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Abstract: To determine the photon emission or absorption probability for a diatomic system in the
context of the semiclassical approximation it is necessary to calculate the characteristic canonical
oscillatory integral which has one or more saddle points. Integrals like that appear in a whole range of
physical problems, e.g., the atom–atom and atom–surface scattering and various optical phenomena.
A uniform approximation of the integral, based on the stationary phase method is proposed, where
the integral with several saddle points is replaced by a sum of integrals each having only one or at
most two real saddle points and is easily soluble. In this way we formally reduce the codimension in
canonical integrals of “elementary catastrophes” with codimensions greater than 1. The validity of the
proposed method was tested on examples of integrals with three saddle points (“cusp” catastrophe)
and four saddle points (“swallow-tail” catastrophe).

Keywords: oscillatory integrals; stationary point approximation; semi-classical theory; uniform
Airy approximation

1. Introduction

Many physical processes like the atom scattering on atom, molecule, surface, or a crystal and
propagation of electromagnetic waves through a medium, are described generally by multidimensional
integrals. The value of these integrals as a function of the parameters a = {a1, a2, . . . an} depends
on the morphology of the phase f (a; u) of the integrand, where u = {u1, u2, . . . uk} are the variables
of integration.

The main contribution to the integral comes from the neighbourhood of the saddle points

us = {u1s, u2s, . . . uks}, where ∂ f (a;us)
∂u1s

=
∂ f (a;us)
∂u2s

= . . . =
∂ f (a;us)
∂uks

= 0. For some parameters a it is possible
that some higher derivatives are equal to 0 at the saddle points, which causes coalescence of these
points, increases the value of the integral that manifests itself as “rainbow and glory” [1]. To analyze
the rainbow phenomenon, it is important to know the caustic surface C(ac), defined by the relation
∂ f (ac;us)
∂u1s

=
∂2∂ f (ac;us)

∂u1s2 = . . . =
∂∂ f (ac;us)

∂uks
=

∂2∂ f (ac;us)

∂uks
2 = 0.

By transforming the variables using a uniform one-to-one mapping, the phases can be transformed
into simple forms, which are classified as seven “elementary catastrophes” [2,3]. There are four
one-dimensional catastrophes: fold f (x; u) = u3 + xu, cusp f (x, y; u) = u4 + xu2 + yu, swallow-tail
f (x, y, z; u) = u5 + xu3 + yu2 + zu, butterfly f (x, y, z, w; u) = u6 + xu4 + yu3 + zu2 + wu, and three
two dimensional ones: hyperbolic umbilic f (x, y, z; u, v) = u3 + v3 + xuv − yu − zv, elliptic umbilic
f (x, y, z; u, v) = u3

− 3uv2 + x
(
u2 + v2

)
− yu− zv, parabolic umbilic f (x, y, z, w; u, v) = u2v + v4 + xu2 +

wv2
− yu− zv. The elementary Thom’s catastrophes in the context of the theory of atomic collisions

have been discussed in detail by Connor [4].
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In the cuspoid case (one integration variable), the oscillatory integrals are usually written in
the form:

I(a) =

∞∫
−∞

g(u)ei f (a;u)du (1)

where a = {a1, a2, . . . } is a set of parameters. As a varies, as many as K + 1 (real or complex) critical
points of the smooth, real-valued phase function f can coalesce in clusters of two or more. The function
g has a smooth amplitude. In what follows we denote ∂n

∂un f (a; u) = f (n)(a; u). The critical (stationary)
points uj(a), 1 ≤ j ≤ K + 1, are defined by f (1)(a; u j) = 0 [5].

In the case of a single real critical point the integral I(a) is in the leading order approximated
by [6]:

I(a) ≈ Iq(a; u1) =

√
2πi

f (2)(a; u1)
g(u1)ei f (a;u1) =

√
2π∣∣∣ f (2)(a; u1)

∣∣∣ g(u1)ei f (a;u1)+iσ1
π
4 (2)

where σ1 = sgn( f (2)(a; u1)) and the subscript q indicates a quadratic expansion of f (a; u) around u1.
The result is easily generalized to the case of jmax (1 ≤ jmax ≤ K) isolated real critical points [7]. The
main contribution to the integral comes from the regions around the stationary points u j where the
phase function f (a; u) is slowly varying.

Since the positions of the critical points depend on a, they can move close together and coalesce
as a varies. In the uniform asymptotic evaluation of oscillatory integrals the result is expressed in
terms of certain canonical integrals [5,7] and their derivatives. Each canonical integral is characterized
by a given number of coalescing critical points. One defines a mapping u(a;t) by relating f (a;u) to the
normal form of cuspoid catastrophes ΦK(b; t) in the following way:

f (a; u(a; t)) = A(a) + ΦK(b(a); t) = A(a) + tK+2 +
K∑

m=1

bmtm (3)

with the K + 1 functions A(a) and b(a) determined by the correspondence of K + 1 critical points of
f and ΦK.

In the simplest case of two coalescing critical points (K = 1, fold catastrophe) there is a single
point ue = u(ae) where f (2)(a; ue) = 0, i.e., the function f (1)(a, u) has an extremum and there are two
stationary points u1(a) and u2(a). In some range of the parameter a the stationary points are real and
u1 ≤ ue ≤ u2. For a = ae the two points coalesce and u1 = ue = u2. For other values of a the stationary
points are complex conjugate solutions of Equation (2), i.e., u1 = u∗2.

The leading-order uniform approximation in the case of the fold catastrophe is given by [8]

I(a) ≈ IF(a) = π
√

2eiA(a)
[(

g(u1)√
σ1 f (2)(a;u1)

+
g(u2)√

−σ1 f (2)(a;u2))

)
4
√
ζ(a)Ai(−ζ(a)) − iσ1

(
g(u1)√

σ1 f (2)(a;u1)
−

g(u2)√
−σ1 f (2)(a;u2))

)
Ai′(−ζ(a))

4√ζ(a)

]
(4)

where A(a) = 1
2 [ f (a; u2) + f (a; u1)], ζ(a)

3/2 = σ1
3
4 [ f (a; u2) − f (a; u1)] and σi = sgn

(
f (2)(a; ui)

)
. The

branches are chosen so that ζ(a) is real and positive if the critical points are real, or real and negative if
they are complex. (Note that σi f (2)(a; ui) =

∣∣∣ f (2)(a; ui)
∣∣∣ and in the case under consideration σ2 = −σ1).

The transitional approximation Itr
F (a) reproduces the uniform approximation IF(a) on the

neighbourhood of a ≈ ae (Itr
F (ae) = IF(ae)) and enables analytical continuation from the region

of real stationary points into the region of complex ones. The transitional approximation is given by [9],

Itr
F (a) = 2πeiA(a)g(ue)

(
2∣∣∣ f (3)(a;ue)

∣∣∣
)1/3

{
Ai(−ζ(a)) + iσ1

(
2∣∣∣ f (3)(a;ue)

∣∣∣
)1/3[ g(1)(ue)

g(ue)
−

1
6

f (4)(a;ue)

f (3)(a;ue)

]
Ai′(−ζ(a))

}
(5)

where ζ(a) = σ1

(
2∣∣∣ f (3)(a;ue)

∣∣∣
)1/3

f (1)(a; ue) and A(a) = f (a; ue) +
1
6

(
f (1)(a;ue)

f (3)(a;ue)

)2
f (4)(a; ue).
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In order to obtain A(a) and b(a), a set of nonlinear equations has to be solved. These can be
solved in principle, but there are practical difficulties in attempting a solution [10]. On the other
hand, away from b = 0 the canonical integrals can be approximated in terms of canonical integrals ΦJ

corresponding to lower-order catastrophes (i.e., J < K) [7,10–16].
The motivation to study these types of integrals originates from the investigation of optical spectra

of diatomic molecules [9]. For example, in the semiclassical approximation the matrix element of the
dipole moment D(R) for the optical transition is proportional to the integral [11]

∞∫
−∞

dtD(R(t)) exp

 i
h

t∫
0

(∆(R(t′)) − hν)dt′

. (6)

The radial movement of atoms is described classically, R = R(t). The phase function in the

integral (6) is f (t) = 1
h

t∫
0
(∆(R(t′)) − hν)dt′, where ∆(R) is the energy difference of the upper and lower

electronic state energies. The condition f (1)(t) = 0 gives the saddle points which satisfy the classical
Franck–Condon condition ∆(R(tc)) = hν. If there are points tt satisfying the condition f (3)(tt) = 0, the
method suggested in Section 2 of this paper is a good choice to calculate the integral in Equation (6).

In the following sections we propose a new procedure for the approximate evaluation of oscillatory
integrals with several stationary points.

2. A New Procedure for Approximate Evaluation of Oscillatory Integrals

Let there be a point ut in the integration interval [−∞,∞]which satisfies the condition f (3)(a; ut) = 0.
In the neighbourhood of this point one defines a function:

F(a; u) = f (a; ut) + f (1)(a; ut)(u− ut) +
1
2

f (2)(a; ut)(u− ut)
2 +

1
4!

f (4)(a; ut)(u− ut)
4 (7)

The first derivative of this function, F(1)(a; u) = f (1)(a; ut) + f (2)(a; ut)(u− ut) +
1
3! f (4)(a; ut)(u− ut)

3, has an inflection at the point ut. If sgn
(

f (2)(a; ut)
)
= sgn

(
f (4)(a; ut)

)
, F(1)(a; u) is

monotonic function. In the case when sgn
(

f (2)(a; ut)
)
= −sgn

(
f (4)(a; ut)

)
, the function F(1)(a; u) has

two extremes at real points u1,2 = ut ∓

√
−

2 f (2)(a;ut)

f (4)(a;ut)
.

If there are m points up,i ∈ [−∞,∞], i = 1, . . . , m, satisfying f (3)(a; up,i) = 0 and σp,i =

sgn
(

f (2)(a; up,i)
)
= −sgn

(
f (4)(a; up,i)

)
, these points divide the interval [−∞,∞] into m + 1 intervals[

up,i−1, up,i
]

and the integral I(a) can be written:

I(a) =

∞∫
−∞

g(u)ei f (a;u)du =
m+1∑
i=1

up,i∫
up,i−1

g(u)ei f (a;u)du (8)

where the end points of the integration up,0 = −∞ and up,m+1 = ∞ (σp,0 = sgn
(
limu→−∞ f (2)(a; u)

)
and σp,m+1 = sgn

(
limu→∞ f (2)(a; u)

)
have been introduced. At each interval

[
up,i−1, up,i

]
the function

f (1)(a; u) has a simple property. If σp,i−1 = σp,i, the function f (1)(a; u) is monotonic on the interval[
up,i−1, up,i

]
and has a single real saddle point. In the case σp,i−1 = −σp,i there is a point ue ∈

[
up,i−1, up,i

]
,

f (2)(a; ue) = 0 and the function f (1)(a; u) has an extreme at ue and two saddle points.
One defines a function fp,i(a; u) as a series expansion of the phase f (a; u) around up,i up

to the quadratic term: fp,i(a; u) = f (a; up,i) + f (1)(a; up,i)(u − up,i) +
1
2! f (2)(a; up,i)(u− up,i)

2. Note
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that fp,i(a; up,i) = f (a; up,i), f (1)p,i (a; up,i) = f (1)(a; up,i), f (2)p,i (a; up,i) = f (2)(a; up,i), and f (3)p,i (a; up,i) =

f (3)(a; up,i) = 0.

We define the integral Ip,i(a) =
∞∫
−∞

g(up,i)ei fp,i(a;u)du, which has an exact solution

Ip,i(a) =

√
2πi

f (2)(a; up,i)
g(up,i)e

i( f (a;up,i)−
1
2

f (1)(a;up,i)
2

f (2)(a;up,i)
)

(9)

Relation (8) can be written as:

I(a) =
m+1∑
i=1

up,i∫
up,i−1

g(u)ei f (a;u)du +
m∑

i=1
Ip,i(a) −

m∑
i=1

Ip,i(a)

=
m+1∑
i=1

up,i∫
up,i−1

g(u)ei f (a;u)du +
m∑

i=1

up,i∫
−∞

g(up,i)ei fp,i(a;u)du +
m∑

i=1

∞∫
up,i

g(up,i)ei fp,i(a;u)du−
m∑

i=1
Ip,i(a)

By combining integrals in the first three sums a simple expression is obtained:

I(a) =
m+1∑
i=1

Ii(a) −
m∑

i=1

Ip,i(a) (10)

where integrals Ii(a) are

Ii(a) =

∞∫
−∞

gi(u)ei fi(a;u)du (11)

The functions gi(u) and fi(a; u) are shown in Table 1.

Table 1. Functions gi(u) and fi(a; u) for i = 1, i = m+1 and 1 < i < m + 1.

i = 1 −∞ ≤ u < up,1 u ≥ up,1
f1(a; u) = f (a; u) fp,1(a; u)
g1(u) = g(u) g(up,1)

i = m + 1 u < up,m up,m ≤ u ≤ ∞
fm+1(a; u) = fp,m(a; u) f (a; u)
gm+1(u) = g(up,m) g(u)

1 < i < m + 1 u < up,i−1 up,i−1 ≤ u < up,i u ≥ up,i
fi(a; u) = fp,i−1(a; u) f (a; u) fp,i(a; u)
gi(u) = g(up,i−1) g(u) g(up,i)

The relation (10) can be generalized to be valid for the case m = 0 as well:

I(a) = δm,0I(a) + (1− δm,0)

m+1∑
i=1

Ii(a) −
m∑

i=1

Ip,i(a)

 (12)

So far, no approximation has been made. The relation (10) is an identity. An integral of the
function, the phase of which has several real stationary points, is divided into the sum of the integrals
Ii(a) whose phase functions fi(a; u) have either one or at most two stationary points.

If the phase function fi(a; u) has only one real saddle point and its first derivative f (1)i (a; u) is
monotonic, the value of integral Ii(a) can be calculated using Equation (2). In the case when the
function f (1)i (a; u) has a single extreme at the point ue and two real or complex saddle points, the
integral is easily soluble using the approximate methods described in the introduction (Equation (4)).
If the phase fi(a; u) is given by numerical points in the region where a complex pair of saddle points
contributes to the integral, the analytical continuation of (5) can be used. The numerical accuracy of
this method is determined by the accuracy of the leading-order uniform approximations (2) and (4).



Atoms 2019, 7, 47 5 of 13

3. Results

The method outlined in Section 2 was tested on three examples that are typical for the spectra
of diatomic molecules. For simplicity we use the phase function given by the polynomial phase of
the Thom’s elementary catastrophe. The case when f (1)(t) and the difference potential ∆(R) are both
monotonic functions with a single inflection point is illustrated by the analysis of the Pearcey integral
P(x ≥ 0, y) in Section 3.1.1. In Section 3.1.2 with the Pearcey integral P(x < 0, y) we analyze the case
when the function f (1)(t) and the difference potential ∆(R) have two extremes and one inflection point.
Finally, in Section 3.2 we illustrate the case when the difference potential has an extreme near the
turning point by the analyses of the swallow-tail catastrophe integral S(x < 0, 0, z). For simplicity, we
take g(u) = 1 in all the examples. The dependence of the integral (6) on the variable transition dipole
moment was discussed by Beuc et al. in [9].

3.1. Cusp Catastrophe (K = 2)

Let us consider the Pearcey integral, the canonical integral for the cusp catastrophe (x, y ∈ R):

P(x, y) =

∞∫
−∞

ei(u4+xu2+yu)du (13)

(Other notations also appear in the literature). The Pearcey integral is symmetrical with respect to
variable y: P(x, y) = P(x,−y). For the numerical integration of the Pearcey integral we used the form:

P(x, y) = 2ei π8
∞∫
0

e−t4+ei 3π
4 xt2

cos(ei 5π
8 yt)dt [13]. The numerical evaluation of the integral and all

other calculations in this paper were done using the Wolfram Mathematica 11.3 computing system.
The phase function in (6) is f (x, y; u) = u4 + xu2 + yu. There are three saddle points defined by

the condition f (1)(x, y; u) = 4u3 + 2xu + y = 0 (Figure 1 and Figure 3a):

u1(x, y) = 1+i
√

3
12

x
U(x,y) −

1−i
√

3
2 U(x, y)

u2(x, y) = 1−i
√

3
12

x
U(x,y) −

1+i
√

3
2 U(x, y)

u3(x, y) = − 1
6

x
U(x,y) + U(x, y)

(14)

where U(x, y) = 1
2

3
√√

δ(x, Y) − y and δ = 8
27 x3 + y2. If δ < 0, all saddle points are real and if δ > 0, one

saddle point is real and the other two are complex conjugates of each other (Figure 1 and Figure 3a).

There are two bifurcation points ue1,e2 = ∓
√
−

1
6 x defined by the relation f (2)(x, y; u) = 12u2 + 2x = 0.

There is a single point up = 0 where f (3)(x, y; up) = 0 and
f (2)(x,y;up)

f (4)(x,y;up)
= x

12 , i.e., sgn
(

f (2)(x,y;up)

f (4)(x,y;up)

)
= sgn(x).

In the special case x = 0 one has ue1 = ue2 = up = 0.
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Figure 1. Saddle points (u1, u2, and u3) of the function f (1)(1, y; u).
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3.1.1. Case x > 0

If x ≥ 0, then δ is always positive, the saddle point u3(x, y) is real and the points u1(x, y) and
u2(x, y) are complex conjugates (Figure 1).

The function f (1)(1, y; u) is monotonic and, according to Equation (2), the value of the Pearcey
integral can be approximated as

P(x ≥ 0, y) ≈ Pq(x ≥ 0, y) =

√
πi

6u2
3 + x

ei(u4
3+xu2

3+yu3) (15)

From Figure 2 and Table 2, we can freely estimate that the difference of the approximation Pq(x, y)
and the exact values of P(x, y) is smaller than few percent if the condition

√
x2 + y2 > 5 is satisfied.
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Figure 2. Function
∣∣∣P(x, y)

∣∣∣ (a), function
∣∣∣Pq(x, y)

∣∣∣ (b) and the relative difference
∣∣∣∣Pq(x,y)−P(x,y)

P(x,y)

∣∣∣∣ (c) for

x ∈ [0, 10] and y ∈ [0, 10].

Table 2. Comparison values of P(x, y) and approximate function Pq(x, y) for y = 0 and x = 0.

x P(x,0) Pq(x,0) y P(0,y) Pq(0,y)

1 1.20838 + 0.779288i 1.25331 + 1.25331i 1 1.55093 + 0.427893i 1.09286 + 0.353605i
2 0.924029 + 0.729007i 0.886227 + 0.886227i 2 1.12475 − 0.17608i 0.837873 − 0.359347i
3 0.754294 + 0.657362i 0.723601 + 0.723601i 3 0.384485 − 0.642953i 0.244423 − 0.757992i
4 0.646979 + 0.593695i 0.626657 + 0.626657i 4 −0.385925 − 0.545144i −0.434337 − 0.578749i
5 0.573931 + 0.541858i 0.560499 + 0.560499i 5 −0.670195 + 0.0710806i −0.66748 + 0.0754601i
6 0.520848 + 0.500054i 0.511663 + 0.511663i 6 −0.235367 + 0.592027i −0.214718 + 0.594539i
7 0.480234 + 0.465936i 0.473708 + 0.473708i 7 0.430078 + 0.415615i 0.442629 + 0.405754i
8 0.447916 + 0.437618i 0.443113 + 0.443113i 8 0.510179 − 0.260969i 0.506489 − 0.270769i
9 0.421413 + 0.413718i 0.417771 + 0.417771i 9 −0.1039 − 0.542069i −0.112749 − 0.540578i
10 0.399166 + 0.393242i 0.396333 + 0.396333i 10 −0.532222 − 0.0242518i −0.532896 − 0.0165838i
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3.1.2. Case x < 0

According to Section 2, when x < 0 using the relation (10) the Pearcy integral can be written as:

P(x, y) = I1(x, y) + I2(x, y) − Ip,1(x, y)

=
∞∫
−∞

ei f1(x,y;u)du +
∞∫
−∞

ei f2(x,y;u)du−
∞∫
−∞

ei fp,1(x,y;u)du
(16)

Here the phase functions have the form fp,1(x, y; u) = xu2 + yu, f1(x, y; u) =

 f (x, y; u) u < 0

fp(x, y; u) u ≥ 0
,

f2(x, y; u) =

 fp(x, y; u) u < 0

f (x, y; u) u ≥ 0
. It is easy to show that f2(x, y, u) = f1(x,−y,−u), I2(x, y) = I1(x,−y),

and the Pearcey integral can be decomposed exactly as

P(x, y) = I1(x, y) + I1(x,−y) −
√
π

|x|
e−i y2

4x +i π4 (17)

The function f1(x, y; u) has on the interval u ∈ [−∞,∞] only one bifurcation point ue1 = −

√
|x|
6 ,

where f (2)1 (x, y; ue1) = 0, and two saddle points ũ1(x, y) = u1(x, y), ũ2(x, y) =

u2(x, y) y ≤ 0
y

2|x| y > 0
(Figure 3b).
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Here the phase functions have the form 2
,1( , ; )pf x y u xu yu= + , 1
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f x y u u
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f x y u u
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Figure 3. Saddle points (u1, u2, and u3) of the functions f (1)(−1, y; u) and f (1)1 (−1, y; u) are shown in
(a,b), respectively.

Using relation (4), the integral I1(x, y) can be approximated as:

I1(x, y) ≈ IF(x, y) = πeiA(x,y)


 1√

6u2
1+x

+ 1√
−6u2

2Θ(−y)−x

 4
√
ζ(x, y)Ai(−ζ(x, y)) − i

 1√
6u2

1+x
−

1√
−6u2

2Θ(−y)−x

Ai′(−ζ(x,y))
4√ζ(x,y)

 (18)

where, A(x, y) = 1
4

x
(
u2

1 + u2
2

)
+

3y
2 (u1 + u2) y ≤ 0

xu2
1 +

3y
2 u1 −

y2

2x y > 0
, ζ(x, y)3/2 =

σ1
3
8

x
(
u2

1 − u2
2

)
+

3y
2 (u1 − u2) y ≤ 0

xu2
1 +

3y
2 u1 +

y2

2x y > 0
.

We define the Airy approximation of the Pearcey integral as:

PA(x, y) = IF(x, y) + IF(x,−y) −
√
π

|x|
e−i y2

4x +i π4 (19)
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Paris obtained the asymptotic form of P(x,y) by considering its analytic continuation to arbitrary
complex variables x and y [15]. In Table 3. we compare some values of P(x,y) for large negative values
of x when y = 2 and 4 to the asymptotic values [15] and the present work.

Table 3. Values of P(x,y) obtained for large negative values of x when y = 2 and 4 compared to the
asymptotic values [15] and the present work.

x y P(x,y) Asymptotic [11] PA(x,y)

−4 2 1.96341 − 0.73419i 1.97363 − 0.72605i 1.96482 − 0.72731i
−6 2 0.96527 + 0.46413i 0.96537 + 0.46415i 0.96366 + 0.46538i
−8 2 1.00422 − 0.11480i 1.00422 − 0.11480i 1.004077 − 0.11392i
−4 4 0.14360 + 0.90244i − 0.14063 + 0.90013i
−6 4 0.29478 − 0.84373i 0.29399 − 0.84356i 0.29629 − 0.84406i
−8 4 0.75372 − 0.23933i 0.75371 − 0.23933i 0.75379 − 0.23889i

Kaminski [16] rewrites (8) as a sum of two contour integrals, one of which has exactly two relevant
coalescing saddle points. This allows him to apply a cubic transformation introduced by Chester,
Friedman, and Ursell [17] and to construct a uniform asymptotic expansion of (7) as x→−∞with δ
varying in an interval containing 0. The leading-order approximation was already given by Connor [12]
and Connor and Farrelly [13]. In Table 4 the values of P(x, y) are compared to Kaminski’s results [16]

and the approximation PA(x, y) at some points on the caustic y =
(
−

2
3 x

) 3
2 .

Table 4. Comparison of values of P(x, y) on the caustic with Kaminski [16] and PA(x, y).

x y P(x,y) Kaminski [10] PA(x,y)

−1.0 0.544331 2.14158 + 0.0990191i 2.34415 + 0.00118008i 2.1003 + 0.156994i
−2.0 1.5396 0.962205 − 0.450083i 0.926925 − 0.428207i 0.965935 − 0.448303i
−3.0 2.82843 1.13215 + 1.19182i 1.14743 + 1.19594i 1.12358 + 1.19408i
−4.0 4.35465 −0.142478 + 1.20972i −0.143582 + 1.2217i −0.146125 + 1.20649i
−5.0 6.08581 −0.888104 + 0.979074i −0.890885 + 0.983784i −0.889185 + 0.975844i
−6.0 8. −1.10157 + 0.582286i −1.09951 + 0.581515i −1.1015 + 0.58047i
−7.0 10.0812 −0.249906 − 0.91133i −0.249866 − 0.914663i −0.248282 − 0.910954i
−8.0 12.3168 0.321769 − 0.468203i 0.324275 − 0.466919i 0.321939 − 0.467325i
−9.0 14.6969 0.495502 + 0.309572i 0.495034 + 0.311661i 0.494746 + 0.309898i
−10.0 17.2133 −0.704129 + 0.779039i −0.704954 + 0.779772i −0.70467 + 0.778148i

From Tables 3 and 4, and Figure 4, we estimate that the difference of the approximation PA(x, y)
and the exact values of P(x, y) is smaller than a few percent if the condition

√
x2 + y2 > 4 is satisfied.
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3.2. Swallow-Tail Catastrophe (K = 3)

The swallow-tail canonical integral is defined by:

S(x, y, z) =

∞∫
−∞

ei(u5+xu3+yu2+zu)du (20)

As a further example, we consider a special case of the swallow-tail integral, i.e., S(x, 0, z)—the
oddoid integral of the order two [18]. For the real x and y the function S(x, 0, z) is also real, and for

the numerical evaluation the equation S(x, 0, z) = 2
∞∫
0

cos
(
u5 + xu3 + zu

)
du is used. This integral is of

interest in the study of bound-continuum [19] and bound-bound [20] Franck–Condon factors. The
analysis is applied to the domain x < 0.

In that case the phase function is f (x, 0, z; u) = u5 + xu3 + zu and it is antisymmetric with respect
to the variable u: f (x, 0, z;−u) = − f (x, 0, z; u). There are four saddle points ui defined by the condition
f (1)(x, 0, z; u) = 5u4 + 3xu2 + z = 0:

u1(x, z) = −u4(x, z) = −
√

3
10

√√
x2 − 20

9 z− x

u2(x, z) = −u3(x, z) = −
√

3
10

√
−x−

√
x2 − 20

9 z
(21)

The condition f (2)(x, 0, z; ue) = 20u3
e + 6xue = 0 defines three real bifurcation points uei of the

“fold” type: ue1 = −ue3 = −
√

3|x|
10 , ue2 = 0. As there are two real points (up1 = −

√
|x|
10 , up2 =

√
|x|
10 )

satisfying the conditions f (3)(x, z; upi) = 0 and sgn
(

f (2)(x, z; upi)
)
= −sgn

(
f (4)(x, z; upi)

)
, according to

Section 2, the integral S(x, 0, z) can be written as:

S(x, 0, z) =
3∑

i=1
Ii(x, z) −

2∑
i=1

Ipi(x, z)

=
3∑

i=1

∞∫
−∞

ei fi(x,0,z;u)du−
2∑

i=1

∞∫
−∞

ei fpi(x,0,z;u)du
(22)

where,

fp1(x, 0, z; u) = − fp2(x, 0, z;−u) =
√

10
250

(−x)
5
2 + u

(
z +

3
20

x2
)
+ u2

√
10
5

(−x)
3
2 ,
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f1(x, 0, z; u) =

 f (x, 0, z; u) u ≤ up,1

fp1(x, 0, z; u) u > up,1
, f2(x, 0, z; u) =


fp,1(x, 0, z; u) u < up,1

f (x, 0, z; u) up,1 ≤ u ≤ up,2

fp,2(x, 0, z; u) u > up,2

, and

f3(x, 0, z; u) =

 fp,2(x, 0, z; u) u < up,2

f (x, 0, z; u) u ≥ up,2
.

Since fp1(x, 0, z; u) = − fp2(x, 0, z;−u), it follows that Ip2(x, z) = Ip1(x, z)∗ and
2∑

i=1
Ipi(x, z) =

2ReIp1(x, z). Also, f1(x, 0, z; u) = − f3(x, 0, z;−u), I3(x, z) = I1(x, z)∗, and I1(x, z) + I3(x, z) = 2ReI1(x, z).
Using Equation (9) to calculate Ip1(x, z), one can write Equation (22) in the form:

S(x, 0, z) = 2ReI1(x, z) + I2(x, z) − 4

√
40π2

|x|3
cos

(
19x4

− 600x2z− 2000z2

1600
√

10|x|3/2
+
π
4

)
(23)

This expression exactly represents the function S(x, 0, z). To find an approximate solution of
the integral S(x, 0, z) one needs to calculate integrals I1(x, z) and I2(x, z), using the approximation
described by Equation (4).

The function f1(x, 0, z; u) has two saddle points (see Figure 5b): ũ1(x, y) = u1(x, y), ũ2(x, z) =u2(x, y) z ≥ x2

4

−
5

√
40|x|

3
2

(
z + 3

20 x2
)

z < x2

4
. Applying Equation (4) one gets,

I1(x, z) ≈ IF1(x, z) = πeiA1(x,z)


 1√

10u3
1+3xu1

+ 1√
−10ũ3

2−3xũ2

 4
√
ζ1(x, z)Ai(−ζ1(x, z)) − i

 1√
10u3

1+3xu1

−
1√

−10ũ3
2−3xũ2

Ai′(−ζ1(x,z))
4√ζ1(x,z)

 (24)

where A1(x, z) = 1
2 [ f1(x, z; ũ2) + f1(x, z; u1)] and ζ1(x, z)3/2 = 3

4 [ f1(x, z; ũ2) − f1(x, z; u1)].Atoms 2019, 7, 47 10 of 13 
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The function f2(x, 0, z; u)has two symmetrical saddle points: ũ3(x, z) =

u2(x, z) z ≤ x2

4

−

√
10

40|x|
3
2

(
z + 3

20 x2
)

z > x2

4
,

ũ4(x, z) = −ũ3(x, z) (Figure 5c). Since f2(x, z; ũ3) = − f2(x, z; ũ4) and f (2)2 (x, z; ũ3) = − f (2)2 2(x, z; ũ4), the
approximation of the integral I2(x, z) has a simple form,

I2(x, z) ∝ IF2(x, z) =
2π√

−10ũ3
3 − 3xũ3

4
√
ζ2(x, z)Ai(−ζ2(x, z)) (25)

where ζ2(x, z)3/2 = − 3
2 f2(x, z; ũ3).

Finally, we write the approximation of the integral S(x, 0, z) as:

SA(x, 0, z) = 2ReIF1(x, z) + IF2(x, z) − 4

√
40π2

|x|3
cos

(
19x4

− 600x2z− 2000z2

1600
√

10|x|3/2
+
π
4

)
(26)

In Table 5 we compare the values of the functions S(x, 0, z) and SA(x, 0, z) at the caustics i.e., at
the points where the function f (1)(x, 0, z; u) has an extreme. These comparisons together with the
comparison of functions in Figure 6 clearly show that the function SA(x, 0, z) is a good approximation
of the function S(x, 0, z) if the condition

√
x2 + y2 > 3 is satisfied.

Table 5. Comparison of the values of S(x, 0, z) and SA(x, 0, z) on the caustics z = 0 and z = 9
20 x2.

x z S(x,0,0) SA(x,0,0) z = (9x2)/20 S(x,0,z) SA(x,0,z)

−1 0. 2.269084 1.913266 0.45 2.043860 1.661334
−2 0. 2.409949 2.394455 1.8 1.663543 1.612423
−3 0. 0.596406 0.604199 4.05 −0.519597 −0.508896
−4 0. 1.292366 1.281152 7.2 −0.915491 −0.908131
−5 0. 0.215598 0.212031 11.25 0.821846 0.816979
−6 0. 0.247304 0.245451 16.2 0.660728 0.660188
−7 0. 0.670358 0.667798 22.05 −0.394882 −0.392698
−8 0. 0.834808 0.83448 28.8 0.204247 0.205210
−9 0. 1.155092 1.154554 36.45 1.055443 1.053662
−10 0. 0.767679 0.767563 45. −0.891812 −0.890310
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an asymptotic expansion [6]). However, the method has practical applications, especially in cases 
where the phase function (or its first derivative!) is tabulated. 

The validity of the proposed method was tested on examples of integrals with three saddle 
points (“cusp” catastrophe) and four saddle points (“swallow-tail” catastrophe). The examples 
chosen are typical of the spectra of diatomic molecules, but the method described in this paper can 
be used for numerical computation of canonical integrals occurring in other physical fields as well, 
e.g., the propagation of electromagnetic, sound or fluid waves, and particularly within the 
semiclassical theory of atom–atom and atom–surface scattering, chemical reactions etc. 
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Figure 6. Function S(x, 0, z) (a), function SA(x, 0, z) (b) and the difference of the functions∣∣∣SA(x, 0, z) − S(x, 0, z)
∣∣∣ (c) for x ∈ [10, 0] and z ∈ [−10, 10].

4. Discussion and Conclusions

We have shown that the original oscillatory integral can be expressed exactly as a sum of integrals,
each having either one or at most two real stationary points. The construction of these integrals
introduces new phase functions that are smooth (infinitely differentiable), but only a few first derivatives
are continuous in a characteristic point. This means that the proposed method is limited to the leading
term only (i.e., the integral is the same as the leading term plus the residue that cannot be further
treated as in the standard application of asymptotic analysis and iterated to obtain an asymptotic
expansion [6]). However, the method has practical applications, especially in cases where the phase
function (or its first derivative!) is tabulated.

The validity of the proposed method was tested on examples of integrals with three saddle points
(“cusp” catastrophe) and four saddle points (“swallow-tail” catastrophe). The examples chosen are
typical of the spectra of diatomic molecules, but the method described in this paper can be used
for numerical computation of canonical integrals occurring in other physical fields as well, e.g., the
propagation of electromagnetic, sound or fluid waves, and particularly within the semiclassical theory
of atom–atom and atom–surface scattering, chemical reactions etc.
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