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Abstract: We analytically calculated the shift of spectral lines of hydrogenlike ions for non-spherical
nuclear shapes, such as the oblate or prolate ellipsoid of revolution. We show that the allowance for
the ellipsoidal nuclear shape can change the shift of spectral lines of muonic hydrogenlike ions by
several times compared to the corresponding shift for spherical nuclei. This can serve as an additional
method for the experimental determination of the quadrupole moment of nuclei and of the standard
beta-parameter related to the quadrupole moment.

Keywords: spectral line shift; muonic ions; nuclear shapes; nuclear quadrupole moment

1. Introduction

It is well known that atomic physics experiments can reveal some properties of nuclei—see,
e.g., [1] and the references therein. For example, observations of isotope shifts were used for
determining nuclear sizes; the corresponding results obtained under the assumption of the spherical
nuclear shapes for the uniform charge distribution can even be found in textbooks on quantum
mechanics—see, e.g., Flügge [2]. Further results, obtained under the assumption of the spherical
nuclear shapes, but for Gaussian and the so-called exponential charge distributions, can be found in [3].
We note that the Lamb shift calculations are usually performed under the assumption of the spherical
nuclear shapes—see, e.g., [4], where such calculations were done for Gaussian and Lorentzian (called
“dipole” in [4]) charge distributions.

However, many different atomic nuclei have non-spherical shapes, e.g. (though not limited
to), oblate or prolate ellipsoid of revolution (spheroid)—see, e.g., [5–7] and the references therein.
(Below, for brevity, we use the term “ellipsoid” for the ellipsoid of revolution.)

In the present paper we analytically calculate the shift of spectral lines of hydrogenlike ions for
ellipsoid-shaped nuclei for the uniform charge distribution. In this situation the contribution to the
shift originates not only from the part of the ionic (“atomic”) wave function inside the nucleus, as was
the case for spherical nuclei, but also from the modification of the ionic wave function outside the
nucleus—distinct from the case of spherical nuclei. Here and below, by ionic wave function we mean
the wave function of the bound charged lepton, e.g., electron or muon.

We show that the allowance for the ellipsoidal nuclear shape can change the shift of spectral lines
of muonic ions by several times compared to the corresponding shift for spherical nuclei. This can serve
as an additional method for the experimental determination of the quadrupole moment of nuclei and
of the standard beta-parameter (whose definition will be reminded in the next section) related to the
quadrupole moment.

2. Analytical Results

We consider a hydrogenlike ion consisting of the oblate or prolate ellipsoid-shaped nucleus
of charge Z and a charged lepton, such as electron or muon. Here and below, we use atomic units

Atoms 2018, 6, 14; doi:10.3390/atoms6020014 www.mdpi.com/journal/atoms

http://www.mdpi.com/journal/atoms
http://www.mdpi.com
http://www.mdpi.com/journal/atoms
http://www.mdpi.com/2218-2004/6/2/14?type=check_update&version=1
http://dx.doi.org/10.3390/atoms6020014


Atoms 2018, 6, 14 2 of 8

h̄ = e = me = 1, unless specified to the contrary. The ellipsoid has the size 2a in the equatorial plane
and the size 2c along the axis of symmetry. The potential outside the nucleus is usually approximated
in the following way

Uoutside(r, cosθ) = − (Z/r)[1 + β(a/r)2P2(cosθ)], (1)

where
P2(cosθ) = (3 cos2θ − 1)/2 (2)

is one of Legendre polynomials. The coefficient β is related to the quadrupole moment D of the
ellipsoid as follows:

β = D/(Za2), (3)

where
D = 2Z(c2 − a2)/5 (4)

(see, e.g., [8]).
Motion in the potential from Equation (1) is not a unique feature of nuclear physics. The same

type of potential arises in the problem of a hydrogenic atom with a point-like nucleus in the field of
a high-frequency electromagnetic radiation, as shown in [9,10]. One of the most important results
from [10] was that the corresponding Hamiltonian possesses symmetry higher than the geometrical
(axial) symmetry: in addition to the conservation of the projection of the angular momentum on the
axis of symmetry (which follows from the geometrical symmetry), there is an additional conserved
(approximately) quantity—the square of the angular momentum. It was also noted in [10] that this
problem from atomic physics has a well-known celestial analogy: the motion of a satellite in the
gravitational field of an oblate planet (e.g., the Earth). Interestingly enough, the latter problem from
celestial mechanics is mathematically equivalent (approximately) to the motion of a satellite in the
field of two stationary planets (or stars) separated by a purely imaginary (!) distance—see, e.g., [11].
Thus, the potential from Equation (1) is responsible for rich physics in various research areas.

The quantum manifestation of the higher than geometrical symmetry of the Hamiltonian with the
potential (1) is that spherical wave functions of the unperturbed Hamiltonian (i.e., for β = 0) turned
out to be the correct eigenfunctions of the zeroth order of the perturbed Hamiltonian (i.e., for nonzero
β), as shown in [9]. Therefore, despite the degeneracy of the states of the unperturbed Hamiltonian,
the first nonvanishing energy correction turned out to be the same as obtained by the perturbation
theory for nondegenerate states [9]. According to formulas derived in [9], the first nonvanishing energy
correction can be represented in the following form for nonzero values of the quantum number L:

E(2)
nLM = (2βa2Z4µ3/n3)[3M2 − L(L + 1)]/[L(L + 1)(2L − 1)(2L + 1)(2L + 3)], (5)

where µ is the reduced mass of the pair “nucleus—charged lepton”. In atomic units, the value of µ is
close to unity if the lepton is an electron or about 200 if the lepton is a muon.

For L = 0, the corresponding result obtained in [9] can be represented as follows1:

E(2)
n00 = 2βa2Z4µ3/(3n3). (6)

For nonzero values of L, after averaging the energy correction E(2)
nLM from Equation (5) over the

M-sublevels, it vanishes. Therefore, the average of M energy correction of the second order is only
E(2)

n00 given by Equation (6).

1 We note that the result for L = 0 was obtained in [9] by considering a quasi-Coulomb potential −Z/r1 − ε, where ε << 1,
and then taking the limit of ε = 0. This method allowed us to remove the uncertainty that would arise if one used the
Coulomb potential for calculating the energy correction for L = 0. We also note that Equation (6) can be obtained from
Equation (5), first by setting M = 0 in Equation (5), then by cancelling out L(L + 1) in the numerator and denominator,
and then setting L = 0.
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Thus, the contribution to the energy shift due to the non-spherical potential outside the nucleus is
relevant only to L = 0 levels and is equal to

∆Eoutside = 2βa2Z4µ3/(3n3) = 4(c2 − a2) Z4µ3/(15n3), (7)

where for obtaining the utmost right side for Equation (7) we used Equations (3) and (4).
Now we proceed to calculating the energy shift due to the non-spherical potential inside the

nucleus. First we remind the corresponding result for the spherical nucleus presented, e.g., in [2].
The potential inside the spherical nucleus of the radius R had the form

Uinside
sphere(r) = (Z/R)[r2/(2R2) − 3/2]. (8)

By calculating the mean value of the perturbation:

∆Uinside
sphere(r) = Uinside

sphere(r) − (−Z/r), (9)

the energy shift for the levels of L = 0 was found to be

∆Einside
sphere = 2Z4µ3R2/(5n3), (10)

while the shift of the levels of non-zero values of L was zero (see, e.g., [2]), the latter being due to the
fact that for non-zero values of L, the wave function of the bound lepton is zero at the origin.

The potential inside the ellipsoid-shape nucleus of the same volume V as the sphere of the radius
R can be represented in the form

Uinside(r) = (Z/R)[$2/(2a2) + z2/(2c2) − 3/2], (11)

where $ and z are the cylindrical coordinates (the z-axis being the symmetry axis of the ellipsoid) and

R = [3V/(4π)]1/3 = a2/3c1/3. (12)

Equation (12) was obtained by equating the volume of the ellipsoid 4πa2c/3 to the volume of the
sphere 4πR3/3 of the radius R. In spherical polar coordinates, Equation (11) can be rewritten as follows:

Uinside(r) = (Z/R)[r2sin2θ/(2a2) + r2 cos2θ/(2c2) − 3/2], (13)

where θ is the polar angle.
By calculating the mean value of the perturbation:

∆Uinside(r) = Uinside(r) − (−Z/r), (14)

similarly to the situation with the spherical nucleus, we find that the energy shift is non-zero only for
the levels of L = 0 and is equal to

∆Einside = [2Z4µ3R4/(15n3)](2/a2 + 1/c2). (15)

By combining this contribution to the energy shift due to the non-spherical potential inside the
nucleus with the corresponding contribution to the energy shift due to the non-spherical potential
outside the nucleus (given by Equation (7)), we obtain the following total shift for the levels of L = 0:

∆Etot = [2Z4µ3R2/(15n3)][2(c/a)2/3 − 2(a/c)2/3 + 2(c/a)4/3 + (a/c)4/3], (16)

where R was defined in Equation (12).
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It is instructive to calculate the ratio of the shift from Equation (16) to the corresponding shift for
the spherical nucleus from Equation (10):

ratio = ∆Etot/∆Einside
sphere = [2(c/a)2/3 − 2(a/c)2/3 + 2(c/a)4/3 + (a/c)4/3]/3. (17)

By substituting Equation (4) into Equation (3), the parameter β, entering Equation (1) for the potential
and characterizing the degree of non-sphericity of the nucleus, can be represented in the form:

β = 2[(c/a)2 − 1]/5 (18)

(obviously, since c/a formally can take values from 0 to ∞, the parameter β formally can take values
from −2/5 to ∞). Therefore, the “ellipticity” parameter c/a can be expressed through the parameter β
as follows:

c/a = (1 + 5β/2)1/2. (19)

On substituting Equation (19) in Equation (17), we obtain the following final formula for the
dependence of the above ratio on the parameter β:

ratio = ∆Etot/∆Einside
sphere = [2(1 + 5β/2)1/3 − 2(1 + 5β/2)−1/3 + 2(1 + 5β/2)2/3 + (1 + 5β/2)−2/3]/3. (20)

Figure 1 shows the dependence of this ratio on parameter β. Figure 2 shows the magnified part of
this dependence around its minimum equal to 0.454, corresponding to β = −0.322.

Figure 1. Ratio of the energy shift due to the ellipsoid-shaped nucleus to the energy shift due to the
corresponding spherical nucleus versus the parameter β, characterizing the degree of non-sphericity of
the nucleus.

Figure 2. The magnified part of the dependence from Figure 1 around the minimum of this dependence,
which is equal to 0.454 and corresponds to β = −0.322.
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It is seen that the allowance for the ellipsoidal nuclear shape can indeed change the energy shift
of muonic ions by several times compared to the corresponding shift for spherical nuclei. This energy
shift and its change compared to the spherical nucleus should be possible to detect by observing the
shift of the Lyman spectral lines of muonic ions. It is important to note that since the spectral lines of
the Lyman series correspond to the radiative transitions from the upper level nP to the lower (ground)
level 1S and only the lower level energy gets shifted by ∆Etot presented in Equation (16), then the shift
S of the Lyman lines in the frequency scale is

S = −∆Etot(n = 1) = −(2Z4µ3R2/15)[2(1 + 5β/2)1/3 −2(1 + 5β/2)−1/3 + 2(1 + 5β/2)2/3 + (1 + 5β/2)−2/3], (21)

where R was defined in Equation (12). Since ∆Etot(n = 1) is positive for any β (see Figure 1), then S is
always negative for any β, so the shift of the Lyman lines in the wavelength scale is always red for any β.

Thus, by measuring the shift S of the Lyman lines of a muonic ion and knowing the nuclear
volume V or the average nuclear radius R = [3V/4π]1/3, it is possible to use Equation (21) (or Figure 1)
to determine the experimental value of the parameter β and thus the experimental value of the nuclear
quadrupole moment D connected to β. For the latter purpose, the expression for D in Equation (4) can
be rewritten as follows;

D = (2ZR2/5)[(c/a)4/3 − (a/c)2/3] = (2ZR2/5)[(1 + 5β/2)2/3 − (1 + 5β/2)−1/3]. (22)

As for the coefficient in front of the square brackets in Equation (21), here is a practical formula for it:

2Z4µ3R2/15 = 4.2 × 10−4 Z4 [R(fermi)]2. (23)

This formula yields the above coefficient in the frequency unit of s –1.
In the above derivations for the simplicity of formulas, we disregarded the change of the

wave function of the bound muon across the nucleus. This is valid if the ratio of the nuclear size
R0(a.u.) = 2.6 × 10−5A1/3 (A being the atomic number) to the characteristic size of the muonic cloud
r0(a.u.) = 1/(µZ) (in the ground state) is relatively small:

R0/r0 = 5.5 × 10−3ZA1/3 < 1. (24)

Since typically A = (2 − 3)Z, Equation (22) can be rewritten as

R0/r0 = (6.9−7.9) × 10−3Z4/3 < 1, (25)

and it is satisfied if Z < Zmax ~40.
It should be emphasized that we disregarded the change of the wave function of the bound muon

across the nucleus just to get the message across in the simplest form. The change of the wave function
of the bound muon across the nucleus (resulting in corrections of the order of R0/r0) can be taken into
account in future publications.

3. Comparison with Competing Effects and Numerical Examples

Since the energy shift due to an ellipsoid-shape nucleus can be of the order of several times
greater than the energy shift due to the spherical nucleus ∆Einside

sphere (as demonstrated in Section 2,
with ∆Einside

sphere being presented in Equation (10)), it is sufficient to show that the energy shift due
to the spherical nucleus significantly exceeds the competing effects. One of these effects is the fine
structure splitting:

∆Efs(n) = E(n, j = 3/2) − E(n, j = 1/2) = α2µZ4/(4n3), (n > 1); ∆Efs(1) = 0, (26)
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where j is the quantum number of the total angular momentum and α is the fine structure constant
(1/α ~137).

First of all, the nuclear-shape-caused shift of the Lyman lines is due to the shift of the ground
level (n = 1), for which there is no fine structure splitting. Second, even if we compare ∆Einside

sphere(n)
with ∆Efs(n) for n > 1, we get

∆Einside
sphere(n)/∆Efs(n) = (8/5)(µR/α)2 > 1 (27)

for A > 1, i.e., for any nucleus heavier than the hydrogen nucleus. Since the fine structure splitting is the
relativistic effect, this comparison also justifies our employment of the nonrelativistic wave functions in
Section 2. In other words, the allowance for the relativistic effects would introduce relative corrections
to the primary shift-effect under consideration ~[α/(µR0)]2, where R0(a.u.) = 2.6 × 10−5A1/3, so that
the relative correction for muonic ions is ~1/A2/3 and thus is insignificant for A >> 1.

The next comparison is with the natural width γ. It is proportional to µZ4. By scaling the natural
width data from the NIST database to muonic ions, we find the following:

Ly-alpha line:

γ(a.u.) = 2.4 × 10−6Z4, ∆Einside
sphere(n = 2)/γ = 1.3 × 10A2/3, (28)

so that the latter ratio is much greater than unity for any A.
Ly-beta line:

γ(a.u.) = 2.8 × 10−7Z4, ∆Einside
sphere(n = 3)/γ = 3.2 × 102A2/3, (29)

so that the latter ratio is much greater than unity for any A.
Ly-gamma line:

γ(a.u.) = 6.4 × 10−8Z4, ∆Einside
sphere(n = 4)/γ = 6.0 × 102A2/3, (30)

so that the latter ratio is much greater than unity for any A.
Thus, the nuclear-shape-caused shift of the Lyman lines exceeds the natural width by several

orders of magnitude for any nucleus.
Finally, we estimate the ratio of the nuclear-shape-caused shift of the Lyman lines in the frequency

scale to their unperturbed frequencyω0(n), where

ω0(n) = (µZ2/2)(1 − 1/n2) (31)

in atomic units. The purpose of the comparison is to make sure that this shift exceeds the spectral
resolution and thus can be observed. For this estimate we again use the shift due to the spherical
nucleus: if the shift can be resolved for the spherical nucleus, then it could be resolved for the
ellipsoid-shaped nucleus since for the latter the shift is of the order of several times greater than for
the former.

According to Equation (21), the frequency shift of Lyman lines of muonic ions caused by the
spherical nucleus (c = a) is

Sspher = −2Z4µ3R2/5, (32)

so that for the ratio we obtain:

Sspher/ω0(n) = − 4Z2µ2R2/[5(1 − 1/n2)] = −2.4 × 10−5Z2A2/3. (33)

Consequently, for ellipsoid-shaped nuclei the corresponding estimate can be represented in the form

S/ω0(n) > Smin/ω0(n) ~−2.4 × 10−5Z2A2/3. (34)
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Below we present numerical values of Smin/ω0(n) for the muonic Lyman lines for several nuclei
that are listed, e.g., in [5] as known to be oblate (β < 0).

20
6C14 (oblate in the nuclear ground state):

Smin/ω0(2) ~−0.008 (for Ly-α), Smin/ω0(3) ~−0.007 (for Ly-β), Smin/ω0(4) ~−0.007 (for Ly-γ)

42
14Si28 (oblate in the nuclear ground state):

Smin/ω0(2) ~−0.07 (for Ly-α), Smin/ω0(3) ~−0.06 (for Ly-β), Smin/ω0(4) ~−0.06 (for Ly-γ)

12
6C6 (oblate in the 1st excited 2+ nuclear state):

Smin/ω0(2) ~−0.006 (for Ly-α), Smin/ω0(3) ~−0.005 (for Ly-β), Smin/ω0(4) ~−0.005 (for Ly-γ)

28
14Si14 (oblate in the 1st excited 2+ nuclear state):

Smin/ω0(2) ~−0.06 (for Ly-α), Smin/ω0(3) ~−0.05 (for Ly-β), Smin/ω0(4) ~−0.05 (for Ly-γ)

34
16S18 (oblate in the 1st excited 2+ nuclear state):

Smin/ω0(2) ~−0.08 (for Ly-α), Smin/ω0(3) ~−0.07 (for Ly-β), Smin/ω0(4) ~−0.07 (for Ly-γ)

36
18Ar18 (oblate in the 1st excited 2+ nuclear state):

Smin/ω0(2) ~−0.11 (for Ly-α), Smin/ω0(3) ~−0.09 (for Ly-β), Smin/ω0(4) ~−0.09 (for Ly-γ)

Thus, for all of the above examples, the relative shift of the muonic Lyman lines caused by
ellipsoid-shaped nuclei is sufficiently large to be detected by spectrometers.

4. Conclusions

We considered the motion of an electron or muon around an ellipsoid-shaped nucleus.
An interesting fundamental aspect of this problem is that it has an analogy with the problem of
a hydrogen atom with a point-like nucleus in the field of a high-frequency electromagnetic radiation.
Since the latter problem possesses symmetry higher than the geometrical (axial) symmetry (as shown
in [9]), the problem we considered in this paper also has symmetry higher than the geometrical
(axial) symmetry. Moreover, both problems have a celestial analogy in the motion of a satellite in the
gravitational field of an oblate or prolate planet.

We analytically calculated the shift of spectral lines of hydrogenlike ions for ellipsoid-shaped
nuclei with the emphasis on muonic ions. We showed that, distinct from the case of spherical nuclei,
the contribution to the shift originated not only from the part of the muonic wave function inside the
nucleus, but also from the modification of the ionic wave function outside the nucleus. By calculating
both contributions analytically, we demonstrated that the total shift of the Lyman lines of muonic
ions, caused by ellipsoid-shaped nuclei, is always red—both for prolate nuclei (corresponding to the
parameter β > 0) and for oblate nuclei (corresponding to the parameter β < 0).

The most important result we obtained is that the allowance for the ellipsoidal nuclear shape can
change the shift of spectral lines of muonic ions by several times compared to the corresponding shift
for spherical nuclei. We also showed that this shift exceeds the competing effects and can be detected by
spectrometers. Thus, experimental measurements of this shift would constitute an additional method
for determining the quadrupole moment of nuclei and of the standard parameter β related to the
quadrupole moment.
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