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Abstract: Universal collisions describe the reaction of molecules and atoms as dominated by long-
range interparticle interactions. Here, we calculate the universal inelastic rate coefficients for a large
group of ultracold polar molecules in their lower ro-vibrational states colliding with one of their
constituent atoms. The rate coefficients are solely determined by values of the dispersion coefficient
and reduced mass of the collisional system. We use the ab initio coupled-cluster linear response
method to compute dynamic molecular polarizabilities and obtain the dispersion coefficients for
some of the collisional partners and use values from the literature for others. Our polarizability
calculations agree well with available experimental measurements. Comparison of our inelastic rate
coefficients with results of numerically exact quantum-mechanical calculations leads us to conjecture
that collisions with heavier atoms can be expected to be more universal.

Keywords: ultracold atom-molecule collisions; chemical reactions; universal model; dispersion
interaction; van der Waals coefficients; dynamic polorizability

1. Introduction

Recent creation of nearly quantum-degenerate gases of polar KRb [1], RbCs [2,3], NaK [4,5],
NaRb [6], and NaLi [7] molecules have opened up ultracold-controlled physics and chemistry research.
The first four of these alkali-metal molecules were formed in their absolute ground singlet X! =7 state,
while NaLi was prepared in the energetically-lowest triplet a %" state. Since these molecules were
created in an optical trap they can collide among each other or with residual ultracold atoms and
undergo chemical reactions at sub-pK temperatures [8-11]. Quantum threshold phenomena then
control the collision outcome, where a single collisional partial wave 7 dominates. Often, this is the
zero relative orbital angular momentum corresponding to a collision with no entrance centrifugal
barrier. We note that collisions among the alkali-metal dimers KRb or NalLi are reactive regardless of
their ro-vibrational state. For the other three dimers, the molecule must be vibrationally excited [12]
for the reaction to occur.

The first measurement of the reaction rate coefficient between ultracold KRb molecules and K
atoms was made at JILA [8]. A schematic of this reaction is shown in Figure 1. The atom-molecule
reaction rate coefficient is surprisingly high on the order of 1071° cm?/s even at temperatures below
1 pK. Quantum defect theory (QDT) calculations [13-15] showed that the reaction is nearly universal
and suggests that the attractive long-range van-der-Waals interaction between the neutral particles
plays a prominent role. It is worth noting that the °K8”Rb isotopologue in Reference [8] is a fermion
and when prepared in a single quantum state, KRb + KRb collisions are dominated by ¢ = 1,
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p-wave collisions at ultracold temperatures. For fermionic molecules, s-wave collisions can only
occur when they are prepared in different internal states (i.e., electronic, vibrational, rotational, and/or
nuclear). Elastic resonant scattering between alkali-metal dimers and its heaviest constituent atom
has been explored in Reference [16]. In fact, some Feshbach resonances have been observed in 500 nK
2Na*'K+4K collisions [17].

Reactants Intermediate Complex Products

n (@

Figure 1. Possible reaction mechanisms for a colliding KRb molecule and a K atom. The chemical
reaction proceeds via intermediate collisional complex to the final reaction products.

The KRb + K and other reaction-rate measurements [18-22] have focused on total reaction
rate coefficients. The next logical step in the field is to measure as well as calculate final-state
resolved distributions. Such detailed understanding of the ultracold reaction might require a rigorous
quantum treatment. Initial examples are the theoretical simulations of the state-to-state reaction
rate for LiYb + Li and KRb + K using a numerically-exact quantum-mechanical (EQM) method
formulated in hyperspherical coordinates [23,24]. These simulations led to a better understanding of
the reaction mechanism and product ro-vibrational distribution and might also guide the development
of experimental state-selective detection tools.

Total reaction rate coefficients for ultracold collisions between alkali-metal atoms and molecules
have been studied with quantum defect theories. The most important outcome was a thorough
understanding of the non-classical scattering from the long-range van-der-Waals dispersion potential.
Scattering when the atom and molecule are close together is summarized in terms of a few
collision-energy- and partial-wave-independent parameters. They describe the amplitude and phase of
flux returning from the chemical bonding region and are boundary conditions for quantum solutions
or wavefunctions at larger particle separations. The special case where no flux returns is known as
universal scattering. For rotation-less molecules, the van-der-Waals dispersion potential is isotropic.
In a number of cases [23-25] these QDT results have been validated with comparisons with “exact”
quantum simulations.

In Sections 2 and 3, we setup and analyze universal ultracold scattering calculations for collisions
among many alkali-metal, alkaline-earth and rare-earth heteronuclear dimers and their constituent
atoms. We calculate the reactive scattering or vibrational-quenching rate coefficients of these diatomic
molecules when prepared in ro-vibrational state v, j, assuming universal scattering [13,14,26]. Here,
v and j are the vibrational and rotational quantum numbers of the diatomic molecule, respectively.
In particular, we only consider collisions with rotation-less j = 0 molecules. For the v = 0, j = 0 state,
only reactive processes are available. We compare the rate coefficients with experimental measurements
or exact numerical calculations, where available. If not specifically mentioned, the isotopes °Li, *Na,
40K, 87Rb, 87Sr, 133Cs, and 174YD are implied.
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The most-relevant property for universal scattering is the isotropic dispersion coefficient Ci*°
between atoms and molecules. It is determined by an integral over imaginary frequency of a product
of atomic and molecular dynamic polarizabilities. In Section 4 we compute molecular polarizabilities
based on coupled-cluster response theory using the time evolution of linear response functions
and compute the isotropic C°. For several systems we use the isotropic dispersion coefficient of
References [14,23,27]. We conclude in Section 5.

2. Quantum Defect Theory and the Universal Model

In this section, we highlight some important aspects of the universal model (UM) taken from
Reference [14]. The UM is a quantum defect model for the reaction or vibrational quenching of
rotation-less j = 0 251X+ diatomic molecules colliding with S-state atoms under ultracold conditions.
The theory is a modification of the approach developed in References [28,29] and has been successful
in qualitatively and sometimes quantitatively describing observed ultracold reaction rate coefficients.
In this model, we assume that the long-range interaction between a molecule and an atom is an
attractive isotropic —Ci°/R® van-der-Waals potential, with characteristic length R = (2uCis°/ h2)1/4
and energy scale & = h?/ (2uR2). Here, R is the separation between the atom and the center of mass of
the molecule, y is the reduced mass of the system, and 7 is the reduced Planck constant. (For molecules
with j > 0 the dispersion potential has anisotropic contributions. We do not treat these cases here).

The collision for a molecule in vibrational state v can then be described by the radial
Schrodinger equation

A2 R el+1) Cs°
<—ZMR2+2M el I§6>¢4(R)=El/fe(R)/ <1>

where E is the relative collision energy, / is the relative orbital angular momentum quantum number,
and y/(E) is the radial wavefunction. Equation (1) is applicable for R > Ry, where separation R, is
defined by CiéSO / Rgr = 2B,, where B, is the rotational constant of vibrational state v. The rotational
constant is much larger than & and thus Re; < Re.

The short-range physics when R < Rg and all three atoms are close together is complex.
Nevertheless, the effects of the short-range interaction can be summarized by the boundary condition

Y(R) = A (€+i[(R/R6)*2/277r/4] —Y,(E) efi[(R/R6)*2/277r/4]> ?)

at R = R, where A is a normalization constant and Y, (E) = ¢, (E)e¥*(E) is the so-called short-range
scattering amplitude. The real dimensionless parameters d;(E) and {;(E) € [0,1] represent the relative
phase and amplitude of the flux returning from short range, respectively [14]. We then numerically
propagate the wavefunction from R to R > R4 and fit

l/)g(R) — p—i(kR=Lm/2) _ SE(E)ei(kR—En/Z)I 3)

where S/(E) is the S-matrix element and wavenumber k is defined through E = 1#%k2/ (2u).

In principle, d;(E) and {,(E) depend on E and ¢; however, quantum defect theory and our UM
assumes that these dependences are weak or absent. The key feature of the UM is that when the
colliding atom and molecule reach Rg, they will either react or quench. This equivalent to setting
C¢(E) = 0 and éy(E) no longer appears in the short-range boundary condition. The observable total
elastic and total reaction rate coefficients are

1>
Kelas(E) = Z71“1{*2 2(26 + 1)|1 - Sf:las(EHZ (4)
=0
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and

Kos(E) = vrg 120+ 1) (1= ISa(E)F) ©)

respectively, where v, = Tik/u is the relative velocity. At ultracold temperatures, only a few partial
waves £ contribute, as for higher ¢ the centrifugal barrier prevents the particles from approaching each
other and high-¢ contributions to Kep,s(E) and Kjoes(E) are negligibly small.

3. Comparisons of Inelastic Rate Coefficients for Atom-Molecule Collisions

In this section we discuss the elastic as well as reaction or quenching rate coefficients
between an S-state atom and the lower ro-vibrational states of a X'2* or X2Z* molecule based
on the universal model, where incoming scattering flux penetrating to short-range is not reflected
back, as well as compare its predictions to the Langevin model [30] and EQM calculations
based on full potential surfaces, where available. To be precise, we focus on the reactive
processes AM(M')(X?°*12%,0=0,j=0) + A — Ay + M(M’) and AM(X***12%,0 >0,/ =0) +
A — AM(X25+1Z+,UI ,i') + A for non-reactive systems, where atoms A and M(M’) are distinct,
atom A is an alkali-metal atom, M is an alkali-metal atom, and M’ is either alkaline-earth atom Sr or
rare-earth atom Yb. Moreover, for quenching processes the energy of ro-vibrational state v/, is less
than that of pair v, j. The Ci*° dispersion coefficients for our model are computed and discussed in the
next section, Section 4.

Figure 2 shows an example of the total elastic and reactive rate coefficient for LiNa + Li collisions
based on the universal model as function of collision energies up to E = kg x 1 K. For collision
energies below kg x 0.1 mK only ¢ = 0, s-wave collisions contribute. In fact, the loss rate coefficient is
independent of E, while the elastic rate coefficient is proportional to \/E, i.e., the collision is said to be
in the Wigner-threshold regime. For E > kg x 0.1 mK p-, d-, and higher partial-wave contributions
become significant. Moreover, for Ky (E) the sum of these partial wave contributions approaches
the loss rate coefficient based on the Langevin model with |S‘(E)|> = 0 or 1 when the collision
energy is smaller or larger than the centrifugal barrier for the potential —Ci°/R® + n20(041)/(2uR?).
For dispersive long-range potentials, the Langevin model gives Kjos(E) o« E/°.

Figure 3 shows total inelastic reactive or quenching rate coefficients based on the universal model
as functions of collision energy for various AM(M’) + A atom-molecule collisions. We observe that
AM(M’) + A systems are exothermic from v = 0 when the mass of atom A is less than that of atom
M(M’) and endothermic otherwise. For the endothermic systems we assume that the molecule is
prepared in a vibrational state with small v > 0 and present quenching rate coefficients. For small v,
the isotropic dispersion coefficient is still well approximated by that for v = 0. (This simple mass-based
rule for reactivity does not always hold. Generally, the molecular dissociation energies of reactants
and products must be compared [12]. For our choices of A and M(M’), which mainly belong to
the first column of the periodic table, the rule does hold as dissociation energies are smaller for
heavier molecules).

Exact quantum-mechanical results for KRb + K and LiYb + Li with molecules in the X!~ * and
X25* potentials, respectively, have been published in References [23,24], respectively. They are
compared to the s-wave contribution to the rate coefficient predicted by the universal model as well
as its summed, total value in Figure 4. The EQM rate coefficients have only been computed for
s-wave collisions as such calculations for other partial waves are currently numerically intractable.
From the figure it is clear that Kj,s(E) values from the EQM and universal model agree for collision
energies above kg x 1 mK for both reactions. Below kg x 0.1 mK the two calculations do not agree for
LiYb + Li with its small reduced mass. For the heavier KRb + K collisions, the agreement remains
excellent. In other words, for sub-100 uK LiYb + Li collisions there is a significant probability that flux
is returned from the short-range region interferes with the incoming flux. Hence, we conclude that the
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full potential surface, including its short-range shape, used in the EQM calculations is important or
that the reduced mass of the colliding partners plays a larger role than expected.
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Figure 2. LiNa + Li total reaction (panel (a)) and elastic (panel (b)) rate coefficient for the universal
model as a function of collision energy. The LiNa dimer is prepared in its ro-vibrational X' =+ ground
state. Liy product molecules are energetically-allowed ro-vibrational states of the X! Z; potential.
Dotted lines correspond to the individual partial-wave contributions to the rate coefficients. In panel
(a) the reaction rate coefficient based on the Langevin model is shown by the long-dashed blue line.
Finally, kg is the Boltzmann constant.
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Figure 3. Inelastic reaction or quenching rate coefficients for alkali-metal, Strontium and Ytterbium
atom-molecule collisions as functions of collision energy based on the universal model. The six
panels show rate coefficients for the AM(M’) + A collision, where A is either Li, Na, K, Rb, or Cs. In
panels (a,c—f) blue, dark green, red, green, and black curves correspond to rate coefficients for atom
M =Li, Na, K, Rb, and Cs, respectively. In panel (b) cyan and orange curves correspond to M’ = Sr
and Yb, respectively. The molecules are prepared in their X!+ ground state for alkali-metal dimers
and in their X2+ ground state for alkali-metal Sr or alkali-metal Yb dimers. Scattering is only reactive
when the mass of atom A is less than that of M(M’). When the mass of A is larger than that of M(M’),
quenching rate coefficients are presented.
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Figure 4. Reaction rate coefficients for LiYb (X?X+, v = 0,j = 0) + Liand KRb (X2, v =0,j = 0) + K
based on the universal model (dashed lines) and s-wave, ¢ = 0 exact quantum coupled-channels
simulations based on a full potential energy surface (solid lines) as functions of collision energy. Red
and blue dashed curves for LiYb + Li collisions correspond to the s-wave contribution to Kjyes(E)
and the total Kjos(E) based on the universal model, respectively. Red and black dashed curves are
corresponding Kjoes (E) for KRb + K collisions The EQM rate coefficients are from References [23,24].

4. Molecular Dynamic Polarizability and Van Der Waals Coefficients

In this section, we calculate some of the molecular dynamic polarizabilities of heteronuclear
dimers for both real and imaginary frequencies and the isotropic atom-dimer van-der-Waals coefficients
used in the previous section. Following Reference [31] and in atomic units the isotropic dispersion
coefficient for the long-range interaction between a j = 0 25*1%+ molecule and a ground S-state atom is

=2 | e watya, (6)

where aM°!(iv) and a*t(iv) at imaginary frequency iv are mean molecular and atomic polarizabilities in

atomic units, respectively, defined as & = (ayy + ayy + az7)/3 in terms of the diagonal tensor elements
any along the spatial coordinate axes n = x, y, and z. For S-state atoms ayy = &,y = &z, while for
di-atomic molecules a | = axx = ayy is the parallel polarizability and || = .- is the perpendicular
polarizability in a body-fixed coordinate frame with the z coordinate along the internuclear axis.
For atomic dynamic polarizabilities as functions of imaginary frequency, we use the results in
Reference [32].

The dynamic polarizability of ground-state heteronuclear dimers has two contributions. We write
aMel(y) = aMel(v) + Eégf)‘fl(v), where aMdl(v) is the induction contribution from electric dipole
transitions to ro-vibrational states within the ground X potential and Eclr\)/gfl(v) is the polarization
contribution from transitions to all other electronic states. The former contribution is due to the finite
permanent electronic dipole moment of a heteronuclear dimer, denoted by 4;(R) as a function of R
and electronic state j. Similarly, we have Cg° = C¢{ ; + ng o+ In 2010, Reference [14] already showed
that this induction contribution to C¢° is important for RbCs but not KRb, due to the large permanent
dipole moment of RbCs.

In principle, the mean molecular dynamic polarizability as a function of imaginary frequency
depends on the ro-vibrational level of the ground state electronic molecule. For small v and
j = 0 the vibrational wavefunctions are localized near the equilibrium separation R.. For the
purposes of evaluating dispersion coefficients it is then sufficient to evaluate &M°(iv) at R = R,.

(The approximation is invalid when &M°!(v) at real frequencies nearly resonant between ro-vibrational
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states of ground and electronic potentials are needed). The mean induction component for j = 0

25+1%:+ molecules at imaginary frequencies is then to good approximation

4B,

1
Mol
Ting (iv) = *dﬁ(Re)W

: @

in atomic units, where dx (R, ) is the permanent dipole moment of the molecular ground X state at R,
and B, is the rotational constant at this separation. Moreover, as the atomic polarizability is essentially
independent of v between y = 0 and a few times B,, the induction contribution to the isotropic van
der Waals coefficient becomes Ciésfn 4 = 4% (Re)a(0), where «(0) is the (static) dynamic polarizability of
the atom at zero frequency [14,27].

We have calculated the polarization contributions txl‘\fol)l(v, R.) and ocl\f,%lol(v, R.) as functions of
real frequency v at R = R, with coupled-cluster linear-response (CCLR) theory for a selected set of
molecules. Others were available in the literature. The CCLR method was developed by Monkhorst
and Dalgaard [33,34], generalized by Koch and Jergensen [35], and used to derive expressions for
the polarization contribution to the molecular polarizability as a function of real frequencies and
nuclear positions [36]. We use the implementation as coded in CFOUR, an electronic structure software
package [37], with single and double excitations [38]. The all-electron cc-pCVQZ basis set of the
Peterson group [39] is used for Li and Na in calculation of polarizability of the LiNa molecule. For KRb
and RbCs molecules we combine the relativistic effective-core potential ECP10MDF, ECP28MDF,
and ECP46MDF from Reference [40] with the basis sets def2-TZVPP (17s,11p,3d)/[6s,4p,3d] for K,
(7s7p5d1f)/[6s4p3d1f] for Rb, and (7s6p3d1f)/[5s3p3d1f] for Cs from Reference [41], respectively. For
LiSr molecule we used the basis set of def2-QZVPP (15s6p2d1f)/[6s4p2d1f] for Li, and def2-QZVPP
(8s8p5d3f)/[7s5p4d3f] combined with ECP28MDF for Sr.

The calculated polarization contributions are then fit to the resonant form

Mol oy i
"‘n,pol('// R.) = ]Z 1= (v/n))?’ ®)

with parameters f, j and 7, ; for n = || and L following the microscopic definition of the polarizability
in terms of a sum over excited electronic states and resonant energy denominators. Hence, f,, ; and 7,, ;
are related to the oscillator strength and transition frequency between the ground state and excited
state j at R = R,, respectively. Finally, the polarizability at imaginary frequency follows from the
substitution v — iv and the polarization contribution to the isotropic C*° from numerical integration
of Equation (6). Table 1 lists all C*° used in this paper as well as gives references to the values not
computed by us.

Table 1. Isotropic C}fo dispersion coefficients in atomic units for various atom-molecule systems at their
equilibrium separation. Values without label a, b, or ¢ have been computed specifically for this paper.

LiNa+Li 2112 NalLi+Na 2241 KLi+K 53412 RbLi+Rb 64782 CsLi+Cs 94552
LiK+Li 31798 NaK+Na 35923 KNa+K 56982 RbNa+Rb 68962 CsNa+Cs 98792
LiRb+Li 35052 NaRb+Na 39482 KRb+K 6905¢ RbK+Rb  7696¢ CsK+Cs 11,2372
LiCs+Li 41922 NaCs+Na 46312 KCs+K 84732 RbCs+Rb 9506 CsRb+Cs 11,414
LiSr+Li 3137

LiYb+Li 3086°

a__Reference [27]; P—Reference [23]; “—Reference [14].

Figure 5 shows two examples of the polarization contribution to the molecular polarizability as
functions of real frequency calculated with the CCLR method at R = R,. Parallel, perpendicular and
isotropic components have been computed for frequencies in the visible and infrared region. For KRb,
the static (v — 0) limit is also shown. Each curve has no more than three resonances, corresponding to
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the XL * to A!S* transition for the parallel component. Those for the perpendicular component are
due to transitions to the two energetically-lowest 'IT potentials.

3000
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Figure 5. The CCLR polarization contribution to the molecular dynamic polarizability of the X!+
ground state of KRb (a) and RbCs (b) at their equilibrium separation in atomic units as functions of laser
wavenumber. Red, blue, and black curves and markers correspond to the parallel «||, perpendicular
« |, and isotropic & = ajs, dynamic polarizability, respectively. Markers represent frequencies on which
the polarizabilities have been computed; curves are the fits. In panel (a) the dark green markers near
9300 cm ! represent the experimental results from Reference [42], while in panel (b) the marker near
6667 cm~! represents the experimental results from Reference [43].

5. Conclusions

Our calculation of universal reactive or quenching rate coefficients for a large group of alkali-metal
and alkaline-earth molecules colliding with one of their constituent atoms has shown that the inelastic
rates are large on the order of a few times 1071 cm3/s corresponding to gas lifetimes of a fraction
of a second for number densities on the order of 10'° cm~3. The rate coefficients are minimal near
collision energies of kg x 0.5 mK for collisions with Li atoms. For collisions between heavier particles
this minimum shifts to lower collision energies. In addition, inelastic rate coefficients are smaller for
systems with a larger reduced mass.

In addition, we find a clear agreement between EQM reaction-rate and the s-wave contribution
to the universal value for collision energies above kg x 1 mK. Below kg x 0.1 mK, however, the two
calculations disagree for LiYb + Li. This implies that for such low collision energies there exists a
significant probability that flux returned from the short-range region interferes with the incoming flux.
On the other hand, the excellent agreement between the two KRb + K calculations for this Wigner-
threshold scattering indicates that all flux that reaches the short range reacts.

We have also compared ab initio CCLR dynamic polarizabilities for KRb and RbCs with accurate
experimental measurements of References [42,43] and found excellent agreement. These results serve
as evidence of quality of our coupled-cluster CCLR calculations.

Finally, we look at possible future research directions. The KRb + K loss rate coefficient has been
measured [8] and is twice as large as the UM prediction. In Reference [17] Feshbach resonances have
been observed in the NaK + K collision through the observation of magnetic-field-dependent loss
rate coefficients. Within the quantum defect theory we might be able to describe this dependence by
relaxing the requirement of a 100% short-range absorption probability as well as assuming a magnetic-
field-dependent short-range amplitude. Early research on this subject can be found in Reference [14].
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