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Abstract: Topological index is an invariant of molecular graphs which correlates the structure with
different physical and chemical invariants of the compound like boiling point, chemical reactivity,
stability, Kovat’s constant etc. Eccentricity-based topological indices, like eccentric connectivity index,
connective eccentric index, first Zagreb eccentricity index, and second Zagreb eccentricity index were
analyzed and computed for families of Dutch windmill graphs and circulant graphs.
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1. Introduction

A single number which represents a chemical structure, in graph-theoretical chemistry, is called a
topological descriptor (or index). A topological index is a real number which correlates the structure
of chemical compound with their chemical reactivity or physical properties. Chemical graph theory
is well-known branch of graph theory which concerns with mathematical modeling of molecules.
It also deals with the study of development of topological indices, isomerism, and found applications
in quantum chemistry and stereochemistry. Topological indices are mainly used in quantitative
structure–activity relations (QSAR) as well as quantitative structure–property relations (QSPR) which
describe the relation between chemical structure with the properties and reactivity of the compounds.
Chemical structure is depicted as graphs with vertices representing atoms and the edges represent the
chemical bonds between atoms.

Let G(V, E) be a simple and connected graph with n vertices and m edges. Let u ∈ V then
be the eccentricity of a vertex where u is a maximum distance of u from other vertices of graph G,
which is denoted by ε(u), i.e., ε(u) = max{d(u, v); v ∈ V}, where d(u, v) is a distance between u and
v. The degree of a vertex u, denoted by d(u), is number of vertices which are attached to u by the edges.
The eccentric connectivity index is introduced by Sharma, Goswami, and Madan [1], and defined as

ξc = ∑
u∈V

d(u)ε(u). (1)

In 2000, Gupta, Singh, and Madan [2] introduced a topological descriptor termed the connective
eccentricity index, which is defined as

Cξ = ∑
u∈V

d(u)
ε(u)

. (2)
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The Zagreb indices were introduced more than thirty years ago by Gutman and Trinajestic [3].
They are defined as

M∗1 = ∑
u∈V

d2(u),

M∗2 = ∑
uv∈E

d(u)d(v).

After thirty years, new version of Zagreb indices introduced by Ghorbani and Hosseinzadeh [4]
are first and second Zagreb eccentricity index, which are stated as

M1(G) = ∑
z∈V(G)

ε2(z), (3)

M2(G) = ∑
yz∈E(G)

ε(y)ε(z). (4)

Khalifeh et al. [5] calculated the Zagreb indices of arbitrary C4 tube, C4 torus, and q-multiwalled
polyhex nanotorus. Doslic et al. [6] gave formulae of the eccentric connectivity index for armchair
hexagonal belts, zigzag belts, and the corresponding open chains. Ashrafi et al. [7] found formulas
for the eccentric connectivity index of TUC4C8(S) nanotube and TC4C8(S) nanotorus. Ghorbani [8]
derived bounds of the connective eccentric index and calculated connective eccentricity index for
two classes of fullerenes which are infinite. Ilić [9] presented the unicyclic graphs and extremal trees
with minimum and maximum eccentric connectivity index subject to the certain graph constraints.
Ilić et al. [10] derived explicit formulae for the eccentric distance sum for the Cartesian product and
joining of graphs. Morgan et al. [11] showed a quite low lower bound for a tree on the eccentric
connectivity index, in expressions of diameter and order. Songhori [12] computed the eccentric
connectivity for an infinite class of fullerene graphs. Recently, Gao et al. provided several interesting
results about topological indices and their applications in biological sciences [13] and nanoscience [14],
which are quite promising and motivating for further studies in the area.

2. Results and Discussions

In this section, we will compute the connective eccentricity, eccentric connective, first Zagreb
eccentricity index, and second Zagreb eccentricity indices of Dutch windmill graph and circulant
graph by analyzing the eccentricities of the vertices of the graphs.

Dutch Windmill graph: A graph Dn
m obtained by joining n numbers of cycle graphs Cm with a

common vertex is known as Dutch windmill graph. The Dutch windmill graph is an undirected and
planar graph.

Circulant graph: Let a1, a2, a3, . . . , am be positive integers where 1 ≤ ai ≤
⌊ n

2
⌋
, ai 6= aj ∀ 1 ≤

i, j ≤ m, and i 6= j. An undirected and simple graph with vertex V = {u1, u2, u3, . . . , un}, and the
edge set is E =

{
uiui+aj ; 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
which is called the circulant graph and is denoted

by Cn(a1, a2, a3, . . . , am). The indices being taken modulo n. The numbers a1, a2, a3, . . . , am are called
generators. A circulant graph is a regular graph. Let r denote the degree of vertices of the graph, then

r =

{
2m− 1, i f n

2 ∈ {a1, a2, a3, . . . , am}
2m otherwise

.

These graphs correspond to wide variety of chemical graphs. For instance, the Dutch windmill
graph represents bidentate ligands, as can be seen in the Figure 1 below.
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Figure 1. Tris(ethylenediamine)cobalt(III) chloride and tris(ethylenediamine)chromium(III) sulfate.

Theorem 1. The connective eccentricity index of Dutch windmill graph, denoted by Cξ(Dn
m), is given by

Cξ(Dn
m) =


2n
bm

2 c
+ 4n ∑

bm
2 c

j=1
1

(bm
2 c+j)

; i f m is odd
6n
m + 4n 1

∑
m−2

2
j=1 (m

2 +j)
; i f m is even ,

and the eccentric connective index, denoted by ξc(Dn
m), is given by

ξc(Dn
m) =

 2nbm
2 c+ 4n ∑

bm
2 c

j=1

(⌊m
2
⌋
+ j
)
; i f m is odd

3mn + 4n ∑
m−2

2
j=1

(m
2 + j

)
; i f m is even

.

Proof. Let Dn
m be the Dutch windmill graph with n copies of cycle Cm having common vertex z with

degree (z) = 2n. The degree of other vertices of the graph is two. �

Case 1: m is odd. The eccentricity of the central vertex is ε(z) =
⌊m

2
⌋

and eccentricity of other
vertices increase by one as we move away from the common vertex to the half of the cycle, as can
be seen in Figure 2. When m odd, the vertices other than the common vertex are even in number in
each cycle. The eccentricity of the vertices, in each cycle, is pairwise equal, and are equidistant from
the central vertex. Therefore, n cycles of Dn

m have a total 2n vertices of same eccentricity, which are
obtained by adding ε(z) =

⌊m
2
⌋

to their distance from the central vertex.

Figure 2. Dutch windmill graph D2
5 with eccentricity of vertices.

The connective eccentricity index of Dn
m, as given in Equation (1), can be written as

ξc(Dn
m) = d(z)ε(z) + 2n ∑

bm
2 c

i=1 d(zi)ε(zi)

= (2n)
(⌊m

2
⌋)

+ 2n
[
2
(⌊m

2
⌋
+ 1
)
+ 2
(⌊m

2
⌋
+ 2
)
+ 2
(⌊m

2
⌋
+ 3
)
+ . . . + 2

(⌊m
2
⌋
+
⌊m

2
⌋)]

= (2n)
(⌊m

2
⌋)

+ (2n)(2)
[(⌊m

2
⌋
+ 1
)
+
(⌊m

2
⌋
+ 2
)
+
(⌊m

2
⌋
+ 3
)
+ . . . +

(⌊m
2
⌋
+
⌊m

2
⌋)]

= (2n)
(⌊m

2
⌋)

+ 4n
[(⌊m

2
⌋
+ 1
)
+
(⌊m

2
⌋
+ 2
)
+
(⌊m

2
⌋
+ 3
)
+ . . . +

(⌊m
2
⌋
+
⌊m

2
⌋)]

ξc(Dn
m) = (2n)

(⌊m
2

⌋)
+ 4n ∑bm

2 c
j=1 (

⌊m
2

⌋
+ j).
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The eccentric connective index of Dn
m , as given in Equation (2), can be expressed as

Cξ(Dn
m) = d(z)

ε(z) + 2n ∑
bm

2 c
i=1

d(zi)
ε(zi)

= 2n
bm

2 c
+ 2n( 2

bm
2 c+1

+ 2
bm

2 c+2
+ 2
bm

2 c+3
+ . . . + 2

bm
2 c+bm

2 c
)

= 2n
bm

2 c
+ 4n( 1

bm
2 c+1

+ 1
bm

2 c+2
+ 1
bm

2 c+3
+ . . . + 1

bm
2 c+bm

2 c
)

= 2n
bm

2 c
+ 4n 1

∑
bm

2 c
j=1 (bm

2 c+j)

Cξ(Dn
m) =

2n⌊m
2
⌋ + 4n ∑bm

2 c
j=1

1
(
⌊m

2
⌋
+ j)

.

Case 2: m is even. In this case, each cycle of Dn
m has an odd number of vertices excluding the

central vertex; among these, each pair of vertices which are equidistant from central vertex have the
same eccentricity, which is equal to the eccentricity of central vertex when adding the distance from
the vertex pair, which can be observed in Figure 3. The eccentricity of central vertex is (z) = m

2 , and for
other vertex pairs, it increases by one as we move away from central vertex.

Figure 3. Dutch windmill graph D3
6 with eccentricity of vertices.

Let zi be the vertices of graph which have, pairwise, the same eccentricity, and these are 2n
in number in each cycle. The eccentricity of last vertex in each cycle is m, and these vertices are n
in number.

The connective eccentricity index of Dn
m is

ξc(Dn
m) = d(z)ε(z) + ∑2n

i=1 d(zi)ε(zi) + nd(v)ε(v)
= (2n)

(m
2
)
+ 2n

[
2
(m

2 + 1
)
+ 2
(m

2 + 2
)
+ 2
(m

2 + 3
)
+ . . . + 2

(m
2 + m

2 − 1
)]

+ n(2)(m)

= (2n)
(m

2
)
+ (2n)(2)

[(m
2 + 1

)
+
(m

2 + 2
)
+
(m

2 + 3
)
+ . . . +

(m
2 + m

2 − 1
)]

+ 2(n)(m)

= (n)(m) + 4n
[(m

2 + 1
)
+
(m

2 + 2
)
+
(m

2 + 3
)
+ . . . +

(m
2 + m

2 − 1
)]

+ 2(n)(m)

= 3(n)(m) + 4n
[(m

2 + 1
)
+
(m

2 + 2
)
+
(m

2 + 3
)
+ . . . +

(m
2 + m

2 − 1
)]

= 3(n)(m) + 4n
[(m

2 + 1
)
+
(m

2 + 2
)
+
(m

2 + 3
)
+ . . . +

(m
2 + m

2 − 1
)]

ξc(Dn
m) = 3nm + 4n ∑

m−2
2

j=1 (
m
2
+ j).
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The eccentric connective index of Dn
m is

Cξ(Dn
m) = d(z)

ε(z) + 2n ∑
m
2 −1

i=1
d(zi)
ε(zi)

+ n d(v)
ε(v)

= 2n
m
2
+ 2n

(
2

m
2 +1 + 2

m
2 +2 + 2

m
2 +3 + . . . + 2

m
2 +

m
2 −1

)
+ n 2

m

= 4n
m + 4n

(
1

m
2 +1 + 1

m
2 +2 + 1

m
2 +3 + . . . + 1

m
2 +

m
2 −1

)
+ 2n

m

= 4n
m + 2n

m + 4n
(

1
m
2 +1 + 1

m
2 +2 + 1

m
2 +3 + . . . + 1

m
2 +

m
2 −1

)
Cξ(Dn

m) =
6n
m

+ 4n· 1

∑
m−2

2
j=1 (m

2 + j)
.

Theorem 2. The first Zagreb eccentricity index and the second Zagreb eccentricity index of Dutch windmill
graph Dn

m, denoted by M1(Dn
m) and M2(Dn

m), respectively, are given as

M1(Dn
m) =


(⌊m

2
⌋)2

+ 2n ∑
bm

2 c
j=1

(⌊m
2
⌋
+ j
)2, i f m is odd

(4n + 1)
(m

2
)2

+ 2n ∑
m−2

2
j=1

(m
2 + j

)2, i f m is even
,

M2(Dn
m) =

 2n ∑
bm

2 c−1
j=0

[(⌊m
2
⌋
+ j
)
×
(⌈m

2
⌉
+ j
)]

+ n(m− 1)2, i f m is odd

2n ∑
m−2

2
j=0

[(m
2 + j

)2
+
(m

2 + j
)]

, i f m even
.

Proof. Let Dn
m be a dutch windmill graph with n copies of cycle Cm with common vertex z with

the eccentricity ε(z) =
⌊m

2
⌋
. The eccentricity of vertex increases by one as we move away from the

common vertex. �

Case 1: m is odd: When m is odd then the vertices other than common vertex are even in number.
The behavior of eccentricity of these vertices is discussed in detail in case 1 of Theorem 1. In each cycle
Cm, we denote the vertex pair by z1, which is at a distance one apart from the central vertex, similarly,
zi denotes the vertex pair which is distance i apart from central vertex z.

The first Zagreb eccentricity index is

M1(Dn
m) = ε2(z) + ∑2n

i=1 ε2(zi)

=
(⌊m

2
⌋)2

+ 2n
[(⌊m

2
⌋
+ 1
)2

+
(⌊m

2
⌋
+ 2
)2

+ . . . +
(⌊m

2
⌋
+
⌊m

2
⌋)2
]

=
⌊m

2
⌋2

+ 2n
[(⌊m

2
⌋
+ 1
)2

+
(⌊m

2
⌋
+ 2
)2

+ . . . +
(⌊m

2
⌋
+
⌊m

2
⌋)2
]
,

M1(Dn
m) =

⌊m
2

⌋2
+ 2n ∑bm

2 c
j=1

(⌊m
2

⌋
+ j
)2

.

The second Zagreb eccentricity index is sum of product of eccentricities of endpoints of all
edges, i.e.,

M2(Dn
m) = ∑

yz∈E(G)

ε(y)ε(z).

Eccentricity of adjacent vertices differ by 1 in Dn
m. From Figure 2, we observe that in every cycle,

there must be two edges with same eccentricity of endpoint vertices, therefore, in n copies of cycle
there are 2n edges with the same eccentricity. Moreover, each cycle of odd length has an odd number of
edges so, after pairing, we are left with an edge whose endpoints have the same eccentricity, which is
m− 1.

M2(Dn
m) = 2n·ε(z)ε(z1) + 2n ∑

bm
2 c−1

i=1 ε(zi)ε(zi+1) + n·ε(zbm
2 c)

2

=
[
2n
{(⌊m

2
⌋)
×
(⌈m

2
⌉
+ 1
)}

+ 2n
{(⌊m

2
⌋
+ 1
)
×
(⌈m

2
⌉
+ 2
)}

+ . . . + 2n
{(⌊m

2
⌋
+
⌊m

2
⌋
− 1
)
×
(⌈m

2
⌉
+
⌊m

2
⌋)}]

+ n(m− 1)(m− 1)
= 2n

[{(⌊m
2
⌋)
×
(⌈m

2
⌉
+ 1
)}

+
{(⌊m

2
⌋
+ 1
)
×
(⌈m

2
⌉
+ 2
)}

+ . . . +
{(⌊m

2
⌋
+
⌊m

2
⌋
− 1
)
×
(⌈m

2
⌉
+
⌊m

2
⌋)}]

+ n(m− 1)2
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M2(Dn
m) = 2n ∑bm

2 c−1
j=0

{(⌊m
2

⌋
+ j
)
×
(⌈m

2

⌉
+ j + 1

)}
+ n(m− 1)2

Case 2: m is even. Let Dn
m be a Dutch windmill graph with n copies of cycle Cm with common

vertex z, the degree d(z) = 2n, and the eccentricity ε(z) = m
2 . The degree of other vertices of graph is

two, and eccentricity of vertex increases by one as we move away from the common vertex.
From the figure, the vertices of the same degree are 2n in number because in every cycle

eccentricity of the pair of vertices same. There are n number of vertices having degree m. Let zi
be vertices of the same degree. The first Zagreb eccentricity index is

M1(Dn
m) = ε2(z) + ∑2n

i=1 ε2(zi)

where zi denote the pair of vertices which have the same eccentricity. Hence,

M1(Dn
m) =

(m
2
)2

+ 2n
[(m

2 + 1
)2

+
(m

2 + 2
)2

+ . . . +
(m

2 + m
2 − 1

)2
]
+ n(m)2

=
(m

2
)2

+ 2n
[(m

2 + 1
)2

+
(m

2 + 2
)2

+ . . . +
(m

2 +
(m

2 − 1
))2
]
+ n 4m2

4

=
(m

2
)2

+ 2n
[(m

2 + 1
)2

+
(m

2 + 2
)2

+ . . . +
(m

2 +
(m

2 − 1
))2
]
+ 4n

(m
2
)2

= (4n + 1)
(m

2
)2

+ 2n
[(m

2 + 1
)2

+
(m

2 + 2
)2

+ . . . +
(m

2 +
(m

2 − 1
))2
]
,

M1(Dn
m) = (4n + 1)

(m
2

)2
+ 2n ∑

m−2
2

j=1

(m
2
+ j
)2

.

Now, we compute the second Zagreb eccentricity index of the Dutch windmill graph.
In every cycle there must be two edges with the same eccentricity, therefore, in n copies of cycle,

there are 2n edges with the same eccentricity. Since each cycle has even, m, number of edges, so there
are a total m/2 pairs of edges in each cycle whose endpoint eccentricities differ by one. Let z = z0.

M2(Dn
m) = ∑

m
2 −1

i=1 ε(zi)ε(zi+1)

=
[
2n
{(m

2 + 0
)
×
(m

2 + 1
)}

+ 2n
{(m

2 + 1
)
×
(⌈m

2
⌉
+ 2
)}

+ . . . + 2n
{(m

2 + m
2 − 1

)
×
(m

2 + m
2
)}]

= 2n
[{(m

2 + 0
)
×
(m

2 + 1
)}

+
{(m

2 + 1
)
×
(⌈m

2
⌉
+ 2
)}

+ . . . +
{(m

2 + m
2 − 1

)
×
(m

2 + m
2
)}]

= 2n ∑
m
2 −1
j=0

{(m
2 + j

)
×
((m

2 + 1
)
+ j
)}

= 2n ∑
m
2 −1
j=0

{(m
2 + j

)
×
((m

2 + j
)
+ 1
)}

M2(Dn
m) = 2n ∑

m−2
2

j=0

{(m
2
+ j
)2

+
(m

2
+ j
)}

.

Theorem 3. The connective eccentricity index of Cn(a1, a2, . . . , am) is given by

Cξ{Cn(a1, a2, . . . , am)} =
{

n 2m
b n

2 c
; i f n is odd

4m; i f n is even
.

The eccentric connectivity index of Cn(a1, a2, . . . , am) is given by

ξc{Cn(a1, a2, . . . , am)} =
{

(2mn)
⌊ n

2
⌋
; i f n is odd

n2m; i f n is even
.

Proof. Let Cn(a1, a2, . . . , am) be a circulant graph with vertex set (u1, u2, . . . , un) and the edge set{
uiui+aj ; 1 ≤ j ≤ n, 1 ≤ j ≤ m

}
. The degree and eccentricity of the vertices of circulant graph are

given by dCn = 2m. �
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Case 1: n is odd: Eccentricity of all the vertices of circulant graph is εCn =
⌊ n

2
⌋
, respectively,

where m is number of generators.
The connective eccentricity index of Cn(a1, a2, . . . , am) is given by using Equation (1) as

ξc(Cn) = ∑n
i=1 dCn(ui)εCn(ui)

= ∑n
i=1 2m

⌊ n
2
⌋

= n(2m)
⌊ n

2
⌋

ξc(Cn) = (2nm)
⌊n

2

⌋
.

Now the eccentric connective index of Cn(a1, a2, . . . , am) is given by

Cξ(Cn) = ∑n
i=1

dCn (ui)
εCn (ui)

= ∑n
i=1

2m
b n

2 c

Cξ(Cn) = n
2m⌊ n

2
⌋ .

Case 2: n is even: Eccentricity of all the vertices of circulant graph is εCn = n
2 , respectively.

The connective eccentricity index of Cn(a1, a2, . . . , am) is given by

ξc(Cn) = ∑n
i=1 dCn(ui)εCn(ui)

= ∑n
i=1(2m)( n

2 )

= n(2m) n
2

ξc(Cn) = n2m.

Now, the eccentric connective index of Cn(a1, a2, . . . , am) is given by

Cξ(Cn) = ∑n
i=1

dCn (ui)
εCn (ui)

= ∑n
i=1

2m
n
2

= n 4m
n

Cξ(Cn) = 4m.

Theorem 4. The first Zagreb eccentricity index of Cn(a1, a2, . . . , am) is given by

M1(Cn) =

{
n
⌊ n

2
⌋2; i f n is odd

n3

4 ; i f n is even
.

The second Zagreb eccentricity index of Cn(a1, a2, . . . , am) is given by

M2(Cn) =

{
n
⌊ n

2
⌋2; i f n is odd

n3

4 ; i f n is even
.

Proof. Let Cn(a1, a2, . . . , am) be the circulant graph with vertex set {u1, u2, . . . , un} and the edge set{
uiui+aj ; 1 ≤ j ≤ n, 1 ≤ j ≤ m

}
. �
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Case 1: n is odd: The eccentricity of the vertices of circulant graph is εCn =
⌊ n

2
⌋
, where m is the

number of generators. The first Zagreb eccentricity index of Cn(a1, a2, . . . , am) is given by

M1(Cn) = ∑n
i=1 εCn

2(ui)

= ∑n
i=1
(⌊ n

2
⌋)2

= n
(⌊ n

2
⌋)2

M1(Cn) = n
⌊n

2

⌋2
.

The second Zagreb eccentricity index of Cn(a1, a2, . . . , an) is given as

M2(Cn) = ∑
uv∈E(G)

ε(u)ε(v)

= ∑
uv∈E(G)

(⌊ n
2
⌋)(⌊ n

2
⌋)

= n
(⌊ n

2
⌋)2

M2(Cn) = n
⌊n

2

⌋2
.

Case 2: n is even. The eccentricity of the vertices of circulant graph is εCn = n
2 , where m is

the number of generators. The first Zagreb index of Cn(a1, a2, . . . , am), as defined in Equation (3),
is given as

M1(Cn) = ∑n
i=1 εCn

2(ui)

= ∑n
i=1
( n

2
)2

= n
( n

2
)2

M1(Cn) =
n3

4
.

The second Zagreb eccentricity index of Cn(a1, a2, . . . , an) is given by

M2(Cn) = ∑
uv∈E(G)

ε(u)ε(v)

= ∑
uv∈E(G)

( n
2
)( n

2
)

= ∑n
i=1
( n

2
)2

= n
( n

2
)2

M2(Cn) =
n3

4
.

3. Conclusions

We analyzed the topological indices of chemical graphs which are being widely used in QSAR
studies. These indices are correlated to the underlying physical and chemical properties of compounds.
Dutch windmill graph and circulant graph are discussed in this paper in terms of their distance and
degree-based invariants. Connective eccentricity, eccentric connectivity, first Zagreb index, and second
Zagreb index were computed for these graphs. These results can be greatly helpful in QSAR/QSPR
studies for chemical structures corresponding to the graphs investigated in the study.
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