q|B/m the cyclotron frequency and Q the perturber charge.
The z-coordinate of the trajectory is

Rz(t) = vz(t− ti) = vzt + z0, (1)

with
z0 = −vzti, (2)

with the times of closest approach ti representing the time the perturber trajectory intersects the x-y
plane and being uniformly distributed. z0 thus represents how far from the x-y plane the perturber is
at t = 0.

The perpendicular component is:

Rx(t) = ρx + rLcos(ωLt), Ry(t) = ρy + rLsin(ωLt) (3)

As discussed above, the relevant perturbers must come closer than Rmax:

(vzt + z0)
2 + (ρ− rL)

2 ≤ R2
max (4)

for at least one time in the simulation interval [0,τ].
We consider two cases: The case rL ≤ Rmax is depicted in Figure 1: Relevant ρ are in (0, Rmax + rL).

Note that a larger cylinder radius and hence more perturbers contribute than in the case without
magnetic field; however, these extra perturbers in (Rmax, Rmax + rL) as well as the perturbers in
(Rmax − rL, Rmax) contribute only partially. Note that this is the only case considered in [1].1

1 In fact Reference [1] only deals with λD > rL.
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Figure 1. x-y trajectory projections for rL ≤ Rmax. The rightmost circle corresponds to a perturber
with ρ > Rmax + rL, so that the perturber is always more than Rmax away from the emitter.

2.2. Cylinder Radius

For rL > Rmax, as depicted in Figure 2: rL − Rmax ≤ ρ ≤ Rmax + rL is necessary for the x-y
component of the trajectory to be no larger than Rmax.

This means
|ρ− rL| ≤ Rmax (5)

Hence for rL < Rmax, 0 ≤ ρ ≤ Rmax + rL and for rL ≥ Rmax, rL − Rmax ≤ ρ ≤ rL + Rmax.
Hence a spiraling perturber at a distance Rmax + rL from the z-axis, still “just" becomes relevant

when it comes closest to the z-axis in its spiraling trajectory. Note that since the Larmor radius depends
on the perpendicular velocity component, the cylinder-radius depends on the perpendicular velocity.

Figure 2. x-y trajectory projections for rL > Rmax.
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Hence the impact parameter is in

max(0, rL − Rmax) ≤ ρ ≤ Rmax + rL, (6)

i.e., the impact parameter ρ lies in a disk or annulus depending on whether Rmax is larger or smaller
than rL.

2.3. Cylinder Length

From Equation (4) we obtain for t = 0 and t = τ:

−
√

R2
max − (ρ− rL)2

|vz|
≤ ti ≤ τ +

√
R2

max − (ρ− rL)2

|vz|
(7)

Hence the length of the cylinder for a given vz, ρ and rL is determined by accounting for all
particles in the above interval, i.e., the length is

|vz|(τ + 2

√
R2

max − (ρ− rL)2

|vz|
) = |vz|τ + 2

√
R2

max − (ρ− rL)2 (8)

2.4. Collision Volume

The collision-time statistics method first computes the number of relevant particles, i.e., the density
times the relevant volume, i.e., the above cylinder. This volume is:

V = 2π
∫ ∞
−∞ f (vz)dvz

∫ ∞
0 f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

max(0, v⊥
ωL
−Rmax)

ρdρ
∫ τ+

√
R2

max−(ρ−rL)
2

|vz |

−
√

R2
max−(ρ−rL)

2

|vz |

dti (9)

= 2π
∫ ∞
−∞ f (vz)dvz

∫ ∞
0 f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

max(0, v⊥
ωL
−Rmax)

(|vz|τ + 2
√

R2
max − (ρ− rL)2)ρdρ

= 2π(c1 + c2)

with f (vz) =
√

m
2πkT e−mv2

z /2kT and f2(v⊥) = m
kT v⊥e−mv2

⊥/2kT denoting a one and two-dimensional
Maxwellian velocity distributions respectively. c1 and c2 are:

c1 = τ
∫ ∞

−∞
f (vz)|vz|dvz

∫ ∞

0
f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

max(0, v⊥
ωL
−Rmax)

ρdρ (10)

and

c2 = 2
∫ ∞

−∞
f (vz)dvz

∫ ∞

0
f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

max(0, v⊥
ωL
−Rmax)

√
R2

max − (ρ− rL)2ρdρ (11)

As already mentioned, the number of particles that are in this volume, and hence need to be
simulated, is simply the volume multiplied by the perturber density. The computation of the collision
volume V is detailed in Appendix A. Although with the above Collision-time statistics modification,
all relevant particles are accounted for, some that are accounted for may actually not contribute.
Hence the simplified version described here is still inefficient for very small magnetic field (or large
mass) and does not recover the B=0 (i.e., Seidel [4,5]) result. For instance, it does not account for the
fact that for very small B (or large mass), ωL is very small and rL very large, so that a particle initially
at Rmax + rL does not have the time to reach the interaction region. However, in this work we stick
to this approach because it is efficient for electrons and magnetic fields that are not too small and is
much simpler. For ions this approach may well be inadequate, as the dimensionless factor q defined in
the appendix, which is essentially the ratio of Rmax/rL is often < 1 and the Collision-time statistics
method as described here results in a large number of ions that must be accounted for, due to the larger
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rL, even though not all of them are effective. For example, for conditions relevant to white dwarfs, e.g.,
electron density n = 1017 e/cm3, T = 5 eV and B = 100 T, ωLτ ≈ 0.029 for ions (protons) and 26 for
electrons for τ = 1.5 ps. Among other things, this means that ions are far from completing a single
spiral, while electrons complete several. As a result, an ion that starts at a distance in the x-y plane
close to rL + Rmax will fail to enter the interaction region (sphere with radius Rmax) in (0,τ) and hence
need not be accounted for at all. The present method is too generous with such perturbers and hence
is inadequate for ions. Its extension is left for future work. Note, however, that this discussion applies
to the efficiency of the calculation, not the results.

2.5. Generating Perturbers

To generate perturbers, we first draw a random number uniformly distributed in (0,1). If this is
smaller than c1

c1+c2
, then we generate |vz|, v⊥, ρ from the distribution P1(|vz|, v⊥, ρ) = |vz| f (vz) f2(v⊥)ρ

by generating independently a vz with the probability distribution |vz| f (vz), a v⊥ with the probability
distribution f2(v⊥) and a ρ with the probability density ρdρ in ((max(0, v⊥

ωL
− Rmax), Rmax +

v⊥
ωL

).

Otherwise we generate from the distribution P2(|vz|, v⊥, ρ) = f (vz) f2(v⊥)ρ
√

R2
max − (ρ− rL)2.

The generation of impact parameters was done by a rejection method, as straightforward inversion is
not possible.

Once vz, v⊥ and ρ have been generated, ti is selected as a uniformly distributed time in
(−
√

R2
max − (ρ− rL)2, |vz|τ +

√
R2

max − (ρ− rL)2).
Last, an angle θ, uniformly distributed in (0, 2π) is generated, so that ρx = ρcosθ and ρy = ρsinθ.

2.6. The Line Profile

Then the Schrödinger equation is solved for the atomic system in the field generated by the
thus-drawn plasma particle and the resulting time evolution (U-matrices) are used to obtain the
autocorrelation function

C(t) = dβαUαα′(t)·dα′β′U
†
β′β(t) (12)

with α, α′ denoting upper level states and β, β′ lower level states for the line in question. This is
repeated for a large number of such field histories in order to obtain reliable statistics and at the end a
Fourier transform is taken to obtain the line profile.

3. Calculations Results

For the calculations we only considered the hydrogen Lα line. Although at the parameters
discussed in [1] ions may be dominant, only electrons were considered in the present work,
in order to make contact with similar work [1] (which is also why a simplified version was used
as discussed above).

τ was used as in Table 1. Note that the autocorrelation function C(t), i.e., the Fourier transform of
the lineshape has not dropped to negligible levels even for t = τ; however, for all cases extrapolation
was employed, as an impact form was detected for t ≤ τ, as depicted in Figure 3. In that case C(t) has
dropped to about 70% of its t=0 value for t = τ.

Table 1. Typical Number of perturbers required.

n(e/cm3) T(eV) B(Tesla) τ(ps) Model q N C′1(10−6) C′2(10−6)

2× 1013 12 0 150 Electrons 6,952,705 174 11.5
2× 1013 12 3 150 Electrons 4.44 4,955,646 126 6.05

1017 5 0 150 Electrons 19,181 1.12 0.105
1017 5 100 150 Electrons 2.09 20,216 1.16 0.127
1017 5 0 180 Ions 2222 0.037 0.1
1017 5 100 180 Ions 0.069 1,364,429,438 1.39 8.7× 104



Atoms 2019, 7, 52 6 of 12

Also shown are the final profiles in Figure 4 for both parallel (unshifted) and perpendicular
directions to the field.

Figure 3. Plot of the quantity −lnC(t)/t, which is seen to saturate for large t, indicating that an impact
form has set in. The conditions were n = 1017 e/cm3, T = 5 eV and B = 100 T. 10,000 configurations
were used in this run. m refers to the magnetic quantum number of the |21m〈 spherical states, i.e.,
the σ (m = 1) and π (m = 0) components of the autocorrelation function C(t), as the lower level is
not broadened.
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Figure 4. Line profile of the Ly − α transitions with and without account of spiralling for
n = 1017e/cm3, T = 5 eV and B = 100 T. 10,000 configurations were used in this run.

4. Physical Discussion

The present work differs from the work in Reference [1] in that (a) it is not limited to cases where
the shielding length exceeds the Larmor radius, (b) it includes the contribution of particles with impact
parameters larger than the shielding length, (c) it is non-perturbative and (d) accounts for overlapping
collisions, although for (c) and (d) a corresponding impact calculation could be done along these lines,
as the impact approximation is built-in the collision-time statistics technique. Note that Debye-shielded
fields are used in the calculations in this work.
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Compared to the situation without magnetic field, i.e., straight line trajectories, we note
the following:

a. More perturbers may participate in the broadening due to the larger cylinder width, e.g., in the
x-y plane, impact parameters in (Rmax, Rmax + rL) contribute, while they did not in the case of
straight line trajectories. However, this is a partial contribution and offset by the fact that impact
parameters in (Rmax − rL, Rmax ) have a reduced contribution because such perturbers spend
time outside Rmax. So if rL � Rmax, this is not expected to have a significant effect. However,
if Rmax < rL, then only a small arc of the spiral may contribute to broadening, in the sense of
providing for an appreciable interaction. This could be more interesting and is not considered
in [1].

b. On the other hand, the cylinder length can be shorter, as only the parallel velocity component
contributes and the one-dimensional average velocity is smaller than the three-dimensional one,
hence the c1 contribution may be smaller for the B 6= 0 than for the B = 0 case. The relative
importance of c1 compared to c2 depends not only on the magnetic field and plasma parameters,
but also on the “time of interest”, τ. As discussed, this is generally a few inverse HWHMs, but
can be substantially smaller if an exponential form in the autocorrelation function is realized
before then.

To illustrate, we consider the hydrogen Lα line under conditions found in tokamaks and white
dwarfs and display the number of perturbers N required and contributions of C′1 = c1

2πR2
max

and

C′2 = c2
2πR2

max
as a function of electron density n, Temperature(T), magnetic field (B), τ and model. q is

the ratio q = RmaxωL

√
m

2kT . SI units are used throughout.
Note that for the lowest density, c1 dominates and f ewer electrons are effective than for the B = 0

case, as discussed above. Since other things (shielding, distribution functions etc) are equal, this means
smaller widths.

Figure 5 shows the π-component of electron-broadened L− α with (a) no magnetic field (dotted),
(b) B = 200 T but no spiralling (dashed), (c) B = 500 T but no spiralling (dash- double dotted),
(d) B = 200 T and spiralling (dot-double dashed) and (e) B = 500 T and spiralling (solid). Note that
spiralling results in a line narrowing, and makes much more difference than a change in B, as the B = 0,
200 and 500 T results with no spiralling practically coincide.

-10 -8 -6 -4 -2 0 2 4 6 8 10
Energy (cm     )

0

0.2

0.4

0.6

0.8

In
te

ns
ity

(a
rb

.u
ni

ts)

Electron-broadened L-alpha,  -component
n=10   e/cm   , T=5eV

-1

17 3
π

B=500T, spiralling

B=200T, spiralling

Figure 5. Line profile of the Ly − α π- compoment with and without account of spiralling for
n = 1017 e/cm3, T = 5 eV and B = 0, 200 and 500 T. The horizontal scale represents energy difference
from the unperturbed line center.
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Similarly, Figure 6 shows the σ-component of electron-broadened L − α for B = 200 T with
no spiralling (dashed) and spiralling (solid), appropriately scaled. Again, spiralling results in a
line narrowing.
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Figure 6. Line profile of the Ly − α σ- compoment with and without account of spiralling for
n = 1017 e/cm3, T = 5 eV and B = 200 T. The horizontal scale represents energy difference from
the unperturbed line center.

The same qualitative effect of narrowing due to spiralling is seen in Figure 7, which shows the
σ-component of electron-broadened L− α for B = 500 T with no spiralling (dashed) and spiralling
(solid), appropriately scaled.
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Figure 7. Line profile of the Ly − α σ- compoment with and without account of spiralling for
n = 1017 e/cm3, T = 5 eV and B = 500 T. The horizontal scale represents energy difference from
the unperturbed line center.

5. Shifts

In [1] shifts and further structure (e.g., triplet) of the σ component are also discussed as being
associated with the spiralling trajectories and it is proposed that these are more characteristic features
than broadening effects. In the approach of Reference [1], these shifts are a consequence of the
removal of degeneracy of the upper level states because of the Zeeman effect and would be present
regardless of the perturber motion, though the shift magnitude does, of course, depend on the exact
form of the perturber-emitter interaction. In other words, the approach of the present work handles
both widths and shifts with no conceptual difference: Due to Zeeman splitting, the emitter-plasma
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(interaction-picture) interaction V(t) acquires an imaginary exponential that slows down the decay of
the autocorrelation function. This is too small to be observable in the examples shown. In any case,
shifts are outside the scope of the present work.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Collision Volume Calculation

Starting with Equation (10), the vz integration in c1 returns the average z-velocity 〈vz〉, while it
simply returns 1 for c2 as vz does not appear at all.

c1 = τ
∫ ∞

−∞
|vz| f (vz)dvz

∫ ∞

0
dv⊥ f2(v⊥)I1 = 〈|vz|〉τ

∫ ∞

0
dv⊥ f2(v⊥)I1 (A1)

with 〈|vz|〉 =
∫ ∞
−∞ |v| f (v)dv =

√
2kT
πm and T and m the perturber temperature and mass respectively,

I1 =
1
2
(Rmax +

v⊥
ωL

)2, v⊥ ≤ RmaxωL (A2)

and
I1 = 2

v⊥Rmax

ωL
, v⊥ > RmaxωL (A3)

Consequently

c1 = 〈vz〉τ
2 [
∫ RmaxωL

0 dv⊥ f(v⊥)(Rmax +
v⊥
ωL

)2 + 4Rmax
ωL

∫ ∞
RmaxωL

dv⊥v⊥ f2(v⊥)] (A4)

= 〈vz〉τ
2

1
2π [R

2
max
∫ q2

0 e−xdx + 2ω−2
L

kT
m
∫ q2

0 xe−xdx

+2 Rmaxm
ωLkT (

∫ RmaxωL
0 v2

⊥e−mv2
⊥/2kTdv⊥ + 2

∫ ∞
RmaxωL

v2
⊥e−mv2

⊥/2kTdv⊥)]

= 〈vz〉τ
2 [(1− e−q2

)R2
max + 2ω−2

L
kT
m (1− (1 + q2)e−q2

) + 2 Rmax
ωL

(〈v⊥〉+ ( 2kT
m )1/2Γ(3/2, q2))]

with q = RmaxωL

√
m

2kT (essentially the ratio Rmax/rL), Γ(s, x) denoting the upper incomplete
Gamma function

Γ(s, x) =
∫ ∞

x
dte−tts−1 (A5)

and the average perpendicular velocity: 〈v⊥〉 = (πkT
2m )1/2 = m

kT

∫ ∞
0 dv⊥v2

⊥e−mv2
⊥/2kT . Note that

Γ(3/2, q2) =
1
2

Γ(1/2, q2) + e−q2
(q2)1/2 = qe−q2

+
√

πer f c(q) (A6)

Consequently c1 can be expressed as:

c1 =
√

kT
2πm τ[(1− e−q2

)R2
max + 2ω−2

L
kT
m (1− (1 + q2)e−q2

) (A7)

+2 Rmax
ωL

(〈
√

πkT
2m + ( 2kT

m )1/2(qe−q2
+
√

πer f c(q)))]

= R2
maxτ

√
kT

2πm [(1− e−q2
) + 1−(1+q2)e−q2

q2 + 2(qe−q2
+ π1/2 1+2er f c(q)

2q )]

with er f c(q) = 1− er f (q) the complementary error function. For q → 0 note that er f c(q) = 1−
2π−1/2q + O(q3); however, as already discussed for q=0 (B=0) we still get a divergence.

while for c2

c2 =
∫ ∞

0
dv⊥ f2(v⊥)I2 (A8)
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with

I2 =
∫ v⊥

ωL
+Rmax

max(0, v⊥
ωL
−Rmax)

2[R2
max − (ρ− v⊥

ωL
)2]1/2ρdρ (A9)

= 2R3
max
∫ 1+ v⊥

RmaxωL
max(0, v⊥

RmaxωL
−1)

xdx
√

1− (x− v⊥
RmaxωL

)2

= 2
6 R3

max
(√

1− (x− v⊥
RmaxωL

)2[2x2 − v⊥
RmaxωL

x− 2− ( v⊥
RmaxωL

)2]

−3 v⊥
RmaxωL

arcsin( v⊥
RmaxωL

− x)
)
|
1+ v⊥

RmaxωL
max(0, v⊥

RmaxωL
−1)

where we used x = ρ/Rmax.
The upper integration limit results in a square root of zero argument and hence only contributes

−R3
max

v⊥
RmaxωL

arcsin(−1) = π
2 R3

max
v⊥

RmaxωL
The lower integration limit, if 0 (i.e., v⊥ ≤ RmaxωL) contributes

R3
max[

(2 + ( v⊥
RmaxωL

)2)

3

√
1− (

v⊥
RmaxωL

)2) +
v⊥

RmaxωL
arcsin(

v⊥
RmaxωL

)] (A10)

while if v⊥ > RmaxωL the contribution is:

R3
max

v⊥
RmaxωL

arcsin(1) =
π

2
R3

max
v⊥

RmaxωL
(A11)

Hence

I2 = R3
max[

(2+(
v⊥

RmaxωL
)2)

3

√
1− ( v⊥

RmaxωL
)2) (A12)

+ v⊥
RmaxωL

(π
2 + arcsin( v⊥

RmaxωL
))], v⊥ ≤ RmaxωL

= πR3
max

v⊥
RmaxωL

, v⊥ > RmaxωL

The velocity integration thus reads:

c2 = R3
max[

∫ RmaxωL
0 dv⊥ f2(v⊥)

2+(
v⊥

RmaxωL
)2)

3

√
1− ( v⊥

RmaxωL
)2) (A13)

+
∫ RmaxωL

0 dv⊥
v⊥

RmaxωL
f2(v⊥)(π

2 + arcsin( v⊥
RmaxωL

)) + π
RmaxωL

∫ ∞
RmaxωL

dv⊥v⊥ f2(v⊥)]

Substituting x = v⊥
RmaxωL

we have

c2 = R3
max(D1(q) + D2(q) + D3(q)) (A14)

where

D1(q) = q2
∫ 1

0
dxx

2 + x2

3

√
1− x2e−q2x2

=
q2

6

∫ 1

0
dx(2 + x)

√
1− xe−q2x (A15)

D2(q) = 2q2
∫ 1

0
x2dx(

π

2
+ arcsin(x))e−q2x2

(A16)

and
D3(q) = 2πq2

∫ ∞

1
dxx2e−q2x2

(A17)
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Note that because of the issue with small B mentioned, D3 diverges as q = 0; however, it quickly
becomes negligible compared to D1 and D2. The functions D1 and D2 are shown in Figure A1, while all
three functions are shown for q > 1 in Figure A2

Hence

V = R2
max
[
τ
√

kT
2πm [(1− e−q2

) + 1−(1+q2)e−q2

q2 (A18)

+2(qe−q2
+ π1/2 1+2er f c(q)

2q )] + Rmax(D1(q) + D2(q) + D3(q))
]

0 1 2 3 4 5 6 7 8 9 10
q

0

0.2

0.4

0.6

0.8
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D   (q)

D  (q)
2

1

21

Figure A1. The D1 and D2 functions.
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Figure A2. The D1,D2 and D3 functions for q > 1.
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