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Abstract: GigaGauss (GG), and even multi-GG magnetic fields are expected to be developed during
relativistic laser-plasma interactions. Sub-GG magnetic fields were previously measured by a method
using the self-generated harmonics of the laser frequency, and the fact that the magnetized plasma is
birefringent and/or optically active depending on the propagation direction of the electromagnetic
wave. In the present short communication, we outline an idea for a method of measuring GG
magnetic fields based on the phenomenon of Langmuir-wave-caused dips (L-dips) in X-ray line
profiles. The L-dips were observed in several experimental spectroscopic studies of relativistic
laser-plasma interactions. Ultrastrong magnetic fields affect the separation of the L-dips from one
another, so that this relative shift can be used to measure such fields.

Keywords: relativistic laser-plasma interactions; GigaGauss magnetic fields; X-ray spectral line
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GigaGauss (GG), and even multi-GG magnetic fields are expected to be developed during
relativistic laser-plasma interactions. These fields should be localized at the surface of the relativistic
critical density—see, e.g., review [1] and references therein. In particular, according to Equation (11)
from paper [2], the maximum magnetic field Bmax is related to the laser intensity I as follows:

Bmax (G) = 10−1[I(W/cm2)]1/2. (1)

So, at the laser intensities I ~1021 W/cm2 achieved in recent experiments (see paper [3]),
the magnetic fields can be as high as Bmax ~3 GG.

On the experimental side, in paper [4] magnetic fields B ~0.7 GG were measured by using the
polarization measurements (the Cotton-Mouton effect of an induced ellipticity) of high-order VUV
laser harmonics generated at the incident irradiation intensity I = 9 × 1019 W/cm2. In an earlier
experiment [5,6], magnetic fields up to B ~0.4 GG were measured at the incident irradiation intensity
up to I = 9 × 1019 W/cm2, by a method also using the self-generated harmonics of the laser frequency
and the fact that the magnetized plasma is birefringent (the Cotton-Mouton effect) and/or optically
active (the Faraday effect of the rotation of the polarization vector) depending on the propagation
direction of the electromagnetic wave.

In the present short communication, we propose a method for measuring GG magnetic fields
based on the phenomenon of Langmuir-wave-cased dips (L-dips) in X-ray line profiles. The L-dips were
observed in several experimental spectroscopic studies of relativistic laser-plasma interactions—see,
e.g., papers [3,7] and review [8].
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According to the theory (presented, e.g., in books [9,10]), L-dips originate from a dynamic
resonance between the Stark splitting

ωstark(F) = 3nh̄F/(2Zrmee) (2)

of hydrogenic energy levels, caused by a quasistatic part of the electric field F in a plasma, and the
frequency ωL of the Langmuir wave, which practically coincides with the plasma electron frequency
ωpe = (4πe2Ne/me)1/2:

ωstark(F) = sωpe (Ne), s = 1, 2, . . . (3)

Here n and Zr are the principal quantum number and the nuclear charge of the radiating
hydrogenic atom/ion (radiator), s is the number of quanta (Langmuir plasmons) involved in the
resonance. Despite the applied electric field being quasimonochromatic, there occurs a nonlinear
dynamic resonance of a multifrequency nature, as explained in detail in paper [11].

From the resonance condition (3), one determines the specific locations of L-dips in spectral line
profiles, which depend on Ne, since ωpe depends on Ne. Generally, there could be two sets of L-dips
in the spectral line profile at distances ∆ωdip from the unperturbed frequency ω0 of the spectral line.
One set, located at

∆ωdip
(α) = (qα − qβnβ/nα)sωpe (4)

results from the resonance with the splitting of the upper sublevel α (of the principal quantum number
nα) involved in the radiative transition. Another set located at

∆ωdip
(β) = (qαnα/nβ − qβ)sωpe (5)

results from the resonance with the splitting of the lower sublevel β (of the principal quantum number
nβ) involved in the radiative transition. Here q = n1 − n2 is the electric quantum number expressed
via the parabolic quantum numbers n1 and n2: q = 0, ±1, ±2, . . . , ±(n − 1). The electric quantum
numbers mark Stark components of hydrogenic spectral lines. It should be emphasized that for the
Ly-lines, there is no second set of the L-dips at ∆ωdip

(β) because there is no linear Stark splitting of the
state of n = 1. Below for brevity we omit the subscript “pe” and use ω instead of ωpe.

In paper [12], for the specific case of the one-quantum resonance (s = 1) in hydrogen atoms (Zr = 1),
Gavrilenko generalized Equations (4) and (5) for the situation where there is also a magnetic field B in
plasmas. His corresponding formulas are as follows:

∆ωdip
(α) = ω{(n’ + n”)α − [(n’+n”)β/nα][(nα

2 − nβ
2)b0

2 + nβ
2]1/2}, (6)

∆ωdip
(β) = ω{[(n’ + n”)α/nβ][ nα

2 − (nα
2 − nβ

2)b0
2]1/2 − (n’ + n”)β}. (7)

Here the quantum numbers n’ and n” correspond to the basis of the wave functions diagonalizing
the Hamiltonian of a hydrogen atom in a non-collinear static electric (F) and magnetic (B) fields
(see, e.g., paper [13]):

n’, n” = −j, −j +1, . . . , j; j = (n − 1)/2. (8)

The quantity b0 in Equations (6) and (7) is the scaled, dimensionless magnetic field

b0 = µ0B/(h̄ω), (9)

where µ0 is the Bohr magneton.
We further slightly generalize Gavrilenko’s formulas by allowing for any number of quanta s

involved in the resonance and for any nuclear charge Zr of hydrogenic atoms/ions:

∆ωdip
(α) = sω{(n’ + n”)α − [(n’ + n”)β/nα][(nα

2 − nβ
2)b2 + nβ

2]1/2}, (10)

∆ωdip
(β) = sω{[(n’ + n”)α/nβ][ nα

2 − (nα
2 − nβ

2)b2]1/2 − (n’ + n”)β}, (11)
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where the scaled dimensionless magnetic field b now reads:

b = µ0B/(sh̄ω) = (1/s)[B(GG)/0.201][ω(s-1)/(1.77 × 1015)]−1 (12)

For example, for the one-quantum resonance (s = 1), for the frequency ω = 1.77 × 1015 s−1,
which is the frequency of the laser used, e.g., in experiments [3,7], the quantity b reaches unity at
B = 0.201 GG. We note that the nuclear charge Zr does not enter Equations (10) and (11), but obviously
does affect the unperturbed frequency of the spectral line.

The idea of a new method for measuring the magnetic fields is as follows. It is possible to
select such a pair of the L-dip at ∆ωdip

(α) and the L-dip at ∆ωdip
(β), both corresponding to the same

combination of the sums (n’ + n”)α and (n’ + n”)β, such that the location of one of the two L-dips is
unaffected by the magnetic field while the location of the other of the two L-dips is shifted by the
magnetic field. Then from the relative separation of the two L-dips it is possible to determine the
magnetic field.

Namely, we are talking about the following pairs of the L-dips. One pair corresponds to

(n’ + n”)α = 0, (n’ + n”)β = −1, (13)

while another pair corresponds to

(n’ + n”)α = 1, (n’ + n”)β = 0. (14)

The ratio
∆ωdip

(α)/∆ωdip
(β) = (1/nα)[(nα

2 − nβ
2)b2 + nβ

2]1/2 (15)

in the first case and the ratio

∆ωdip
(β)/∆ωdip

(α) = (1/nβ)[nα
2 − (nα

2 − nβ
2)b2]1/2 (16)

in the second case are simple functions of the magnetic field, as it is seen from the above formulas.
Figure 1 shows the ratio ∆ωdip

(α)/∆ωdip
(β) in the pair of the L-dips corresponding to (n’ + n”)α =

0, (n’ + n”)β = −1, versus the scaled dimensionless magnetic field b for the Balmer-alpha line (solid
curve) and for the Balmer-beta line (dashed curve).
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Figure 1. The ratio of positions ∆ωdip
(α)/∆ωdip

(β) in the pair of the L-dips corresponding
to (n’ + n”)α = 0, (n’+n”)β = −1, versus the scaled (dimensionless) magnetic field b (defined by
Equation (12)) for the Balmer-alpha line (solid curve) and for the Balmer-beta line (dashed curve).
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It is seen that in the range of b presented in Figure 1, the magnetic field significantly affects the
relative positions of the L-dips, so that by measuring the latter it is possible to determine the magnetic
field. For the laser frequency ω = 1.77 × 1015 s−1used, e.g., in experiments [3,7], the range of b ~(1–10)
corresponds to the range of the magnetic field B ~(0.2–2) GG for the one-quantum resonance and to
B ~(0.4–4) GG for the two-quantum resonance. For b >> 10, the possible L-dips at ∆ωdip

(α) would be
shifted too far into the wings of the spectral lines, so that most probably they could not be observed.

For completeness we note that if one would use the pair of the L-dips in the profiles of Stark
components characterized by the quantum numbers from Equation (14), then according to Equation (16)
the range of b would be limited to bmax = nα

2/(nα
2 − nβ

2). This is because at bmax = nα
2/(nα

2 − nβ
2),

the possible L-dips at ∆ωdip
(β)) would disappear.

Here is a practical example based on measuring the relative shift of the L-dips in the profiles of
the Balmer lines of Cu XXIX. (We note that it is technologically simple to make and use thin Cu foils to
irradiate them by a powerful laser). The wavelengths of the Balmer-alpha and Balmer-beta lines of Cu
XXIX are 0.77 nm and 0.57 nm, respectively. This is practically the same range of the wavelength as it
was employed, e.g., in experiments [3,7] while studying the L-dips in the profiles of the Ly-beta line of
Si XIV and Al XIII. Therefore, the same kind of spectrometers can be used without any major additional
tuning for experimental studies of possible L-dips in the profile of the Balmer-alpha and Balmer-beta
lines of Cu XXIX, and thus for the experimental determination of GG (or sub-GG) magnetic fields.

In summary, ultrastrong magnetic fields affect the separation of the L-dips from one another,
so that this relative shift can be used to measure sub-GG and GG magnetic fields. Earlier there was
proposed another diagnostic of magnetic fields in plasmas based on the polarization measurements of
X-ray spectral line profiles [14]. However, the method proposed in the present research note is easier
to implement experimentally: it does not require performing the polarization measurements in the
X-ray range, which would be relatively difficult to implement.
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