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Abstract: Atoms and molecules in highly excited (Rydberg) states have a number of unique
characteristics due to the strong dependence of their properties on the values of principal quantum
numbers. The paper discusses the results of an investigation of collisional Rydberg complexes
specific features, resulting in the development of dynamic chaos and the accompanying diffusion
autoionization processes. It is shown (experiment and theory) that, in subthermal low energies,
the global chaotic regime that evolved in quasimolecular systems leads to significant changes in
the Rydberg gases radiation/ionization kinetics. The effect of Förster resonance on the width of the
fluorescence spectra and stochastic ionization processes in Rydberg systems is also discussed.
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1. Introduction

The interest in the research of physical processes involving highly excited (Rydberg) atomic
systems is caused by their significance in the fundamental issues of science (due to the combination of
quantum and classical properties) [1,2] and the prospects of their wide implementations in modern
applied knowledge-intensive technologies (see, e.g., [3]). The main feature of Rydberg particles is
their extremely big size ~n2 (where n is the principal quantum number), which results in huge dipole
moments. This opens up unique opportunities for both the controlled and addressed management
of quantum states by external electromagnetic fields [4], and for the creation of long-lived coherent
(entangled) states in cold Rydberg media due to the long range dipole-dipole interaction between the
medium particles [5,6]. Therefore, the cold Rydberg atoms are considered to be promising objects
for solving the problems of quantum information. With their help, the physical carriers of quantum
bits [7] can be realized with the simultaneous execution of the basic quantum operations [8].

Another class of interesting phenomena in dense gaseous media is associated with the collision
and radiation kinetics of Rydberg electrons when they are scattered on cold atoms in the ground
states, which can lead to the formation of exotic molecules [9,10] and specific chemical reactions [11].
Under certain conditions, cold Rydberg media quickly evolve into cold neutral plasma, which is
accompanied by the formation of free electrons and the development of various phenomena, such as
spontaneous plasma expansion, recombination of Rydberg atoms, plasma instabilities, and the
propagation of collective waves [12]. The physics of ultra-low-temperature plasma should take
into account not only traditional ionization and recombination processes involving electrons and
ions [13,14], but also the formation of charged particles, which are both due to the ionization of
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Rydberg atoms by thermal radiation [12,15] and as a result of the Penning autoionization of Rydberg
atomic pairs [16,17].

Recombination processes leading to populating highly excited states are the sources of Rydberg
atoms/molecules formation in stellar atmospheres of late spectral types, interstellar nebulae, and other
space objects, including our solar system (see “Rydberg atoms in astrophysics” by Dalgarno
in [1,18]). Rydberg particles play a fundamental role in the Earth’s lower ionosphere, primarily
affecting the propagation of satellite radio signals of the global positioning system (GPS) or radar
stations [19]. Besides, they are a source of super background incoherent radiation in the decimeter and
infrared ranges.

An important feature of the Rydberg systems is related to the “Coulomb” condensation of their
quantum states near the energy continuum ( n→ ∞ ). Due to strong Stark/Zeeman effects, interaction
with electromagnetic fields can lead to multiple quasi-crossings and the mixing of Rydberg electron
sublevels with different orbital (l), azimuthal (m), and principal (n) quantum numbers. This allows
for the selectively excited initial state to begin a chaotic motion across a dense grid of Rydberg
levels with the subsequent transition to the energy continuum. Such uncontrolled drift of a highly
excited electron, leading to diffusion ionization, can be observed for single Rydberg atoms under the
influence of external fields [20–22], as well as for an ensemble of Rydberg atoms with strong long-range
dipole-dipole interaction [23]. In molecular or quasi-molecular collisional Rydberg complexes,
the diffusion migration of the initial excitation causes both the dissociation of molecules [24] and the
formation of molecular/atomic ions [25]. These diffusion processes, as induced by either external
controlling or internal molecular fields, lead to the development of instability with the loss of initial
coherence in the ensemble of Rydberg particles. The analysis of the dynamics of quantum complexes
with a complex branched quasi-crossing structure of energy surfaces is extremely challenging within
the framework of traditional quantum mechanical methods of calculation. The purpose of our work
is to describe an alternative, semiclassical approach that is based on the concept of dynamic chaos
evolution in Hamiltonian systems [26–28]. Another set of questions under consideration concerns the
features of the radiation kinetics of Rydberg atoms in the vicinity of the Förster resonance. The latter
is used as a controlling mechanism for varying the long-range interatomic interaction [29] and it
has numerous applications in applied problems of Rydberg media. Noteworthy, the peculiarities
of the radiative rate constants, as discussed below, are of potential interest for the interpretation of
spectroscopic data, as obtained from fluorescence spectra of cold media of astrophysical relevance,
such as different modifications of cold white dwarfs [30] or neutral sodium clouds near Jovian moon Io.

2. Kinetics of Radiative Transitions for Highly Excited Atoms

2.1. Spectral Parameters of an Excited Atom

We note that the atomic system of units is used, unless otherwise stated.
Knowledge of the probabilities of optical transitions lies at the basis of any analysis of processes

involving excited atoms. Despite the fact that literature on this subject today has many dozens of
works, the topic has not lost its actuality. As a rule, the existing theoretical methods for calculating
the lifetime τ, or the radiation width A = 1/τ of the quantum state of an excited atom, leads to better
agreement with the experiment in comparison with the probability of an individual optical transition.
According to the review work from 1991 [31], even then, the discrepancy between the experimental
and theoretical values of the radiation width for excited states of alkali metal atoms did not exceed
10%. Such accuracy was sufficient to use these data in an analysis of collisional processes in optically
thin gas media and low-temperature plasmas. In the framework of the semiclassical approximation of
quantum mechanics [32,33], the principal quantum number n determines in the first approximation
the parameters of the orbit of the valence electron of the hydrogen atom and its energy. The orbital
quantum number l determines the magnitude of the orbital angular momentum L = l + 0.5 (Langer’s
correction [33]), and also the degree of perturbation of the valence electron in the field of the atomic



Atoms 2019, 7, 22 3 of 19

residue; the field of which may differ from the Coulomb. The corresponding “perturbed” value of
energy ε is found, introducing the concepts of a quantum defect ∆µl and an effective quantum number
n∗ = n− ∆µl : ε = 1/(2n∗2).

The experimental data on the lifetimes τ, as known today, can be described by a power law [31]:

τ = π
√

3c3/4 · (l + 0.5)2 · αl(n∗)
βl (1)

where αl and βl are dimensionless constants for a given l-series [31] and c is the speed of light.
Accordingly, for example, for hydrogen and alkali atoms βl = 3 [31,34]. At the primary selective
excitation of Rydberg atoms (with a fixed value n > 5) and an increase of the concentration of normal
atoms, the formation of a block of states with values of the quantum number l from 0 to n − 1 and
with an average lifetime ~n5, becomes possible due to intense atom-atom interactions. In this case,
the principal fraction of the population of excited states is from those with large l values. In the case of
a complete l mixing of the Hydrogen atom Rydberg states, the expression for the probabilities 〈A〉n of
radiative decay of the block of n-states is written in the form [31,34]:

〈A〉n =
8√

3πc3n5
ln(1.414 · n) (2)

The current level of fundamental research and their engineering applications requires reliable
data on the lifetimes of excited atoms. Until recently, such information for highly excited atoms in
modern databases, as a rule, was absent. Importantly, Rydberg’s lifetimes are highly dependent on
ambient temperatures [15], so the correct measurement of their natural widths remains a challenge [35].
Concerning this, an extrapolation scheme for estimating the lifetimes of Rydberg states, tested while
using the example of alkali metal atoms, has been developed [31].

2.2. Blocking of the Spectral Transitions. Double Stark (Förster) Resonance

One should have in mind that the term “hydrogen-like” atom, which is often used in the literature
for Rydberg states, does not guarantee the complete coincidence of the structure of the energy levels of
the excited atom with the energy structure of the hydrogen atom. Thus, for a “hydrogen-like” alkali
metal atom with a standard [L-S] bond between the moments [33], the level {n, l + 1}may be located
between the {n, l} and {n + 1, l} states of the excited atom (see Figure 1), which does not correspond
to the case of the hydrogen atom [33]. In the case when the {n, l + 1} level is located exactly in the
middle between the {n, l} and {n + 1, l} states, the Stark two-photon resonance condition is realized,
otherwise the Förster resonance (hereinafter FR) [29] achieved in practice by an electric field of the
order of 5 Vcm−1 [36]. The criterion for the emergence of the FR is simply formulated in terms of a
quantum defect of atomic series:

∆µl ≡ µl − µl+1 = 0.5 (3)
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The simplest example is a three-dimensional oscillator with a frequency ω, for which the energies
ε of the levels [33]

ε = ω · (2n− l + 3/2) (4)

for all l-series satisfies FR. The unique frequency of oscillator emission is its natural frequency ω.
Therefore, according to the Bohr-Heisenberg correspondence principle [32,37,38], the dipole matrix
elements of the spectral transitions are nonzero only for “short” transitions between adjacent quantum
states (see, for instance, Equations (2) and (9) in review work [39]). It means that, under conditions
of FR, one should expect a significant weakening of the optical oscillator strengths for the “long”
transitions (see Figure 1). This situation is most closely realized for the sodium atom for the s- and
p-series (see Table 1), which causes the anomalously small radiation widths of the Rydberg states of
sodium p-series, whose value is ~ 5 times smaller than the widths of the other alkali atoms (see Table 1,
last row where 1/τP are presented in) at the same energies of the corresponding states [31].

Table 1. Qantum defect µl for s-, p-series [32] along with ∆µP and the factor 1/τP from Equation (1).

Li Na K Rb Cs H

s 0.40 1.35 2.19 3.13 4.06 0
p 0.04 0.85 1.71 2.66 3.59 0

∆µP 0.36 0.50 0.48 0.47 0.47 0
10/τP 0.69 0.14 0.51 0.75 0.61 10

Thus, the Förster resonance is a unique phenomenon, in which anomalies in the spectral
characteristics of excited atomic systems should be expected. Accordingly, in Ref. [36], under the
conditions of the FR, the processes of blocking microwave transitions between Rydberg levels of
rubidium in (A** + A) quasimolecular complex were investigated (experiment). From the academic
point of view, the RF influence on the spectra of the excited atoms is considered in [40] within the
framework of a model one-electron atom with the Sommerfeld potential [41]

UZ(r) = −1/r + α/(2r2), (5)

where r is the distance of the valence electron to the center of the atomic core and α is a parameter of
the model. Sommerfeld introduced a potential of such a type in describing relativistic corrections to
the theory of a hydrogen atom. An important particularity of Sommerfeld’s potential is the possibility
of an accurate analytical description of atomic parameters. For example, the energy of atomic states is
given by the following expression

ε = − 1

2(n + le f − l)2 ; le f =

√
(l + 0.5)2 + α− 0.5 (6)

The quantity le f is called the effective orbital number and is directly connected with the quantity
of the quantum defect: ∆µl = l − le f . The concept of an effective orbital number le f is widely used
in calculating the probability of radiative transitions in alkali atoms [42]. It allows, in particular,
for describing the FR between l and l − 1 atomic series [43] by selecting the parameter α = αl,l−1:

αl,l−1 = 3 · (l2 − 0.252), (7)

Accordingly, in the case of {p, s} series, αp,s = 2.81. For {d, p} series, αd,p = 11.8.
In Figure 2, the dependence of the radiative decay probability Anl = 1/τnl (Einstein’s coefficients)

on the parameter α for fixed 30s and 25p states of the model Sommerfeld atom is shown. It can be seen
that, in the vicinity of the FR, the radiative lifetimes of the Rydberg states can vary significantly (by
orders of magnitude). Similar effects manifest themselves, and in collision Rydberg complexes [25,43],
which will be discussed in the following sections.
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3. Rydberg Quasimolecular Complex in the Framework of the Dipole Resonance
Mechanism Model

A wide range of collisional processes

A∗∗(nl) + A→ A∗∗2 →


A∗∗(n′l′) + A∗

A∗∗(n′l′) + A+ + e
A+

2 + e
(8)

with the participation of Rydberg states pass through the phase of formation of the intermediate
Rydberg complex A∗∗2 . A fundamental contribution to “Rydberg Physics” was made by Fermi [44],
who proposed considering the quasimolecular formation of A∗∗2 as a structure that consists of
two positively charged atomic cores A+, a quasi-free Rydberg electron (RE) e−nl in the Keplerian
orbit, and the generalized valence electron e− (see Figure 3). The further development of the
Fermi approach [45–47], the so-called dipole resonance ionization (DRI), has found wide application
in the solution of a diverse range of problems (see, for example, the review [13]) from the
broadening and shift of spectral lines to the balance of ionization processes in the solar photosphere
(see, for example, [25,48]).

Within the framework of the DRI model, the probability of realization of various final channels for
the collision (8) is determined by the internal dipole moment D of the quasimolecule A∗∗2 . The moment
D arises in the process of the charge exchange in the system (A + A+) and it induces an alternating
electric field E(t), perturbing the motion of the RE e−nl on the Coulomb orbit (see Figure 3). With respect
to the ionization channels for the DRI model, the following simplifying assumptions are accepted:
(i) both the trajectory of the external electron e−nl and relative motion of the ion A+ and unexcited
atom A are semiclassical (ii) with the initial impact parameter ρ; and, (iii) ionization proceeds within
a certain region with a given limiting distance Rion between colliding atoms, which depends on the
type of ion-atom residue and it is a parameter of the theory. The system is traditionally described in
the adiabatic approximation using the appropriate potential curves of the Rydberg complex and the
molecular ion A+

2 .
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atomic cores of the quasi-molecular ion A+
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A graphical illustration of the ionization process is given in Figure 4. Under the assumptions made,
the charge exchange between atomic residues A+ within the quasimolecule ion A+

2 leads to the splitting
∆(R) (known as “exchange interaction” [45]) of its energy levels and it creates a time-dependent dipole
moment D = Rcos(∆(R)t)/2, which oscillates with frequency ω = ∆(R), i.e., outside the complex A+

2
an alternating quasimonochromatic microwave electric field E(t) is induced (see Figure 3). We note
that, as shown in [49], the effect of the field E(t) on the Rydberg electron e−nl is equivalent to its
perturbation by an external, spatially uniform field with the frequency ωL = ∆(R), and with
polarization along the interatomic axis R. Ionization occurs inside the range of distances (R < Rion),
where the exchange interaction ω = ∆(R)), starting from the threshold value ∆(Rion), exceeds the
binding energy |εnl | = 1/(2n∗2) of the e−nl electron and, thus, opens the autoionization channel of the
quasimolecule complex A∗∗2 . The probability of ionization per unit time, or the autoionization width of
the process, is expressed in terms of the photoionization cross section σph(nl, ω).

Atoms 2019, 7, x FOR PEER REVIEW 6 of 20 

depends on the type of ion-atom residue and it is a parameter of the theory. The system is 
traditionally described in the adiabatic approximation using the appropriate potential curves of the 
Rydberg complex and the molecular ion 2A+ . 

 

Figure 3. Scheme of highly excited collisional complex 
**
2A  where D—vector of the quasi-molecular 

ion dipole moment, R—vector of internuclear distance, nle
−

—Rydberg electron, which is shared by 

the atomic cores of the quasi-molecular ion 2A+
. 

A graphical illustration of the ionization process is given in Figure 4. Under the assumptions 
made, the charge exchange between atomic residues A+ within the quasimolecule ion 2A+  leads to 
the splitting (R)Δ  (known as “exchange interaction” [45]) of its energy levels and it creates a time-
dependent dipole moment D = R cos( (R)t)/2Δ , which oscillates with frequency (R)ω = Δ , i.e., outside 
the complex 2A+  an alternating quasimonochromatic microwave electric field E(t) is induced (see 
Figure 3). We note that, as shown in [49], the effect of the field E(t) on the Rydberg electron n le

−  is 
equivalent to its perturbation by an external, spatially uniform field with the frequency (R)Lω = Δ , 
and with polarization along the interatomic axis R. Ionization occurs inside the range of distances (

ionRR < ), where the exchange interaction (R)ω = Δ ), starting from the threshold value ion(R )Δ , 
exceeds the binding energy *2| | 1/(2 )nl nε =  of the n le

−  electron and, thus, opens the autoionization 
channel of the quasimolecule complex **

2A . The probability of ionization per unit time, or the 
autoionization width of the process, is expressed in terms of the photoionization cross section 

( , )ph nlσ ω . 

 
Figure 4. Mechanism of collisional ionization involving a Rydberg atom and an atom in normal state. Figure 4. Mechanism of collisional ionization involving a Rydberg atom and an atom in normal state.

The considered mechanism of dipole resonance, which played an important role in the
development of the physics of thermal collisions of heavy particles, has a strictly deterministic character.
However, as the main quantum number n of the Rydberg atom A**(nl) increases, when the initial Λu

energy curve (as shown in Figure 4) passes through a set of quasi-intersections with the neighboring
Λg energy curves during the collision, the trajectory instability of the Rydberg electron e−nl begins to
appear in the simiclassical approximation. As a result, the random migration of excitation occurs
along the grid of energy terms, which have the energy separation ∆ε = 1/(n∗)3 between them. In the
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framework of modern concepts of nonlinear mechanics [26], this makes it possible to introduce the
idea of dynamic chaos [27], in chemi-ionization processes in thermal and subthermal collisions that
involve RA.

4. Rydberg Collisional Complex A**
2 in Approximation of Dynamic Chaos

At the end of the 19th century, in mathematics, Poincaré [27] introduced the notion of integrable
and nonintegrable systems. In the first case, we meant a system with a “smooth” response to a small
external perturbation and the conditions for the motion of individual particles are amenable to a direct
description. However, in the general case, dynamical systems are not integrable, since perturbations
that violate the total symmetry, as a rule, cannot be eliminated.

4.1. Nonlinear Dynamic Resonances and the Emergence of Deterministic Chaos

The main reason for the nontrivial influence of external periodic perturbations on the dynamic
properties of integrable systems is associated with the appearance of nonlinear dynamic resonances [26],
which, for large time intervals, leads to strong instability of the solutions obtained. In the framework
of the KAM theory (Kolmogorov, Arnold, Moser) [27], it was shown that the presence of multiple
resonances leads to the appearance of layers in the phase space of the considered ensembles of particles
with diffusion motion that form a branched “stochastic web” [50]. To get into the element of the
“stochastic web”, the excitation energy of the initial state should be as close as possible to one of the
“resonant” values. For given perturbation parameters, a set of quantum states associated with initial
dynamic nonlinear resonances can be indicated.

The quantitative consideration of the instability of the RE dynamics in a periodic external

microwave electromagnetic field E(t) =
∞
∑

m=0
Em cos(m ωL) (where ωL is the frequency) is based in

the frame of the semiclassical approach on the Bohr–Heisenberg correspondence principles [32,37,38].
The largest perturbation by the field E(t) (i.e., strong mixing between populations of two levels with
fixed n0 and n0 + k0 values of principal quantum numbers) should be expected in the case of m0-photon
resonance (m0 ≥ 1). For this, a “dynamic” coincidence of the m0ωL “photon” energy with the energy
distance k0ωε between the levels is necessary (see Figure 5):
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Figure 5. Schematic of nonlinear dynamic resonances of different {k0m0} orders for the initial quantum
state n0: (a) single-photon (m0 = 1) and (b) double-photon (m0 = 2) resonances.

m0 ωL = ε (n0 + k0)− ε (n0) ≈ k0 dε/dn = k0 ωε. (9)

Note that the energy density dε/dn of the levels can be expressed through the frequency
ωε = 1/n∗3 of the classical revolution of the electron along the Keplerian orbit [32]. The realization
of relation (9) is termed in the literature (see, for example, [27]) as the manifestation of a dynamic
nonlinear resonance of the order {k0m0} in the vicinity of the energy εk0,m0 = ε(n0) (see Figure 5).
In this case, the electron energy ε begins to oscillate with respect to its unperturbed value with the
amplitude δε [26,27]:

δε = 2

√
ωε

∣∣Em0

∣∣
dωε/dε

; ε = εk0, m0 (10)
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where Em0 is an amplitude of the m0-term at the frequency m0ωL in the Fourier series of the field E(t).
The width δε of the nonlinear resonance (the amplitude of the energy oscillations) is characterized

by a root dependence on the amplitude Em0 of the perturbation. Out of resonance, the amplitude of
the energy variations corresponds to a linear dependence on E(t).

For linear systems dωε/dε = 0, which formally lead to an arbitrarily large excitation of the
electron ( δε→ ∞ ) without transition into the stochastic regime. For a nonlinear system, the finiteness
of the widths of nonlinear resonances causes the emergence of a global chaos regime according to the
Chirikov criterion [27]

K = δε/∆ε > 1, (11)

is satisfied, where ∆ε = ωε = 1/n∗3 is energy distance between neighboring levels. In the general case,
for a particular system of quantum states of an excited atom, a whole set of quantum number values n0

corresponding to different orders of dynamic resonances can be realized (see Figure 5). In the absence
of the overlapping effect (δε < ∆ε) between the widths δε of neighboring resonances, separate islands
of instability can arise in the energy space. Figure 6a shows the dynamics of the change in the energy
of the Rydberg electron for such a case. It can be seen that the “overlap” of resonances is still not
enough for the onset of global chaos, and the energy of the initial level n0 undergoes finite oscillations
within the width δε (10). In the case of the overlapping of resonances (see Figure 6b), an electron can
go far from its initial state up to the states of a continuous spectrum (ionization) during diffusion.
This corresponds to the onset of a global chaos regime. Here, the essential point is the threshold of the
intensity of external perturbation, leading to a global chaos regime, the criterion of which appears in
the inequality (11).
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4.2. The Standard Map (SM)

A nice illustration of the mechanisms that are involved in the transition to the global chaos
is an example of the so-called standard mapping [26]. The standard map (SM), also known as the
Chirikov–Taylor map [26], is one of the simplest models of chaos, in which the most characteristic and
complex features of this problem are preserved. The corresponding model Hamiltonian, resulting in
SM, has the form

H = H0(I) +
K

2π
cos(θ)

∞

∑
n=−∞

δ

(
t

2π
− n

)
; H0(I) =

I2

2
(12)

and describes a rotor (an initial free atomic system with Hamiltonian H0(I)) periodically kicked by
delta-impulses of some external force (a perturbation). Here, T = 2π is the corresponding period,
while K is a dimensionless parameter that characterizes the force amplitude. The rotor phase space
variables “angle-action” (θ, I) are defined on a cylinder (−∞ < I < ∞; 0 < θ < 2π).
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When considering the identity

∞

∑
n=−∞

δ(t/T − n) =
∞

∑
m=−∞

exp(i2πmt/T), (13)

we can rewrite the Hamiltonian (12) in the form

H =
1
2

I2 +
K

4π

∞

∑
m=−∞

[exp(imωLt + θ) + exp(imωLt− θ)] (14)

with ωL = 2π/T = 1. Expression (14) corresponds to the motion of the rotor in a periodic wave packet
with an infinite number of harmonics. The amplitudes of the harmonics have the same magnitude,
while their phases depend on the rotor angle θ.

To identify the range of applicability of the Chirikov criterion (11), consider the Hamiltonian
equations of the perturbed rotor (14)

.
I = i

K
4π

∞

∑
m=−∞

[exp(imωLt + iθ)− exp(imωLt− iθ)]; (15)

.
θ = ω(I); ω(I) = dH0/dI = I, (16)

where ω(I) is an angular frequency of the rotor having the angular momentum I. The nonlinear
resonances (9) arise in the frame of the zero order of the perturbation theory when we use in (15)
unperturbed temporal dependence for the angle variable: θ(t) = I · t. The external force provides
the strongest influence at the rotor dynamics if the series (15) contain stationary terms, i.e., the action
variable I should satisfy mωL = ±ω(I) = ±I. This relation corresponds to Equation (11) provided
k0 = ±1, which means that the nonlinear resonances under consideration have orders {k = ±1, m}
with Ik,m = m/k · ωL = m/k and εk,m = m2/2. Since I−1,−m = I1,m, we may restrict ourselves to the
case of the resonance values I1,m. In the vicinity of one of these resonances (I ≈ I1,m0 = m0), one may
simplify series (15) by dropping all the oscillating terms. This transforms the system (15), (16) into

.
δI ≈ K/(2π) sin(θ −m0t);

.
Ψ = δI (17)

with δI = I − I1,m0 = I −m0 and Ψ = θ −m0t. System (17) is reduced to the nonlinear equation of the
phase oscillation

..
Ψ ≈ K/(2π) sin(Ψ) (18)

Equations (17), (18) result in the oscillation of the action δI with the maximum amplitude
maxδI2~4K/π corresponding to the maximum distance between two separatrix branches that are
generated in the phase space by Equation (7) [27]. We may assess the amplitudes δε of the energy
oscillations of the resonance states that are depicted in Figure 6 as δε ≈|ω(I)|·max|δI|. The distance
∆I1,m between two adjacent resonance values I1,m is ∆I1,m = 1, which gives, for the corresponding
energy separation, ∆ε =|ω(I)|∆I =|ω(I)| (see Figure 6). Chirikov criterion (11), hence, is reduced to
the form

K ≈ |ω(I)|·max|δI|
|ω(I)| = 2

√
K/π > 1. (19)

The characteristic important feature of the Hamiltonian (12) in the standard map model is
the simultaneous overlapping of all resonance energies widths, as shown in Figure 6b. Figure 7
demonstrates the evolution of the rotor trajectories (I(t), θ(t)) in the phase space for some parameter
K values. It is clearly seen that, initially (K = 0.772), small islands of instabilities (black areas) increase
their size as the parameter K increases, forming a “stochastic sea” for large amplitudes (K = 3.972) of
the external force.
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4.3. Conception of Diffusional Ionization

A significant contribution to the development of the theory of stochastization of quantized systems
was made by the authors of Refs. [20,51], who considered the evolution of a bound Rydberg electron
with its ionization in an external microwave field. The adaptation of the methods of work [51] in
describing the development of dynamic chaos in the act of a single collision (8) is described in [49].
It is shown that, under the influence of a quasimonochromatic internal electric field E(t), nonlinear
dynamic resonances can arise due to the coincidence of the overtone k0ωε of the angular frequency
ωε of motion of RE e−nl on the Keplerian orbit with charge-exchange frequency ∆(R) of the internal
electron e− (see Figure 3). As a result, the motion of the RE becomes unstable, and the RE evolution in
the energy space takes the character of random walks along the quasi-intersecting “grid” of potential
curves (see Figure 4), which opens the possibility of a kinetic description of the RE dynamics

In a series of subsequent works [22,52–54], data on the formation of dynamic nonlinear resonances
with a transition to the stage of global chaos for isolated atoms in an external linearly polarized electric
field E(t) = E0 cos(ωLt + θ)/2 were refined. We note that, the widths of the dynamic resonances
(10), as well as the effects of stochastic dynamics, are directly related to the matrix elements of the
perturbation operators. This conclusion is confirmed by the results of [52], in which the coefficients
of the light-induced diffusion equation for a weakly bound electron in an external microwave field
are explicitly expressed in terms of the dipole matrix elements for optical transitions. Since the
implementation of the diffusion ionization requires finite time, to take into account the regime of
dynamic chaos becomes important for slow collisions, which is for a range of thermal and subthermal
energies. A transition to the ionization continuum due to a stochastic walk (see Figure 6b) can be
described, with good accuracy, in terms of kinetic methods using the distribution function f (ε, t) [22,27]
in the bound state region of a Rydberg electron (ε < 0). For calculations, it is more convenient to work
with the distribution f (n, t) over the principal quantum number n

f (n, t) dn = f (ε, t) dε, (20)

using the relation ε = −1/(2n2). In this case, the time dependence of f (n, t) is found from the solution
of a diffusion equation of the Fokker–Planck type [27]

∂

∂ t
f (n, t) =

∂

∂ n
Dn

∂

∂ n
f (n, t) (21a)

with the initial condition that at the moment t = 0 the excited electron is at the level n0, i.e., f (n, t =
0) = δ(n− n0) (δ(x) is the Dirac delta-function). To determine the evolution of f (n, t), Equation (21a)
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must be supplemented by the following boundary conditions with respect to the quantum variable n
at the boundaries of the region of development of stochasticity nc < n < ∞:

f (n→ ∞, t) = 0,
∂

∂n
f (n = nc, t) = 0, (21b)

where the quantity nc is determined from the Chirikov criterion (11), as [22]

n4
c (nc ωL)

1/3 = 1/(49E0) (22)

The boundary of the continuum (n = ∞) is an absorbing wall for the diffusion flux where f (n)
becomes zero. The amplitude E0 of the microwave field determines the critical value nc of the principal
quantum number below which the electron has regular motion, and the underlying states (n < nc)
refer to the deterministic region, since here the energy separation ∆ε = 1/n3 of the neighboring levels
exceed the widths of the dynamic resonances (see Figure 6a). Thus, the values n = nc determine the
position of the “reflecting wall”, on which the diffusion flux vanishes.

According to [22,51], the value of the diffusion coefficient Dn is

Dn ∼= 0.65 E2
0n3 ω−4/3

L (23)

From here, the average time, τe f f , required to reach the ionization limit by RE, which begins its
diffusion motion with an initial binding energy ε = −1/(2n2

0), is determined as [24,49]

τeff (n0) =
ω4/3

L
0.65E2

0
n2

0

(
1− nc

2 n0

)
(24)

The distribution f (n, t) makes it possible to find parameters of the diffusion process, such as the
average number of jumps from one level to another, experienced by the particle during its diffusion
drift to the continuum of energies, the average lifetime of the excited atom, and the degree of its
“survival” at a given time interval, i.e., knowledge of f (n, t) relatively simply makes it possible to
obtain theoretical data for comparison with the values that were observed in the experiment.

4.4. Diffusional Ionization of Hydrogen Atom in External Field

More detailed information on the processes of diffusional ionization requires numerical
calculations. Within the semiclassical approximation, numerical data are extracted from the study of the
dynamics of motion (trajectories) of the RE. Analysis of time processes with the strong stochastization
of trajectories requires the use of a stable numerical calculation scheme. The corresponding algorithm,
which is based on the Floquet technique [55] and geometric integration methods [56,57], was proposed
in [54] to find the parameters of atomic systems that were subjected to external periodic fields.

As an example, Figure 8 shows the trajectories of motion and shows the time dependence
of the orbital angular momentum L in conditions of dynamic chaos development. We take the
initial 10P (n0 = 10, l0 = 1) state of the hydrogen atom in the microwave field with frequency
ωL = 3/103 and amplitude E0, exceeding its threshold value Ec = 2/(49n4

0) [22]. Two characteristic
initial configurations of the vector L0 and the Runge-Lenz vector A0 (directed along the semiaxis of the
unperturbed Keplerian orbit [58]) were chosen, corresponding to the maximal changes in the modulus
|L| for cases of two-dimensional (E0 = 8, 2Ec) and three-dimensional (E0 = 6, 5Ec) trajectories.
Note that, according to the literature data, the range of values of n ≈ 10 corresponds to the range of
strong interaction of the dipole field of the cluster A+

2 with the Rydberg electron e−nl (see Figure 3).
Also note that the results of numerical calculations in Figure 8 show a significant change of the orbital
momentum L in the microwave field under the conditions of development of global chaos, which is in
contrast to the main approximation of the authors [22,51], assuming the adiabatic invariance of L.
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Figure 8. Trajectories of Rydberg electron (frames a,c) and the evolution of its angular momentum L
(frames b,d) for the 10P-state (n0 = 10, l0 = 1) of the hydrogen atom. For two-dimensional (2D) motion
of an electron in the {X, Y}-plane (frame a), frame b shows the projection LZ of the momentum L on the
z-axis, orthogonal to the motion plane {X, Y}. For three-dimensional (3D) motion (frame c), frame d
shows |L|.

4.5. Diffusional Ionization of the Rydberg Colisional Complex

The diffusion Equation (13) have a number of specific features with respect to the calculations of
chaotic motion of RE e−nl in collisional molecular complexes due to the variation of both the amplitude
and the frequency of the internal electric field E(t) as the (adiabatic) internuclear distance R changes
(see Figures 3 and 4). At the same time, the RE ionization boundary shifts (see Figure 4), since it is
determined by the potential curve 2Σ+

g . Figure 9 shows the boundaries of the stochasticity region for
RE (see the discussion of Equation (21b)) in the case of collisions of hydrogen A and A∗∗ atoms: the
lower dashed curve (circles) corresponds to the lower “reflective wall” nmin(R(t)) (nmin = nc is found
from Equation (22)), while the upper dotted curve (crosses) defines the position of the “absorbing
wall” nmax(R(t)). For the Rydberg states, lying above nmax(R), the exchange interaction ∆(R) exceeds
their binding energies, so that the internal microwave field results in the fast photoionization of those
states. The parameters of the problem are chosen in such a way that no ionization occurs when the RE
(n0 = 10) motion is regular (i.e., without any stochatization).

Atoms 2019, 7, x FOR PEER REVIEW 13 of 20 

4.5. Diffusional Ionization of the Rydberg Colisional Complex 

The diffusion equations (13) have a number of specific features with respect to the calculations 

of chaotic motion of RE nle
−

 in collisional molecular complexes due to the variation of both the 
amplitude and the frequency of the internal electric field ( )E t  as the (adiabatic) internuclear distance 
R  changes (see Figures 3 and 4). At the same time, the RE ionization boundary shifts (see Figure 4), 

since it is determined by the potential curve 
2

g

+Σ . Figure 9 shows the boundaries of the stochasticity 
region for RE (see the discussion of Equation (21b)) in the case of collisions of hydrogen A  and **A  

atoms: the lower dashed curve (circles) corresponds to the lower “reflective wall” min ( ( ))n R t  (

min cn n=  is found from Equation (22)), while the upper dotted curve (crosses) defines the position 

of the “absorbing wall” max ( ( ))n R t . For the Rydberg states, lying above max ( )n R , the exchange 
interaction ( )RΔ  exceeds their binding energies, so that the internal microwave field results in the 
fast photoionization of those states. The parameters of the problem are chosen in such a way that no 
ionization occurs when the RE ( 0 10n = ) motion is regular (i.e., without any stochatization). 

 

Figure 9. The time evolution of the distribution function ( , )f n t  of a Rydberg electron nle
−

 in a 

quasimolecular collisional complex 
**

2A  with the impact parameter 15ρ =  and collision energy 
31.9 10−⋅  a. u. = 600 K. The initial value 0 10n = . 

Figure 9 also shows the results of calculating [47]; the parameters of RE diffusion evolution for 
a time-varying region of the phase space. The initial distribution, corresponding to the localization of 

the RE at the energy level with 0 10n n= = , was chosen as the narrow Gaussian distribution 
2

0( , ) exp( ( ) ) /f n t n n π= −∞ = − − . The principal feature of the present is the realization of the RE 
diffusion along the energy levels in the act of a single collision. The solid lines in the figure give a 
map of levels ln ( , )f n t —the values of the logarithm are plotted alongside the corresponding curves. 
The position of the minima of the boundary curves max/ min ( ( ))n R t  is determined by the turning point 

with the minimum approach of the nuclei. It is evident that, while the initial value 0
10n =  is located 

lower than min ( ( ))n R t , i.e., lies in the regular motion region, there is no diffusion along the n axis. 

Diffusion begins to develop after the moment of entry of the initial value 0
10n =  in the stochastic 

region stΩ  (the region lying above the curve min ( ( ))n R t ). As a result of stochastic diffusion, the 
Rydberg electron has a finite probability of reaching the ionization boundary and passing to a 
continuum of energies through the photoionization channel. In this case, ionization is found as the 

Figure 9. The time evolution of the distribution function f (n, t) of a Rydberg electron e−nl in
a quasimolecular collisional complex A∗∗2 with the impact parameter ρ = 15 and collision energy
1.9 · 10−3 a. u. = 600 K. The initial value n0 = 10.



Atoms 2019, 7, 22 13 of 19

Figure 9 also shows the results of calculating [47]; the parameters of RE diffusion evolution for
a time-varying region of the phase space. The initial distribution, corresponding to the localization
of the RE at the energy level with n = n0 = 10, was chosen as the narrow Gaussian distribution
f (n, t = −∞) = exp(−(n− n0)

2)/
√

π. The principal feature of the present is the realization of the RE
diffusion along the energy levels in the act of a single collision. The solid lines in the figure give a
map of levels ln f (n, t)—the values of the logarithm are plotted alongside the corresponding curves.
The position of the minima of the boundary curves nmax/min(R(t)) is determined by the turning
point with the minimum approach of the nuclei. It is evident that, while the initial value n0 = 10
is located lower than nmin(R(t)), i.e., lies in the regular motion region, there is no diffusion along
the n axis. Diffusion begins to develop after the moment of entry of the initial value n0 = 10 in the
stochastic region Ωst (the region lying above the curve nmin(R(t))). As a result of stochastic diffusion,
the Rydberg electron has a finite probability of reaching the ionization boundary and passing to a
continuum of energies through the photoionization channel. In this case, ionization is found as the
probability of the electron leaving the region of bound states. The validity of such a model was verified
on the quantitative level by the example of the chemi-ionization process involving Rydberg atoms of
sodium [49].

4.6. Assotiative Ionization Rate Constants

The experimental methods existing in atomic and molecular physics make it possible to compare
the ionization parameters that were calculated in the frame of stochastic dynamics with the results of
direct measurements performed in atomic beams of different types [59]. Atomic/molecular beams have
been widely implemented in practice as convenient sources of particles that are used for investigations
in the physics of collisions [60], spectroscopy [61], and the analysis of the interaction of light and
matter [62]. In recent decades, a new type of beams, known as “cold beams” [63], has been added
to the two classical types of beams, i.e., diffusion [14,64] and supersonic [59] ones. Cold beams are
extracted from magneto-optical traps and they have unique prospects for use in nanotechnology [65]
due to their extremely narrow divergence angle.

An important parameter that characterizes the efficiency of ionization processes (8) is the rate
constants K(nl, T). In experiments, rate constants are found from a measured number of registered
charged particles. A theoretical treatment of K(nl, T)

K(nl, T) =
∫

σ(vc) · vc f (vc, T)dvc (25)

operates with the cross sections σ(v) and the distribution function f (v, T) over the relative (impact)
velocity v = vc of colliding atoms of the same mass M:

The velocity distribution f (vc, T) dependence on the beams source temperature T may be
expressed via the characteristic thermal velocity vT = (kT/M)1/2 as f (vc, T) = F(vc/vT)/vT .
The function F(x) has quite different profiles in cells, single beams, and crossed beams cases, as
demonstrated in Figure 10 [13,64].
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Figures 11 and 12 show, following [53,60,66–68], the values of the associative ionization (AI) rate
constants Kai(nl, T) obtained under the conditions of a single and two orthogonal beams. The formation
of molecular ion occurs upon the collisions of Rydberg sodium atoms A∗∗(nl) excited to nS, nP, or nD
states with atoms A in the ground state. Experimental data of Figure 11, frame (a) (dots, l = 1),
corresponds to crossed beams conditions, T = 600 K [66]. Figure 11 data related to frame (b) (open
circles, l = 1), frame (c) (open triangles, l = 2), and frame (d) (open squares, l = 2) were obtained in
a single beam of Na atoms, T = 1000 K [67]. Full curves exhibit results of theory [60], accounting for
stochastic diffusion effects, while dotted curves correspond to calculations in the frame of regular
DSMJ model [43–45].Atoms 2019, 7, x FOR PEER REVIEW 15 of 20 
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Figure 12 shows the results of more recent experiments [53,66] on AI rate constants measurements,
the authors of which took into account the effects of free electrons escaping due to atoms
photoionization by black body radiation.

It can be seen that, in the 4 < n∗ < 28 range of effective quantum numbers, the data of the
experiment and the stochastic theory (solid curves) agree with each other (although measurements
have large error bars), whereas calculations using the traditional DSMJ model [43–45] (dashed curves)
significantly underestimate the corresponding results, particularly for the lower values of n.

4.7. Features of Diffusional Ionization under Conditions of Förster Resonance

In Section 2.2, a significant decrease in the probabilities of Rydberg states radiative decay in
Förster resonance (FR) conditions was demonstrated, which is due to the suppression of dipole matrix
elements. Since the widths of the nonlinear resonances δε, as shown in [43,52], are directly related to
the probabilities of microwave transitions in the excited atom, the blocking of the latter means the
blocking of the development of dynamic chaos. The possibility of “controlling” the development of
global chaos in the Rydberg diatomic cluster, using the double Stark resonance (or FR) mechanism,
was considered in [40,43].

Figure 13 shows the time dependence of the RE binding energy under conditions of the
development of diffusional ionization of Rydberg states of the model Sommerfeld atom, which is
under the influence of an external microwave field, for different values of the Sommerfeld parameter
α (see Equation (5)). It can be seen that the ionization time is significantly prolonged when the FR is
realized (α = 2.81), which indicates the partial blockage of global stochatization.
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Figure 13. Temporal evolution of binding energy ε of the 13P-state (l = 1) of the Rydberg electron
in the Sommerfeld atom in an external microwave field of frequency ω = 1/133 and amplitude
E0 = 10Ec, which exceeds ten times the critical value Ec. The calculations were performed for three
values of Sommerfeld parameter: α = 0, 2.81, and 4.5. The arrows indicate the moments of ionization.
The occurrence of Förster resonance corresponds to αp,s = 2.81.

5. Conclusions

Our work presents the results of studies (experiment and theory) of the radiative and collisional
kinetics of Rydberg atoms, with their specific features arising from the closeness of highly excited
bound states to the energy continuum. The model problems that are considered here reveal significant
changes (by orders of magnitude) in the dipole matrix elements values of optical transitions in the
vicinity of the Förster resonance, which is an important tool for creating entangled states in the system
of cold Rydberg atoms. In particular, the anomalously long lifetimes of the p-series Rydberg states
of the sodium atom are explained by the proximity of the Na p- and s-series energy levels structure
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to the Förster resonance configuration. We have considered the ionization processes of Rydberg
atomic complexes in microwave electric fields. Under the multiplicity of the quasi-crossing of energy
levels near the ionization continuum, the semiclassical method for taking into account the ionization
instability of Rydberg states is discussed. This method is based on the formalism of nonlinear dynamic
resonances and the evolution of dynamic chaos in Hamiltonian systems. The results of the numerical
modeling of diffusion ionization of atomic hydrogen Rydberg states in an external microwave field
are given with a demonstration of the nontrivial evolution of the orbital moment. The possibility of
reducing the theoretical analysis of collisional ionization of Rydberg alkali metal atoms to the problem
of the stochastic ionization of a Rydberg electron by an “internal” microwave field is shown. This field
is induced by the charge exchange processes in the system “ion core of a Rydberg atom plus neutral
atom-collision partner”. The comparison of the experimental and calculated data on the associative
ionization rate constants in “Rydberg sodium atom-normal sodium atom” collision demonstrates
the validity of describing the dynamic instability of Rydberg complexes within the framework of the
dynamic chaos evolutionary theory for Hamiltonian systems.
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