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Abstract: The Dirac–Hartree–Fock plus many-body perturbation theory (DHF + MBPT) method has
been used to calculate hyperfine structure constants for Fr. Calculated hyperfine structure anomaly
for hydrogen-like ion is in good agreement with analytical expressions. It has been shown that the
ratio of the anomalies for s and p1/2 states is weakly dependent on the principal quantum number.
Finally, we estimate Bohr–Weisskopf corrections for several Fr isotopes. Our results may be used to
improve experimental accuracy for the nuclear g factors of short-lived isotopes.
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1. Introduction

The hyperfine structure constants (HFS) and isotope shifts are highly sensitive to the changes of
charge and magnetization distributions inside the nucleus. The precision achieved in measurements
of these parameters coupled with advances in atomic theory enable new atomic physics based tests
of nuclear models. Thus, the HFS measurements can serve as very useful tool, for example, for the
understanding of the shape coexistence phenomena in atomic nuclei [1].

The ratio of magnetic hyperfine constants A for different isotopes is usually assumed to be
equal to the ratio of their nuclear g factors gI = µ

µN I , where µ and I are magnetic moment and
spin of the nucleus, µN is nuclear magneton. However, this is true only for the point-like nucleus.
For the finite nucleus, one should take into account: (i) the distribution of the magnetization inside
the nucleus; and (ii) the dependence of the electron wave function on the nuclear charge radius.
Former correction is called magnetic, or Bohr–Weisskopf (BW) correction [2] and the latter one is called
charge, or Breit–Rosenthal (BR) correction [3,4]. These corrections break proportionality between
magnetic hyperfine constants and nuclear g factors. This phenomenon is called the hyperfine anomaly
(HFA) [2]. Magnetic HFA gives the unique opportunity to trace the change in the magnetization
distribution in the nucleus. However, the absence of advanced atomic calculation prevents extracting
the nuclear parameters from the experimental data. On the other hand, the HFA correction is usually
small (less than 1%) [5] and only recently the measurements for the short-lived nuclei reached this
level of accuracy. Thus, the development of the new methods of atomic calculations of the hyperfine
constants accounting for the HFA becomes relevant and timely [6]. Below, we discuss how to calculate
HFA for many-electron atoms with available atomic package [7], which is based on the original
Dirac–Hartree–Fock code [8]. This package has often been used to calculate different atomic properties
including HFS constants of Tl [9–11] and Pb [12].

We study francium atom, because for its isotopic chain there are comprehensive experimental
data [13–18] and many theoretical calculations [19–22]. In particular, changes of the nuclear charge
radii in the Fr isotopic series were calculated from the isotope shift measurements [23,24].
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2. Theory and Methods

It is generally accepted that the observed HFS constant A can be written in the following form
(see, e.g., Reference [25]):

A = gIA0(1− δ)(1− ε). (1)

Here, gI is the nuclear g factor, gIA0 is the HFS constant for the point-like nucleus, and δ and ε

are the nuclear charge distribution (BR) and magnetization distribution (BW) corrections respectively.
A0 is independent of the nuclear g factor. In the case of hydrogen-like ions, the expression for A0 was
obtained in the analytical form by Shabaev [26]:

A0 =
α(αZ)3

j(j + 1)
m
mp

κ(2κ(γ + nr)− N)

N4γ(4γ2 − 1)
mc2. (2)

Here, α is the fine-structure constant, Z is the nuclear charge, m and mp are electron and
proton masses, j is the total electron angular momentum, κ is the relativistic quantum number,
N =

√
n2

r + 2nrγ +κ2, nr is the radial quantum number, and γ =
√
κ2 − (αZ)2. We use refined model

of the homogeneously charged and magnetized ball of the radius R =
( 5

3 〈r2〉
)1/2. Extended nuclear

magnetization is formed by the spin polarization of nucleons and by the orbital motion of protons.
The charge density inside the nucleus is relatively stable for different isotopes [27], whereas the nuclear
magnetization strongly depends on the spin and configuration of each isotope. Following Refs. [28,29],
we introduce the nuclear factor dnuc for parameterization of these nuclear effects. Then, the BR and
BW corrections δ and ε for a given Z and electron state can be written as [11]:

δ(R) = bN R2γ−1, ε(R, dnuc) = bMdnucR2γ−1, (3)

where bN and bM are factors, which are independent of the nuclear radius and structure. It follows
from Equations (1) and (3) that, if we calculate the HFS constant for different R and dnuc, we should
get in the first order in δ and ε the following dependence on the nuclear radius:

A(gI , dnuc, R) = gIA0

(
1− (bN + bMdnuc)R2γ−1

)
. (4)

Within the point-like magnetic dipole approximation dnuc = 0 and the Bohr–Weisskopf correction,
ε is equal to zero. Then, assuming that gI = 1, one can fit the HFS constant by the function:

A(1, 0, R) = A0

(
1− bN R2γ−1

)
. (5)

On the other hand, for dnuc = 1. one obtains:

A(1, 1, R) = A0

(
1− (bN + bM)R2γ−1

)
. (6)

Let us compare HFS constants for two isotopes with nuclear g factors g(1)I and g(2)I ,

slightly different nuclear radii R(1,2) = R± r, and nuclear factors d(1)nuc = d(2)nuc = 0:

A(g(1)I , 0, R + r)

A(g(2)I , 0, R− r)
≈ 1 + 2r

∂A(g(1)I , 0, R)/∂R

A(g(2)I , 0, R)
. (7)
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Then, the part of the HFS anomaly related to the change of the nuclear charge distribution
1∆2

BR(R) is:

1∆2
BR(R, r) ≡

g(2)I A(g(1)I , 0, R + r)

g(1)I A(g(2)I , 0, R− r)
− 1 ≈ 2(2γ− 1)bN R2γ−2r. (8)

In this work, we calculate the magnetic hyperfine constants and HFS anomalies for low-lying
states of Fr atom within the Dirac–Hartree–Fock (DHF) approximation and the DHF plus many-body
perturbation theory (DHF + MBPT) method. In our calculations, we account for the Breit corrections
and spin-polarization of the core.

3. Results and Discussion

3.1. HFS Anomaly for H-Like Francium Ion

Here, we calculate HFS constants of the 1s, 2s, and 2p1/2 states of Fr86+ for the different nuclear
radii R and compare our results with analytical expressions from Reference [26]. Figure 1 shows the
dependence of the hyperfine constant A(1s) on the nuclear radius R assuming that gI = 1. We see
very good agreement with Equations (5) and (6).
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Figure 1. Dependence of the HFS constant A(gI , dnuc, R) for the ground state of H-like Fr ion on
the nuclear radius for gI = 1. Dots and circles correspond to the calculated values. Dashed lines
correspond to the fits by Equations (5) and (6). Dots: both BR and BW corrections are taken into account;
circles: BW correction is equal to zero.

Table 1 summarizes our results for the H-like Fr ion. For all three states, we see good agreement
between analytical values ofA0 from Equation (2) and the values obtained from the fit of the calculated
HFS constants for finite nuclei. According to our calculations, the ratios of the parameters bN and bM

for 1s and 2s states are close to unity: bN(1s)
bN(2s) = 0.933 and bM(1s)

bM(2s) = 0.933. This is expected, as in the first
approximation, inside the nucleus the wave functions of the same symmetry should be proportional
to each other. Similar ratios for 2s and 2p1/2 states are bN(2s)

bN(2p1/2)
= 3.128 and bM(2s)

bM(2p1/2)
= 2.961. Again,

one can expect that these ratios weakly depend on the principle quantum number.
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Table 1. Compilation of the fitting parameters for the HFS of the H-like Fr ion. BR and BW corrections
δ and ε for 210Fr86+ are calculated for R = 7.1766 fm [30] and dnuc = 1. Parameters δ and ε are given
in percent.

1s 2s 2p1/2

A0 (THz) fit. 292.0 49.5 15.2
Reference [26] 291.5 49.5 15.1

bN · 102/fm2γ−1 fit. 4.817 5.161 1.650
δ(210Fr), % fit. 14.11 15.12 4.83
bM · 102/fm2γ−1 fit. 0.710 0.761 0.257
ε(210Fr, dnuc = 1), % fit. 2.08 2.23 0.75

3.2. HFS Anomaly of Neutral Francium Atom

The ground configuration of the neutral francium atom is [Rn]7s. If we treat francium as
one-electron system with the frozen core, we can do calculations using Dirac–Hartree–Fock (DHF)
method. In this case, the dependence of the HFS constants on the nuclear radius is similar to the
one-electron ion.

In the DHF approximation, the HFS constant A(7p3/2)/gI = 55.6 MHz is small and insensitive to
HFA (see Table 2). At the same time, the HFS constants A(7s)/gI and A(7p1/2)/gI are well described
by Equations (5) and (6). According to our calculations, the ratios of coefficients bN and bM for s and
p1/2 waves are close to the respective ratios in H-like ion bN(1s)

bN(7s) = 0.908 and bM(1s)
bM(7s) = 0.929. This result

is compatible with the assertion made in Reference [31] that the hyperfine anomaly measured for
the s states in Rb is weakly dependent on the principal quantum number n = 5, 6, 7. Ratios of the
parameters bN and bM for 7s and 7p1/2 are: bN(7s)

bN(7p1/2)
= 2.907 and bM(7s)

bM(7p1/2)
= 2.690, while for the

H-like ion we had 3.128 and 2.961, respectively.
The situation changes when we include spin-polarization of the core via random phase

approximation (RPA) corrections. These corrections lead to effective mixing of different partial
waves, thus the constant A(7p3/2) acquires contributions from the s and p1/2 waves. Due to the RPA
corrections, the value of the constant A(7p3/2) is significantly changed. At the same time, this constant
becomes sensitive to the distributions inside the nucleus. To account for that, we can use Equation (3)
with the same γ as for s and p1/2 states. The RPA corrections for the 7s and 7p1/2 states are smaller
than for 7p3/2, but they are also significant. Due to the RPA corrections, the ratios of the parameters bN

and bM for 7s and 7p1/2 states change by ∼ 15%: bN(7s)
bN(7p1/2)

= 3.153 and bM(7s)
bM(7p1/2)

= 3.073.
Core–valence and core–core electron correlations were taken into account within the DHF + MBPT

method [7]. Electron correlation corrections significantly changeA0 values. The parameters bN and bM
also change, but the ratios of these parameters for the 7s and 7p1/2 states remain stable. Without RPA
corrections, these ratios are equal to: bN(7s)

bN(7p1/2)
= 3.033 and bM(7s)

bM(7p1/2)
= 2.663. Final ratios were obtained

in the DHF+MBPT approximation with RPA and Breit corrections:

bN(7s)
bN(7p1/2)

= 3.280 ,
bM(7s)

bM(7p1/2)
= 3.023 . (9)

According to Mårtensson-Pendrill [21], the ratio of bN parameters obtained by scaling the
Breit–Rosenthal corrections for Tl is equal to 3.2 in a good agreement with our result. For the ratio of
the bM parameters, she used the value 3.0 also in agreement with our results.
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Information about parameters bN and bM can be extracted from the experimentally measured
ratio of the HFS constants ρ = A(7s)/A(7p1/2). This ratio can be written as a function of the nuclear
radius R and the nuclear factor dnuc:

1− ρ(R, dnuc)

ρ0
≈
(
bN(7s)− bN(7p1/2)

)
R2γ−1 + dnuc

(
bM(7s)− bM(7p1/2)

)
R2γ−1, (10)

where ρ0 = A0(7s)/A0(7p1/2). Several experimentally measured values of ρ for odd–odd and
even–odd isotopes [13] and corresponding fits by Equation (10) are presented in Figure 2.

Table 2. Calculated parameters A0 (MHz), bN and bM (fm1−2γ) for the neutral Fr atom on a different
levels of approximation.

A0 bN · 102 bM · 102

7s
DHF 7894.710 5.3030 0.7646
DHF + Br 7882.694 5.2989 0.7642
DHF + MBPT 10,602.174 4.7502 0.8584
DHF + MBPT+Br 10,581.950 4.7013 0.8506
DHF + RPA 8684.144 5.1092 0.8008
DHF + Br + RPA 8682.028 5.1020 0.8007
DHF + MBPT + RPA 11,518.484 4.6067 0.8844
DHF + MBPT + Br + RPA 11,507.415 4.5516 0.8738

7p1/2
DHF 746.580 1.8241 0.2842
DHF + Br 740.251 1.8204 0.2837
DHF + MBPT 1130.031 1.5661 0.3223
DHF + MBPT+Br 1120.865 1.5461 0.3160
DHF + RPA 865.034 1.6205 0.2606
DHF + Br + RPA 861.718 1.6223 0.2627
DHF + MBPT + RPA 1308.388 1.4018 0.2929
DHF + MBPT + Br + RPA 1300.950 1.3879 0.2891

7p3/2
DHF 55.524 0.0000 0.0000
DHF + Br 55.153 0.0000 0.0000
DHF + MBPT 77.870 0.0000 0.0000
DHF + MBPT + Br 77.437 0.0000 0.0000
DHF + RPA 94.984 1.2620 0.2769
DHF + Br + RPA 94.721 1.2545 0.2742
DHF + MBPT + RPA 132.482 1.2535 0.2919
DHF + MBPT + Br + RPA 131.988 1.2382 0.2843

Even–odd Fr isotopes with neutron number N ≤ 126 (A ≤ 213) have spin I = 9/2. The magnetic
moments µ(A, 9/2) for isotopes from A = 213 to A = 207 differ by only 3% [32]. Ground states of
these isotopes are regarded as pure shell-model h9/2 states. According to Reference [33], for such states,
the factor dnuc is also constant within the same 3% limit. The value of this factor can be calculated
using the simple shell-model formula: dnuc = 0.3 (see Reference [21]). Then, the one-parameter fit
with ρ0 as the free parameter gives us the following relation: ρ = 8.456 (1− 0.033 R2γ−1), where we
used our final results for bN and bM from Table 2, or ρ = 8.404 (1 − 0.031 R2γ−1) within the
two-parameter fit. Comparing these two results, we can estimate the error bars for fitting parameters
to be: ρ0 = 8.43(3) and bN + dnuc bM = 0.032(1). Note that the theoretical value of ρ0 obtained
within DHF + MBPT + Br + RPA method is equal to 8.85, which is 5% larger. Taking into account the
possible few percent change of the dnuc factor from one isotope to another and its deviation from the
shell-model value, the correspondence between fitted and calculated ρ values should be regarded
as satisfactory.
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Figure 2. Experimentally measured ratios ρ = A(7s)/A(7p1/2) for even–odd and odd–odd isotopes of
francium [13]. The nuclear radii R are taken from Reference [30]. Solid lines are the one-parameter fits
by Equation (10); dashed line corresponds to the two-parameter fit. For even–odd isotopes, we use
dnuc = 0.3 [21] and parameters ρ0 (one-parameter fit), or ρ0 and (bN + dnuc bM) (two-parameter fit).
Then, for odd–odd isotopes, we fix the value of ρ0 obtained from the previous one-parameter fit and fit
nuclear factor dnuc, with the result dnuc = 0.49. For 221Fr, the fit gives dnuc = 0.05.

For calculation of dnuc factor for the odd–odd isotopes formulas from Reference [28] were used
(see Equations (38) and (39) on p. 29 and Equations (41) and (42) on p. 38). Spins and configurations
for these isotopes with A = 206− 212 are different (I = 5, 6, 7, 3). Correspondingly, the factor dnuc can
be different as well. However, in the shell model, one can show that, for all these cases, dnuc = 0.5(1).
To check the general applicability of our approach, we suppose that the nuclear factor is the same
for all considered odd–odd Fr isotopes. We fix ρ0 obtained for even–odd Fr isotopes and fit nuclear
factor for odd–odd ones, which gives us dnuc = 0.49, in agreement with the shell-model estimation.
The deviation of the experimental ρ values for 206mFr and 206gFr from the fitted line (see Figure 2) is
obviously connected to the structural changes in these nuclei resulting in the changes of the factor dnuc

(see discussion in Reference [13]). For 221Fr, the fit gives dnuc = 0.05. This result can be of a particular
interest for the nuclear physics and more detailed analysis will be presented in the forthcoming paper.

The accuracy reached in our calculations of the HFS constants for neutral Fr can be
estimated in comparison with available experimental and theoretical data presented in Table 3.
Due to Bohr–Weisskopf correction, calculated A(7s) and A(7p1/2) constants of 210Fr are reduced
approximately by 1.24% and 0.41%, respectively. Thus, within the DHF + MBPT + Br + RPA method
we obtain following final values: A(7s)/gI = 9849.57 MHz and A(7p1/2)/gI = 1242.94 MHz.
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Table 3. Calculated HFS constants for low-lying states of the neutral 210Fr. We use a point-like magnetic
dipole approximation, as described by Equation (5), and assume that R = 7.1766 fm and gI = 0.733.
Then, in the final results, we add Bohr–Weisskopf correction for dnuc = 0.49. Available experimental
data and other theoretical relativistic coupled-cluster results are also presented.

Method A(7s)/gI A(7p1/2)/gI A(7p3/2)/gI
(MHz) (MHz) (MHz)

DHF 6668.56 706.70 55.52
DHF + Br 6659.37 700.78 55.15
DHF + MBPT 9127.20 1078.20 77.87
DHF + MBPT + Br 9124.92 1070.11 77.44
DHF + RPA 7491.91 837.58 95.43
DHF + Br + RPA 7496.66 833.22 94.73
DHF + MBPT + RPA 9964.42 1254.67 127.62
DHF + MBPT + Br + RPA 9973.44 1248.07 127.20
FINAL (BR and BW) 9849.57 1242.94 126.69

Theory * [19] 9927 – –
Theory [20] 9885.24 1279.56 104.28

Experiment [14,30,32] 9856 (113) 1296 (15) 106.8 (13)

* In this study, the charge and magnetization distributions were modeled by
the same Fermi distribution.

4. Conclusions

In this work, we use the method developed in Reference [11] to calculate the hyperfine anomaly
by the analysis of the HFS constants of Fr as functions of nuclear radius. The HFA in this method
can be parameterized by coefficients bN and bM. We test our method by calculating HFS constants of
H-like francium ion and obtain fairly good agreement with analytical expression from Reference [26].
Then, we make calculations for neutral Fr, described as a system with one valence electron. We show
that the ratios of bN(7s)/bN(7p1/2) and bM(7s)/bM(7p1/2) are practically the same, as in H-like ion
and rather stable within the DHF and DHF + MBPT approximations. However, when we include
spin-polarization of the core by means of the RPA corrections, these ratios change by 10–15%.

The corrections caused by the redistribution of the magnetization inside the nucleus are estimated
using experimentally measured ratio of the HFS constants A(7s)/A(7p1/2). Estimated Bohr–Weisskopf
corrections for odd–odd francium isotopes 206, 208, 210, and 212 are found to be 1.62 times larger
than for even–odd isotopes 207, 209, 211, and 213. The Bohr–Weisskopf correction for 221Fr is
significantly smaller than for other even–odd isotopes. This information can be used to obtain
more accurate values for the nuclear g factors of the short-lived isotopes of francium from the ratios
of the HFS constants. The reliability of the applied method enables one to determine the nuclear
factor dnuc which gives important nuclear-structure information and may be compared with the
theoretical predictions.
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