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Abstract: Atomic data, such as wavelengths, spectroscopic labels, broadening parameters and
transition rates, are necessary for many applications, especially in plasma diagnostics, and for
interpreting the spectra of distant astrophysical objects. The experiment with its limited resources
is unlikely to ever be able to provide a complete dataset on any atomic system. Instead, the bulk of
the data must be calculated. Based on fundamental principles and well-justified approximations,
theoretical atomic physics derives and implements algorithms and computational procedures
that yield the desired data. We review progress and recent developments in fully-relativistic
multiconfiguration Dirac–Hartree–Fock methods and show how large-scale calculations can give
transition energies of spectroscopic accuracy, i.e., with an accuracy comparable to the one obtained
from observations, as well as transition rates with estimated uncertainties of a few percent for a broad
range of ions. Finally, we discuss further developments and challenges.

Keywords: transition energies; lifetimes; transition rates; multiconfiguration Dirac-Hartree-Fock

PACS: 31.15.am; 32.30.Jc; 32.70.Cs

1. Introduction

Atomic data, such as wavelengths, spectroscopic labels, broadening parameters, excitation and
transition rates, are necessary for many applications, especially in plasma diagnostics, and for
interpreting laboratory and astrophysical spectra [1,2]. Plasma diagnostics are commonly applied to
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measure the physical state of the plasma, e.g., temperatures, densities, ion and chemical abundances.
Atomic databases, such as CHIANTI [3,4], are widely used for such diagnostic purposes. Their accuracy
relies on a range of atomic rates, the main ones being electron collision rates and transition rates. For the
solar corona, lines from highly charged iron ions, emitted in the extreme ultraviolet (EUV) and soft
X-ray region, are commonly used for diagnostics, together with those from all other abundant elements.
Atomic data and line identifications involving states of the lowest configurations of an ion are now
relatively well known and observed. However, much less data are available for lines from higher
configurations; one example is the lack of line identifications and rates for transitions from n = 4 iron
ions in the soft X-rays [5].

Line identification from observed spectra is a very difficult and challenging task. Different methods
such as isoelectronic interpolation and extrapolation, perfected by Edlén [6], can be used, but the
work is nowadays mostly done with the aid of calculated transition energies and simulated spectra.
For calculated transition energies, or wavelengths, to be of practical use, they need to be very accurate
with uncertainties of just a few mÅ, placing high demands on computational methodologies.

Transition rates and line ratios are needed for diagnostic purposes. Due to the almost complete
lack of accurate experimental data for atoms a few times ionized or more, the bulk of the transition
rates must be calculated. Not only the rates themselves should be provided, but also uncertainty
estimates that can be propagated in plasma models for sensitivity analysis. Both accurate rates and
uncertainty estimates pose a challenge, calling for methods for which computed properties can be
monitored as the wave functions are systematically improved.

This review summarizes the results from recent accurate relativistic multiconfiguration
calculations for lowly charged ions or more of astrophysical importance. Focus is on the transition
energies and their uncertainties, but transition rates and the associated uncertainty estimates are also
discussed. The astrophysical background is provided in the individual papers covered by the review.
Neutral atoms and ions in the lowest charge states are not covered in the review.

2. Multiconfiguration Methods

Multiconfiguration methods are versatile and can, in principle, be applied to any atomic or
ionic system [7]. Multiconfiguration methods generate approximate energies and wave functions
for the each of the targeted states in a system. The wave functions can then be used to compute
measurable quantities, such as transition rates, hyperfine structures or Landé g-factors [8]. Looking at
strengths and weaknesses, multiconfiguration methods capture near degeneracies and valence-valence
electron correlation very efficiently. They are however less good at accounting for core-core correlation,
and here, perturbative methods relying on a complete orbital basis have advantages. Work has been
done to combine multiconfiguration and perturbative methods in different ways [9–12], a development
that will open up accurate results also for more complex systems [13].

The relativistic multiconfiguration method, to be described below, is implemented in the
GRASP2K program package [14]. The package is generally available and utilizes a message passing
interface (MPI) for the most time-consuming programs, allowing for large-scale computing on
parallel computers.

2.1. Multiconfiguration Dirac-Hartree-Fock

Atomic calculations are based on a Hamiltonian. In the relativistic multiconfiguration Dirac-
Hartree-Fock (RMCDHF) method [7,15], as implemented in the GRASP2K package, the Hamiltonian
is taken as the Dirac-Coulomb Hamiltonian:

HDC =
N

∑
i=1

(
c αi · pi + (βi − 1)c2 + Vnuc(ri)

)
+

N

∑
i>j

1
rij

, (1)
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where Vnuc(ri) is the nuclear potential modelled from an extended nuclear charge distribution, rij is
the distance between electrons i and j and α and β are the Dirac matrices. Wave functions Ψ(γPJMJ)

for fine-structure states labelled by parity, P, and angular quantum numbers, JMJ , are expanded in
antisymmetrized and coupled configuration state functions (CSFs):

Ψ(γPJMJ) =
NCSF

∑
j=1

cjΦ(γjPJMJ). (2)

The labels {γj} denote the information of the CSFs, such as orbital occupancy and subshell
quantum numbers in the angular momentum coupling tree. The CSFs are built from products of
one-electron orbitals, having the general form:

ψnκ,m(r) =
1
r

(
Pnκ(r)χκ,m(θ, ϕ)

ıQnκ(r)χ−κ,m(θ, ϕ)

)
, (3)

where χ±κ,m(θ, ϕ) are two-component spin-orbit functions and where the radial functions are
numerically represented on a logarithmic grid. The selection of the CSFs depends on the atomic
system at hand and is described in Section 3.

In applications, one often seeks to determine energies and wave functions for a number,
sometimes up to a few hundred, of targeted states. This is most conveniently done in the extended
optimal level (EOL) scheme [16]. Given initial estimates of the radial functions, the energies E and
expansion coefficients c = (c1, . . . , cM)t for the targeted states are obtained as solutions to the relativistic
configuration interaction (RCI) problem:

Hc = Ec, (4)

where H is the RCI matrix of dimension M×M with elements:

Hij = 〈Φ(γiPJMJ)|HDC|Φ(γjPJMJ)〉. (5)

Once the expansion coefficients have been determined, the radial functions {Pnκ(r), Qnκ(r)} are
improved by solving a set of differential equations that results from applying the variational principle
on a weighted energy functional of the targeted states together with additional terms needed to
preserve the orthonormality of the orbitals. Appropriate boundary conditions for the radial orbitals
exclude undesired negative-energy solutions [15]. The RCI problem and the solution of the differential
equations are iterated until the radial orbitals and the energy are converged to a specified tolerance.

2.2. Configuration Interaction

The RMCDHF calculations are used to generate an orbital basis. Given this basis, the final wave
functions for the targeted states are obtained in RCI calculations based on the frequency dependent
Dirac-Coulomb-Breit Hamiltonian:

HDCB = HDC −
N

∑
i<j

[
αi · αj

cos(ωijrij/c)
rij

+ (αi ·∇)(αj ·∇)
cos(ωijrij/c)− 1

ω2
ijrij/c2

]
, (6)

where∇ is the gradient operator involving differentiation with respect to rij = ri− rj and rij = |rij| [17].
In the RCI calculations leading quantum electrodynamic (QED) effects, vacuum polarization and
self-energy are also taken into account. RCI calculations require less computational effort than do
RMCDHF calculations, and currently, expansions with millions of CSFs can be handled. The relativistic
multiconfiguration and configuration interaction calculations go together and are referred to as
RMCDHF/RCI calculations.
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2.3. Managing Large Expansions

To manage large expansions, CSFs can a priori be divided into two groups, referred to as a zero-
and first-order partitioning. The first group, P, with m elements (m� M) contains CSFs that account
for the major parts of the wave functions. The second group, Q, with M−m elements contains CSFs
that represent minor corrections. Allowing interaction between CSFs in group P, interaction between
CSFs in groups P and Q and diagonal interactions between CSFs in Q gives a matrix:(

H(PP) H(PQ)

H(QP) H(QQ)

)
, (7)

where H(QQ)
ij = δijE

Q
i . The restriction of H(QQ) to diagonal elements results in a huge reduction in

the total number of matrix elements and the corresponding time for RCI calculations [12]. A similar
reduction in computational time is obtained when constructing and solving the differential equations
obtained from the weighted energy functional. Different computational strategies apply: RMCDHF
calculations with limited interactions followed by RCI calculations with full interactions or RMCDHF
calculations with limited interactions followed by RCI calculations with limited interaction, possibly
with more CSFs in group P.

2.4. Labelling

In fully-relativistic calculations, quantum labels for the targeted states are obtained in jj-coupling.
Most often, this wave function representation is not pure, i.e., there is no dominant CSF whose quantum
numbers can be used to label a state in a proper way. Using the methods developed by Gaigalas and
co-workers [18], the wave function representation in jj-coupling is transformed to an approximate
representation in LSJ-coupling. This representation is normally more pure and better suited for
labelling. One should be aware of the fact that even in LSJ-coupling, the labelling is not straight
forward, and several components in the LSJ-coupling representation must be used in a recursive way
to find unique labels [19,20]. Programs for transforming wave functions and assigning unique labels
are important parts of the GRASP2K package [21].

2.5. Transition Properties

Given wave functions from RMCDHF/RCI calculations, transition properties, such as rates,
A, line strengths, S, and weighted oscillator strengths, g f , between two states γPJ and γ′P′ J′ are
computed in terms of reduced matrix elements:

〈Ψ(γPJ) ‖T(EMK)‖Ψ(γ′P′ J′) 〉, (8)

where the operator T(EMK) depends on the multipolarity, E1, M1, E2, M2, etc., of the transition.
By including Bessel functions in the definition of the operator, GRASP2K accounts for more high-order
effects than the usual transition operator used in non-relativistic calculations with Breit–Pauli
corrections [15]. Inserting the CSF expansions for the wave functions, the reduced matrix element
reduces to a sum over reduced matrix elements between CSFs. Using Racah algebra techniques, these
matrix elements are finally obtained as sums over radial integrals [22,23]. The above procedure assumes
that the two states γPJ and γ′P′ J′ are built from the same set of orbitals. When this is not the case,
e.g., when separate calculations have been done for the even and odd parity states, the representation
of the wave functions are changed in such a way that the orbitals become biorthonormal [24,25],
in which case the calculation continues along the lines above. For electric transitions, parameters
can be computed in both length and velocity gauge [26], where the results in the length gauge are
the preferred.
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3. General Computational Methodology: The SD-MR Approach

Systematic calculations using multiconfiguration methods follow a determined scheme as
described below. Details of the scheme are determined by the shell structure of the atom, the number
of targeted states, the desired accuracy of the final results and the available computational resources.
The atomic Hamiltonian is invariant with respect to space inversions, and there are no interactions
between odd and even parity states. The odd and even parity states are thus often treated in separate
sets of calculations. After validation for selected ions and states, computed transition energies and
rates can be used to aid the analysis of unknown spectra.

3.1. Multireference and Gross Features of the Wave Functions

For highly ionized systems, a natural starting point is the multireference set (MR). In this review,
we define the MR as the set of configurations associated with the targeted states of a given parity
together with important closely degenerate configurations. Applying rules for the coupling of angular
momenta, the configurations in the MR give rise to a set of CSFs that account for the most important
gross features of the wave functions. The expansion coefficients of the CSFs and the orbitals are
determined in an initial RMCDHF calculation. The orbitals for the initial calculation are called
spectroscopic orbitals. They are required to have the same node structure as hydrogenic orbitals,
i.e., the node structure is determined by the principal quantum number. The spectroscopic orbitals are
kept frozen in all subsequent calculations.

3.2. Including Electron Correlation and Determining an Orbital Set

The initial approximation of the wave functions is improved by adding CSFs that account for
electron correlation. Guided by a perturbative analysis, the CSFs are generated by the single (S)
and double (D) multireference (SD-MR) active space method in which a number of configurations
is obtained by SD substitutions of orbitals in the configurations of the MR with orbitals in an active
set [7,8]. Again, applying rules for the coupling of angular momenta, the generated configurations give
rise to the CSFs. Not all of these CSFs are important, and the CSFs are further required to be such that
they interact (have non-zero Hamiltonian matrix elements) with the CSFs of the MR. The expansion
coefficients of the CSFs and the radial parts of the orbitals in the active set are determined in RMCDHF
calculations where, for large expansions, limited interactions are used.

The active set, often denoted by the number of orbitals with a specified symmetry, so
that {4s3p2d1 f } is a set with four s orbitals, three p orbitals, two d orbitals and one f orbital,
is systematically enlarged one orbital layer at the time until the computed excitation energies and
transition rates have converged to within some predetermined tolerance. For small systems, SD
substitutions are done from all subshells of the configurations in the MR, and the generated CSFs
account for valence-valence, core-valence and core-core electron correlation. For larger systems,
it becomes necessary to define a core for which restrictions on the substitutions apply. In many
cases, the SD-MR substitutions are restricted in such a way that there are only S substitutions from
subshells that define a so-called active core. There may also be subshells deep down in the core
for which there are no substitutions at all. CSFs obtained from S-MR substitutions from the active
core together with SD-MR substitutions from the valence subshells account for valence-valence and
core-valence correlation.

3.3. Final Configuration Interaction Calculations Including the Breit Interaction and QED Effects

The frequency dependent Breit (transverse photon) interaction and leading QED effects are
included in final RCI calculations. To account for higher order correlation effects, the MR is
sometimes enlarged at this final step leading to larger expansions. Full interaction is normally used,
although limited interactions have been shown effective for including core-valence and core-core
effects in larger systems [12,27].
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4. Excitation Energies

In this section, RMCDHF/RCI excitation energies are compared with observations for a range
of systems in order to illustrate the predictive power of highly accurate calculations. Generally,
there are enough observations to validate computational methodologies and to distinguish between
different approaches.

4.1. Energies for 2s22pn, 2s2pn+1 and 2pn+2 States in the B-, C-, N-, O- and F-Like Sequences

Excitation energies and E1, M1, E2, M2 transition rates between 2s22pn, 2s2pn+1 and 2pn+2 states
of ions in the B-, C-, N-, O- and F-like sequences were calculated using the RMCDHF/RCI and SD-MR
method [28–32]. The range of ions, as well as the details of the calculations are summarized in Table 1.
Calculations of Landé gJ factors, hyperfine structures and isotope shifts were done separately for ions
in the Be-, B-, C- and N-like sequences [33,34].

Table 1. Multireference (MR), active set, number of generated configuration state functions (CSFs)
(NCSFs) and the range of ions for the relativistic multiconfiguration Dirac-Hartree-Fock (RMCDHF) and
relativistic configuration interaction (RCI) calculations of the boron-, carbon-, nitrogen-, oxygen- and
fluorine-like sequences.

Configuration MR for RMCDHF MR for RCI Active Set NCSFs

boron-like, N III to Zn XXVI

1s22s22p 1s2{2s22p, 2p3} 1s2{2s22p, 2p3, 2s2p3d, 2p3d2} {9s8p7d6 f 5g3h1i} 200 100
1s22p3 1s2{2s22p, 2p3} 1s2{2s22p, 2p3, 2s2p3d, 2p3d2} {9s8p7d6 f 5g3h1i} 360 100
1s22s2p2 1s22s2p2 1s2{2s2p2, 2p23d, 2s23d, 2s3d2} {9s8p7d6 f 5g3h1i} 300 100

carbon-like, F IV to Ni XXIII

1s22s22p2 1s2{2s22p2, 2p4} 1s2{2s22p2, 2p4, 2s2p23d, 2s23d2} {8s7p6d5 f 4g2h} 340 100
1s22p4 1s2{2s22p2, 2p4} 1s2{2s22p2, 2p4, 2s2p23d, 2s23d2} {8s7p6d5 f 4g2h} 340 100
1s22s2p3 1s22s2p3 1s2{2s2p3, 2p33d, 2s22p3d, 2s2p3d2} {8s7p6d5 f 4g2h} 1 000 100

nitrogen-like, F III to Kr XXX

1s22s22p3 1s2{2s22p3, 2p5} 1s2{2s22p3, 2p5, 2s2p33d, 2s22p3d2} {8s7p6d5 f 4g1h} 698 100
1s22p5 1s2{2s22p3, 2p5} 1s2{2s22p3, 2p5, 2s2p33d, 2s22p3d2} {8s7p6d5 f 4g1h} 382 100
1s22s2p4 1s22s2p4 1s2{2s2p4, 2p43d, 2s22p23d, 2s2p23d2} {8s7p6d5 f 4g1h} 680 100

oxygen-like, F II to Kr XXIX

1s22s22p4 1s2{2s22p4, 2p6} 1s2{2s22p4, 2p6, 2s2p43d} {8s7p6d5 f 4g3h} 709 690
1s22p6 1s2{2s22p4, 2p6} 1s2{2s22p4, 2p6, 2s2p43d} {8s7p6d5 f 4g3h} 67 375
1s22s2p5 1s22s2p5 1s2{2s2p5, 2p53d, 2s22p33d} {8s7p6d5 f 4g3h} 702 892

fluorine-like, Si VI to WLXVI

1s22s22p5 1s22s22p5 1s22s22p5 {8s7p6d5 f 4g3h2i} 73 000
1s22s2p6 1s22s2p6 1s22s2p6 {8s7p6d5 f 4g3h2i} 15 000

A trend for all atomic structure calculations, including RMCDHF/RCI, is that the accuracy of the
excitation energies is, relatively speaking, lower for lowly charged ions and that the accuracy then
increases as the effects of electron correlation diminish. For the highly charged ions, the situation is
less clear. Often experimental excitation energies are associated with large uncertainties or missing
altogether. The situation is illustrated in Tables 2 and 3 for the O-like sequence [31].

In Table 2, excitation energies in Ne III and Fe XIX from different calculations are compared with
energies from observations. The most accurate calculations are the RMCDHF/RCI calculation [31] and
the multireference second-order Möller-Plesset calculation (MRMP). For Ne III, the relative differences
with observation for these two calculations are in the range of 0.2–0.4% (slightly worse for MRMP).
For Fe XIX the relative errors go down by an order of magnitude, and now, the calculated energies
are accurate enough to detect misidentifications or errors in observational data, but also to serve
as a valuable tool for identifying new lines. The usefulness of computed energies is illustrated in
Table 3 for Br XXVIII, where the RMCDHF/RCI and MRMP calculations clearly discriminate between
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observed energies [35] and energies from semiempirical fits [36], being in better agreement with
the latter. This suggests that there may be some calibration problems in relation to the observed
energies [35].

Table 2. Excitation energies in cm−1 for O-like Ne and Fe from observations and different calculations.
Relative errors in % for the calculated energies are shown in parenthesis. Eobs observation NIST [37],
ERCI energies from RMCDHF/RCI [31], EMRMP energies from Möller-Plesset calculation (MRMP) [38],
EMBPT energies from many-body perturbation theory [39], EBP energies from multiconfiguration
Hartree-Fock-Breit-Pauli [19], ESS energies from super structure [40], EMCDF energies from
RMCDHF [41] and EFAC energies from RCI with the FAC code [42].

Ne III

Level J Eobs ERCI EMRMP EMBPT EBP ESS

2s22p4 3P 2 0 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
1 643 645 (0.31) 638 (0.77) 645 (0.31) 628 (2.33) 744 (15.70)
0 921 923 (0.21) 912 (0.97) 926 (0.54) 899 (2.38) 1 069 (16.06)

2s22p4 1D 2 25 841 25 954 (0.43) 26 097 (0.99) 25 573 (1.03) 25 759 (0.31) 29 219 (13.07)
2s22p4 1S 0 55 753 56 058 (0.54) 55 772 (0.03) 55 459 (0.52) 55 382 (0.66) 72 484 (30.00)
2s2p5 3Po 2 204 290 204 608 (0.15) 204 718 (0.20) 200 686 (1.76) 204 635 (0.16) 215 348 (5.41)

1 204 873 205 200 (0.15) 205 297 (0.20) 201 276 (1.75) 205 236 (0.17) 216 008 (5.43)
0 205 194 205 603 (0.19) 205 617 (0.20) 201 598 (1.75) 205 539 (0.16) 216 367 (5.44)

2s2p5 1Po 1 289 479 290 315 (0.28) 290 703 (0.42) 288 219 (0.43) 291 659 (0.75) 315 511 (8.99)

Fe XIX

Level J Eobs ERCI EMRMP EMBPT EMCDF EFAC

2s22p4 3P 2 0 0 (0.000) 0 (0.000) 0 (0.00) 0 (0.00) 0 (0.00)
0 75 250 75 313 (0.083) 75 218 (0.042) 74 742 (0.67) 75 446 (0.26) 75 198 (0.06)
1 89 441 89 434 (0.007) 89 251 (0.212) 87 559 (2.10) 88 791 (0.72) 88 821 (0.69)

2s22p4 1D 2 168 852 168 985 (0.078) 168 792 (0.035) 167 881 (0.57) 170 847 (1.18) 170 578 (1.02)
2s22p4 1S 0 325 140 325 417 (0.085) 324 949 (0.058) 321 124 (1.23) 326 536 (0.42) 325 421 (0.08)
2s2p5 3Po 2 922 890 923 044 (0.016) 922 855 (0.003) 917 435 (0.59) 933 081 (1.10) 929 231 (0.68)

1 984 740 984 920 (0.018) 984 791 (0.005) 978 242 (0.65) 995 006 (1.04) 991 246 (0.66)
0 1030 020 1030 199 (0.017) 1029 992 (0.002) 1022 753 (0.70) 1039 692 (0.93) 1036 058 (0.58)

2s2p5 1Po 1 1267 600 1268 093 (0.038) 1267 771 (0.013) 1258 927 (0.68) 1287 773 (1.59) 1282 914 (1.20)
2p6 1S 0 2134 180 2134 958 (0.036) 2132 810 (0.064) 2120 211 (0.65) 2175 645 (1.94) 2160 701 (1.24)

Table 3. Excitation energies in cm−1 for O-like Br. Comparison between calculations, observations and
semiempirical estimates. Eobs observation NIST [37] with original data from Kelly [35], ESE semiempirical
fit [36] and ERCI energies from RMCDHF/RCI [31], EMRMP energies from MRMP [38]; ∆E1,
difference between calculated energies and Eobs; ∆E2, difference between calculated energies and ESE.
The calculations support energies from the semiempirical fit.

Level J Eobs ESE ERCI ∆E1 ∆E2 EMRMP ∆E1 ∆E2

2s22p4 3P
2 0 0 0 0 0 0 0 0
0 218 800 153 478 151 954 −66 846 −1524 15 2035 −66 765 −1443
1 379 800 371 663 371 606 −8 194 −57 37 1858 −7 942 195

2s22p4 1D 2 483 040 470 699 470 643 −12 397 −56 47 0804 −12 236 105

2s22p4 1S 0 944 150 912 501 911 968 −32 182 -533 91 2282 −31 868 −219

2s2p5 3Po
2 1 579 903 1 579 537 −366 1 580 945 1042
1 1 755 028 1 755 196 168 1 756 684 1656
0 1 986 274 1 985 784 −490 1 987 396 1122

2s2p5 1Po 1 2 229 358 2 230 149 791 2 231 636 2278

2p6 1S 0 3 573 416 3 575 415 1999 3 579 486 6070
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Summarizing the mean relative errors in the excitation energies for the 2s22pn, 2s2pn+1 and
2pn+2 states of B-, C-, N-, O- and F-like Fe from RCI calculations [28–32], we have 0.022% for B-like,
0.022% for C-like, 0.050% for N-like, 0.042% for O-like and 0.011% for F-like Fe.

4.2. Energies of the 2s22p6 and 2s22p53l States in the Ne-Like Sequence

The transitions connecting the 2s22p53l, l = 0, 1, 2 configurations in Ne-like ions give rise to
prominent lines in the spectra of many high temperature light sources. Some of these lines are
considered for diagnostics of fusion plasmas. Excitation energies and E1, M1, E2, M2 transition rates
between states of the above configurations in Ne-like Mg III and Kr XXVII sequences were calculated
using the RMCDHF/RCI and SD-MR method [43]. The calculations were done based on expansions
from SD substitutions from the 2s22p6 and 2s22p53l configurations to active sets {7s6p5d4 f 3g2h1i}.
The 1s2 was kept as a closed core. Some triple substitutions were allowed to capture higher order
electron correlation effects. In Table 4, the RMCDHF/RCI excitation energies are displayed for Ca XI
and Fe XVII. In the same table, the energies are compared with energies from NIST, as well as from
MRMP calculations by Ishikawa et al. [44]. Again, the table illustrates the situation when it comes to
experiments. For many ions, the excitation energies of the lower states are known from experiments.
For other ions, such as Ca XI, energies are only known for a few states. The correlation model from the
RMCDHF/RCI calculations predicts the excitation energies extremely well for all of the calculated
ions. For Fe XVII, the relative differences with observations are around 0.005%. Calculated energies
with this accuracy aid line identification in spectra and can be used to validate previous observations.
As can be seen from the table, the RMCDHF/RCI and MRMP calculations both do very well, but the
latter lose some of the accuracy at the neutral end of the sequence.

In Table 4, also the LSJ composition is shown for each state. There are many states that are heavily
mixed, with terms of almost the same weight. In these cases, labelling becomes difficult, and for many
ions in the sequence, there are states that have the same leading term. Labeling is a general problem
that needs considerable attention [21].

4.3. Energies for Higher States in the B-, C-, N-, O-, F- and Ne-Like Sequences

In plasma modelling and diagnostics, it is important to provide atomic data for more than just the
states of the lowest configurations. To meet this demand, the RMCDHF/RCI and SD-MR calculations
for the B-, C-, N-, O-, F- and Ne-like sequences have been extended to hundreds of states in what
we refer to as spectrum calculations [45–52]. The range of ions, the targeted configurations and the
number of studied states for each sequence are summarized in Table 5. Calculations were done by
parity, i.e., odd and even parity states were treated in separate sets of calculations. The targeted
configurations define the MR, and the expansions were obtained by SD-MR substitutions from all
subshells to increasing active sets of orbitals. In addition to excitation energies, E1, M1, E2 and M2
transition rates were calculated.

Spectrum calculations are challenging for different reasons. The active sets of orbitals often have
to be large, since many states with different charge distributions should be represented. The large
active sets lead to large CSF expansions, and typically, the number of CSFs are a few millions for each
parity. Another challenge is to handle the labelling. With closely degenerate configurations, the states
are often not pure, but need to be described by the leading LSJ composition. However, the LSJ
composition depends on the details of the calculation and different calculation may lead to different
compositions. Thus, it is not unusual that there are inconsistencies in labelling, making comparisons
between different sets of calculations, as well as with observations difficult and time consuming.
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Table 4. Excitation energies in cm−1 for Ne-like Ca and Fe from observations and different calculations.
Relative errors in % for the calculated energies are shown in parenthesis. Eobs observation NIST [37],
ERCI energies from RMCDHF/RCI [43] and EMRMP energies from MRMP [44].

Level LSJ Composition Eobs ERCI EMRMP

Ca XI

2p6 1S0 1.00 0 0 0
2p53s 3Po

2 0.99 2 801 989 2 801 819
2p53s 3Po

1 0.62 + 0.38 1Po
1 2 810 900 2 810 834 (0.0023) 2 810 588 (0.011)

2p53s 3Po
0 0.99 2 831 800 2 831 670

2p53s 1Po
1 0.62 + 0.38 3Po

1 2 839 900 2 839 662 (0.0084) 2 839 386 (0.018)
2p53p 3S1 0.92 2 953 791 2 953 594
2p53p 3D2 0.68 + 0.24 1D2 2 978 410 2 977 968
2p53p 3D3 1.00 2 978 650 2 978 276
2p53p 3D1 0.43 + 0.36 1P1 + 0.20 3P1 2 986 908 2 986 513
2p53p 3P2 0.65 + 0.34 1D2 2 993 760 2 993 336
2p53p 3D1 0.54 + 0.40 1P1 3 007 301 3 006 932
2p53p 3P0 0.98 3 009 345 3 009 000
2p53p 1D2 0.41 + 0.31 3D2 + 0.27 3P2 3 016 749 3 016 378
2p53p 3P1 0.68 + 0.24 1P1 3 017 175 3 016 845
2p53p 1S0 0.98 3 101 166 3 098 308
2p53d 3Po

0 0.99 3 196 075 3 195 830
2p53d 3Po

1 0.95 3 199 300 3 199 045 (0.0080) 3 198 902 (0.012)
2p53d 3Po

2 0.85 3 205 278 3 205 169
2p53d 3Fo

4 1.00 3 208 351 3 208 165
2p53d 3Fo

3 0.72 + 0.23 1Fo
2 3 212 392 3 212 144

2p53d 3Fo
2 0.53 + 0.29 1Do

2 + 0.18 3Do
2 3 219 655 3 219 428

2p53d 3Do
3 0.55 + 0.41 1Fo

3 3 224 394 3 224 078
2p53d 3Do

1 0.89 3 239 700 3 239 502 (0.0061) 3 239 308 (0.012)
2p53d 3Fo

2 0.47 + 0.38 1Do
2 + 0.14 3Do

2 3 244 348 3 244 161
2p53d 3Do

2 0.58 + 0.27 1Do
2 + 0.14 3Po

2 3 248 017 3 247 805
2p53d 3Do

3 0.40 + 0.35 1Fo
3 + 0.24 3Fo

3 3 248 345 3 248 099
2p53d 1Po

1 0.91 3 284 300 3 284 444 (0.0044) 3 283 473 (0.025)

Fe XVII
2p6 1S0 1.00 0 0 0
2p53s 3Po

2 1.00 5 849 490 5 849 108 (0.0065) 5 848 891 (0.0102)
2p53s 1Po

1 0.54 + 0.45 3P1 5 864 760 5 864 469 (0.0049) 5 864 138 (0.0106)
2p53s 3Po

0 1.00 5 951 478 5 951 003 (0.0079) 5 950 877 (0.0100)
2p53s 3Po

1 0.54 + 0.45 1P1 5 961 022 5 960 633 (0.0065) 5 960 410 (0.0102)
2p53p 3S1 0.80 + 0.17 3P1 6 093 568 6 093 573 (0.0000) 6 093 209 (0.0058)
2p53p 3D2 0.58 + 0.30 1D2 + 0.12 3P2 6 121 756 6 121 769 (0.0002) 6 121 253 (0.0082)
2p53p 3D3 1.00 6 134 815 6 134 794 (0.0003) 6 134 360 (0.0074)
2p53p 1P1 0.51 + 0.25 3D1 + 0.19 3P1 6 143 897 6 143 898 (0.0000) 6 143 431 (0.0075)
2p53p 3P2 0.67 + 0.32 1D2 6 158 540 6 158 481 (0.0009) 6 158 010 (0.0086)
2p53p 3P0 0.94 6 202 620 6 202 542 (0.0012) 6 202 238 (0.0061)
2p53p 3D1 0.67 + 0.31 1P1 6 219 266 6 219 185 (0.0013) 6 218 795 (0.0075)
2p53p 3P1 0.63 + 0.17 1P1 + 0.13 3S1 6 245 490 6 245 346 (0.0023) 6 245 018 (0.0075)
2p53p 3D2 0.41 + 0.38 1D2 + 0.21 3P2 6 248 530 6 248 390 (0.0022) 6 248 024 (0.0080)
2p53p 1S0 0.93 6 353 356 6 353 605 (0.0039) 6 351 136 (0.0349)
2p53d 3Po

0 0.99 6 464 095 6 463 913 (0.0028) 6 463 611 (0.0074)
2p53d 3Po

1 0.91 6 471 233 6 471 519 (0.0044) 6 471 317 (0.0012)
2p53d 3Po

2 0.72 + 0.18 3Do
2 6 486 440 6 486 166 (0.0042) 6 485 977 (0.0071)

2p53d 3Fo
4 1.00 6 487 000 6 486 745 (0.0039) 6 486 514 (0.0074)

2p53d 3Fo
3 0.65 + 0.29 1Fo

3 6 492 924 6 492 689 (0.0036) 6 492 387 (0.0082)
2p53d 1Do

2 0.41 + 0.35 3Fo
2 + 0.24 3Do

2 6 506 808 6 506 561 (0.0037) 6 506 276 (0.0081)
2p53d 3Do

3 0.64 + 0.34 1Fo
3 6 515 479 6 515 276 (0.0031) 6 514 936 (0.0083)

2p53d 3Do
1 0.74 + 0.20 1Po

1 6 552 221 6 552 697 (0.0072) 6 552 491 (0.0041)
2p53d 3Fo

2 0.63 + 0.29 1Do
2 6 594 617 6 594 260 (0.0054) 6 594 099 (0.0078)

2p53d 3Do
2 0.50 + 0.27 3Po

2 + 0.21 1Do
2 6 601 210 6 600 855 (0.0053) 6 600 688 (0.0079)

2p53d 1Fo
3 0.37 + 0.33 3Fo

3 + 0.30 3Do
3 6 605 469 6 605 078 (0.0059) 6 604 858 (0.0092)

2p53d 1Po
1 0.78 + 0.18 3Do

1 6 660 894 6 661 101 (0.0031) 6 660 232 (0.0099)
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Table 5. Sequence, ions and targeted configurations for the RMCDHF/RCI calculations. N is the
number of studied states for each ion. In the table, l = 0, 1, 2, l′ = 0, 1, 2, 3, l′′ = 0, . . . , n− 1.

Sequence Ions Configurations N Ref.

B-like Si, Ti-Cu 2s22p, 2s2p2, 2p3, 2s23l, 2s2p3l, 2p23l, 2s24l′, 2s2p4l′, 2p24l′ 291 [45]
B-like Na 2s22p, 2s2p2, 2p3, 2s23l, 2s2p3l, 2p23l, 2s24l′, 2s2p4s 133 [46]
C-like Ar-Zn 2s22p2, 2s2p3, 2p4, 2s22p3l, 2s2p23l, 2p33l, 2s22p4l 262 [47]
N-like Cr, Fe, Ni, Zn 2s22p3, 2s2p4, 2p5, 2s22p23l, 2s2p33l, 2p43l 272 [48]
N-like Ar-Zn 2s22p3, 2s2p4, 2p5, 2s22p23l, 2s2p33l, 2p43l, 2s22p24l′ 359 [49]
O-like Cr-Zn 2s22p4, 2s2p5, 2p6, 2s22p33l, 2s2p43l 200 [50]
F-like Cr-Zn 2s22p5, 2s2p6, 2s22p43l, 2s2p53l, 2p63l, 2s22p44l′ 200 [51]
Ne-like Cr-Kr 2s22p6, 2s2p63l, 2s22p54l, 2s2p64l, 2s22p55l′′, 2s22p56l′′ 201 [52]

For many ions, excitation energies for lower lying states are known from observations. Going higher,
comparatively less data are available, and these are often associated with large uncertainties. The situation
is well illustrated for C-like Fe, and in Table 6, the RMCDHF/RCI excitation energies by Ekman et al. [47]
are compared with observations. Due to near degeneracies, many states have the same leading LSJ term.
In these cases, labelling can be done either by giving the leading terms in the composition or, more
simply, introducing an additional index A and B to separate the states. For the 20 first states belonging
to the n = 2 configurations, observations are available from the NIST [37] and CHIANTI databases [3,4].
There is an agreement between the RMCDHF/RCI and relativistic many body calculations (RMBPT)
by Gu [53] and observations at the 0.028–0.032% level (slightly worse for RMBPT). The RCI calculation
using the Flexible Atomic Code (FAC) [42] is less accurate. For the higher lying states, experimental
data are sparse. In many cases, there is excellent agreement between observations and calculations also
for these states, but in some cases, there are obvious disagreements. For State Number 36, the excitation
energy from NIST and CHIANTI disagree, and the calculations by Ekman et al. and Gu support the
energy from the CHIANTI database. For State 54, all calculations agree, but differ markedly from the
energies given by NIST and CHIANTI.

Table 6. Energies in cm−1 for levels in Fe XXI. ERCI energies from RMCDHF/RCI calculations [47],
ERMBPT energies from RMBPT [53], EFAC energies from RCI calculations with FAC [42], ENIST NIST
recommended values [37] and ECHI observed energies from the CHIANTI database [3,4].

No. Level ERCI ERMBPT EFAC EN IST ECH I

1 2s22p2 3P0 0 0 0 0 0
2 2s22p2 3P1 73 864 73 867 73 041 73 851 73 851
3 2s22p2 3P2 117 417 117 372 117 146 117 354 117 367
4 2s22p2 1D2 244 751 244 581 245 710 244 561 244 568
5 2s22p2 1S0 372 137 372 261 373 060 371 980 371 744
6 2s2p3 5S2 486 584 487 683 479 658 486 950 486 991
7 2s2p3 3D1 776 775 777 005 779 724 776 690 776 685
8 2s2p3 3D2 777 404 777 655 779 963 777 340 777 367
9 2s2p3 3D3 803 618 803 869 805 768 803 540 803 553
10 2s2p3 3P0 916 444 916 773 920 272 916 330 916 333
11 2s2p3 3P1 925 074 925 408 928 822 924 920 924 920
12 2s2p3 3P2 942 621 942 986 946 135 942 430 942 364
13 2s2p3 3S1 1 096 019 1 095 820 1 105 578 1 095 670 1 095 679
14 2s2p3 1D2 1 127 672 1 127 460 1 137 533 1 127 240 1 127 250
15 2s2p3 1P1 1 261 577 1 261 240 1 272 627 1 261 140 1 260 902
16 2p4 3P2 1 646 437 1 646 467 1 657 411 1 646 300 1 646 409
17 2p4 3P0 1 735 823 1 735 813 1 747 301 1 735 700 1 735 715
18 2p4 3P1 1 740 623 1 740 707 1 750 848 1 740 500 1 740 453
19 2p4 1D2 1 817 786 1 817 362 1 832 102 1 817 100 1 817 041
20 2p4 1S0 2 048 512 2 047 850 2 066 463 2 048 200 2 048 056
21 2s22p3s 3P0 7 663 283 7 664 054 7 654 119
22 2s22p3s 3P1 7 671 971 7 672 703 7 663 398 7 661 883
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Table 6. Cont.

No. Level ERCI ERMBPT EFAC EN IST ECH I

23 2s22p3s 3P2 7 780 298 7 781 147 7 770 895
24 2s22p3s 1P1 7 803 764 7 804 419 7 796 397
25 2s22p3p 3D1 7 841 903 7 842 922 7 834 847
26 2s22p3p 3P1 : A 7 898 154 7 898 974 7 891 978
27 2s22p3p 3D2 7 901 553 7 902 378 7 895 497
28 2s22p3p 3P0 7 914 849 7 915 811 7 909 434 7 915 463
29 2s22p3p 3P1 : B 7 983 446 7 984 350 7 977 011
30 2s22p3p 3D3 7 994 588 7 995 388 7 987 318
31 2s22p3p 3S1 8 004 987 8 005 793 7 998 341
32 2s22p3p 3P2 8 007 326 8 008 319 8 002 052
33 2s22p3p 1D2 8 068 537 8 069 071 8 065 382
34 2s22p3d 3F2 8 078 540 8 079 119 8 072 911 8 074 160
35 2s2p2(4P)3s 5P1 8 080 551 8 082 001 8 070 805
36 2s22p3d 3F3 8 116 048 8 116 480 8 111 336 8 101 400 8 118 008
37 2s22p3d 3P2 : A 8 121 922 8 122 529 8 118 025 8 124 085
38 2s22p3p 1S0 8 128 645 8 129 396 8 126 192 8 143 710
39 2s2p2(4P)3s 5P2 8 131 973 8 133 460 8 121 258
40 2s22p3d 3D1 8 139 290 8 140 735 8 135 992 8 140 000 8 141 785
41 2s2p2(4P)3s 5P3 8 181 331 8 182 599 8 170 876
42 2s2p2(4P)3s 3P0 8 182 172 8 182 844 8 179 292 8 180 254
43 2s22p3d 3F4 8 202 073 8 202 670 8 195 771
44 2s22p3d 1D2 8 208 705 8 209 597 8 204 329
45 2s2p2(4P)3s 3P1 8 222 156 8 222 948 8 217 390
46 2s22p3d 3D3 8 230 918 8 231 868 8 227 144 (8 195 000) 8 229 642
47 2s22p3d 3P2 : B 8 245 453 8 246 428 8 241 436 8 230 900 8 229 642
48 2s22p3d 3P1 8 245 737 8 247 075 8 241 557
49 2s22p3d 3P0 8 247 732 8 249 164 8 243 033
50 2s2p2(4P)3p 5D0 8 267 963 8 269 220 8 259 742
51 2s2p2(4P)3p 5D1 8 270 558 8 272 088 8 262 373
52 2s2p2(4P)3s 3P2 8 274 704 8 275 427 8 270 235
53 2s22p3d 1F3 8 300 618 8 301 128 8 301 379 8 313 600
54 2s22p3d 1P1 8 303 730 8 307 428 8 305 376 8 293 900 8 293 791
55 2s2p2(4P)3p 5D2 8 305 917 8 309 162 8 297 457
56 2s2p2(4P)3p 3S1 8 312 499 8 309 359 8 300 070
57 2s2p2(4P)3p 5P1 8 349 456 8 350 857 8 342 324 8 350 731
58 2s2p2(4P)3p 5D3 8 351 775 8 353 277 8 342 522
59 2s2p2(4P)3p 5P2 8 352 117 8 353 731 8 343 801
60 2s2p2(4P)3p 3D1 8 379 967 8 380 890 8 373 689 8 376 741
61 2s2p2(4P)3p 5P3 8 388 634 8 390 292 8 380 281
62 2s2p2(4P)3p 5D4 8 399 557 8 401 039 8 390 478
63 2s2p2(4P)3p 3D2 8 410 077 8 411 182 8 404 386
64 2s2p2(2D)3s 3D1 8 420 588 8 421 426 8 420 569
65 2s2p2(2D)3s 3D2 8 428 405 8 429 248 8 428 172
66 2s2p2(2D)3s 3D3 8 440 926 8 441 758 8 437 725
67 2s2p2(4P)3p 3P0 8 442 813 8 443 776 8 438 241
68 2s2p2(4P)3p 5S2 8 443 646 8 445 037 8 440 027
69 2s2p2(4P)3p 3D3 8 462 365 8 463 510 8 456 502
70 2s2p2(4P)3p 3P1 8 467 690 8 468 680 8 462 413
71 2s2p2(4P)3p 3P2 8 470 871 8 471 913 8 466 158
72 2s2p2(4P)3d 5F1 8 480 620 8 481 735 8 471 575
73 2s2p2(4P)3d 5F2 8 488 782 8 489 971 8 479 898 8 486 331
74 2s2p2(2D)3s 1D2 8 496 990 8 497 512 8 498 660
75 2s2p2(4P)3d 5F3 : A 8 506 111 8 507 343 8 497 311 8 511 385
76 2s2p2(4P)3d 5F4 8 544 575 8 545 928 8 534 831
77 2s2p2(2P)3s 3P1 8 545 485 8 546 507 8 544 603
78 2s2p2(2P)3s 3P0 8 553 885 8 554 716 8 545 420
79 2s2p2(4P)3d 5D0 8 554 798 8 555 918 8 546 365
80 2s2p2(4P)3d 5D1 8 555 297 8 556 534 8 547 553
81 2s2p2(4P)3d 5D2 8 555 491 8 556 850 8 558 611
82 2s2p2(4P)3d 5F3 : B 8 561 662 8 562 969 8 552 789 8 564 535
83 2s2p2(4P)3d 3P2 8 581 274 8 582 755 8 576 965 8 575 780
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Table 6. Cont.

No. Level ERCI ERMBPT EFAC EN IST ECH I

84 2s2p2(4P)3d 5F5 8 586 636 8 588 014 8 577 151
85 2s2p2(4P)3d 5D4 8 597 735 8 599 106 8 588 388
86 2s2p2(2D)3p 3F2 8 606 110 8 606 654 8 607 148 8 605 427
87 2s2p2(4P)3d 3F2 8 611 432 8 611 843 8 608 283
88 2s2p2(4P)3d 5P3 8 619 312 8 620 847 8 611 148

...
228 2p3(2P)3d 3F4 9 735 480 9 736 111 9 746 771
229 2p3(2P)3d 3P1 9 740 645 9 742 719 9 754 847
230 2p3(2P)3d 3P0 9 748 184 9 749 774 9 758 859
231 2p3(2P)3d 3P2 : B 9 757 890 9 758 107 9 770 963
232 2p3(2P)3d 3D1 9 765 663 9 766 056 9 781 499
233 2p3(2P)3d 3D3 9 780 738 9 781 044 9 794 389
234 2p3(2P)3d 1F3 9 800 368 9 800 742 9 819 206
235 2p3(2P)3d 3D2 9 800 852 9 801 738 9 819 939
236 2p3(2P)3d 1P1 9 879 471 9 879 655 9 902 175
237 2s22p4s 3P0 10 368 077 10 362 393
238 2s22p4s 3P1 10 371 121 10 365 585 10 380 000
239 2s22p4p 3D1 10 442 616 10 437 633
240 2s22p4p 3P1 10 466 102 10 460 676
241 2s22p4p 3D2 10 468 322 10 462 978
242 2s22p4p 3P0 10 470 990 10 465 993
243 2s22p4s 3P2 10 485 597 10 479 693
244 2s22p4s 1P1 10 492 966 10 487 317
245 2s22p4d 3F2 10 532 099 10 526 459
246 2s22p4d 3P2 : A 10 548 542 10 542 323 (10 547 000) 10 547 249
247 2s22p4d 3F3 10 549 480 10 543 488 10 548 000 10 548 160
248 2s22p4d 3D1 10 554 447 10 548 345 10 553 000 10 553 955
249 2s22p4p 1P1 10 568 810 10 563 327
250 2s22p4p 3D3 10 574 912 10 569 412 10 664 000
251 2s22p4p 3P2 10 575 111 10 569 433
252 2s22p4p 3S1 10 578 203 10 572 657
253 2s22p4p 1D2 10 597 862
254 2s22p4p 1S0 10 619 563
255 2s22p4d 3F4 10 652 979
256 2s22p4d 1D2 10 653 631 10 675 000
257 2s22p4d 3D3 10 660 593
258 2s22p4d 3P2 : B 10 666 807
259 2s22p4d 3P1 10 666 946 10 688 000
260 2s22p4d 3P0 10 667 948
261 2s22p4d 1F3 10 683 984 10 681 000
262 2s22p4d 1P1 10 687 400

One should note the excellent agreement between the energies from RMCDHF/RCI and RMBPT,
the mean difference being less than 0.013%. Although the energies are in very good agreement,
there seems to be a small systematic shift for the higher states, as depicted in Figure 1. The reason
for this shift is not known, and further research is needed to shed light on this. To further access the
accuracy of the excitation energies, calculations for the N-, O-, F- and Ne-like sequences [49–52] were
done using both the RMCDHF/RCI and RMBPT methods. Cross-validations show that the mean
energy differences for N-like, O-like, F-like and Ne-like Fe are 0.023%, 0.011%, 0.01% and 0.029%,
respectively. The energy differences increase for the ions closer to the neutral end, where the RMBPT
method is less efficient in capturing correlation effects.

Obviously, calculations with high accuracy that also give the leading LSJ compositions are
indispensable tools for analysing astrophysical observations.
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Figure 1. Difference between RMCDHF/RCI and MBPT excitation energies in percent for C-like Fe as
a function of the excitation energy in kcm−1. The dashed lines show the 0.02 % levels.

4.4. Energies for Higher Lying States in the Mg-, Al- and Si-Like Sequences

For larger atomic systems, one needs to think in terms of a core and a number of valence electrons.
In many calculations, only valence-valence (VV) correlation is included. More accurate results are
obtained when accounting for the interactions with the core through the inclusion of core-valence
correlation (VV + CV). The final step is to include core-core correlation (VV + CV + CC). The situation has
been analysed by Gustafsson et al. [12] for 3l3l′, 3l4l′, 3s5l states in Mg-like Fe where 1s22s22p6 is taken
as the core. The results of the analysis can be inferred from Figure 2 that shows the difference between
the computed excitation energies and the observed energies from the NIST database as a function of
the excitation energies for the three computational models: VV, VV + CV and VV + CV + CC.
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Figure 2. Difference between observed and RMCDHF/RCI excitation energies in cm−1 for Mg-like
Fe [12] as a function of the excitation energy in kcm−1. valence-valence (VV) (blue squares),
VV + core-valence (CV) (red circles) and VV + CV + CC (black+).

From the figure, we see that the differences between the RMCDHF/RCI energies and observed
energies are quite large, of the order of several thousand cm−1, for the VV model. For many of
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the low lying states, calculated energies are too high, whereas for the more highly lying states,
calculated energies are too low. Adding core-valence correlation (VV + CV) substantially improves
the calculated energies. To explain the difference in behaviour, as shown in the figure, between the
low lying states and the more high lying states when core-valence correlation is added, we note that
core-valence correlation is a combination of core polarization, an electrostatic long range rearrangement
and an electron-electron cusp correcting effect [7,8]. The cusp correcting effect lowers all energies
with an amount that depends on the overlap of the valence electron charge distribution and the core.
The charge distributions of the low lying states from the 3l3l′ configurations are to a larger extent
overlapping the core region compared to the charge distributions from the higher states of the 3l4l′

and 3l5l′ configurations, leading to a more pronounced energy lowering for the former states. The core
polarization, in turn, lowers all energies except the 3s2 1S0 ground state for which the valence electron
charge density is spherically symmetric. In total, these two effects explain the observed behaviour.
Whereas the low lying states are now in very good agreement with observations, the high lying states
are still a little high compared to observations. The effect of the core-core correlation (VV + CV + CC) is
small for the low lying states, but brings down the more highly states that are now in perfect agreement
with observations.

The increased accuracy comes with a price. For an orbital set {8s7p6d5 f 4g3h2i}, the valence-valence
(VV) expansions sizes are less than 3000 CSFs for each parity. Including the core-valence correlation
(VV + CV) increases the expansions sizes to around 650,000 CSFs for each parity. Finally, including
also core-core (VV + CV + CC) make the expansion sizes grow to around 6,000,000 CSFs for each parity.
For these large expansions, it becomes necessary to use a zero- and first-order partition of the CSFs
and include part of the interactions perturbatively as described in Section 2.3.

Based on the valence-valence and core-valence model (VV + CV), RMCDHF/RCI and SD-MR
calculations have been done for the Mg-, Al- and Si-like sequences [54–56]. The range of ions,
the targeted configurations and the number of studied states for each sequence are summarized
in Table 7. Calculations were done by parity, i.e., odd and even parity states were treated in separate
sets of calculations. The targeted configurations define the MR, and the expansions were obtained by
SD-MR substitutions to increasing active sets of orbitals with the restriction that only one substitution
is allowed from the 2s22p6 core. 1s2 is treated as an inactive core and is always closed.

Table 7. Sequence, ions and targeted configurations for the calculations. N is the number of studied
states for each ion. In the table, l = 0, . . . , n− 1, l′ = 0, . . . , n− 1.

Sequence Ions Configurations N Ref.

Mg-like Ca-As, Kr 3l3l′, 3l4l′, 3s5l 146 [54]

Al-like Ti-Kr, Xe, W 3s2{3l; 4l; 5l}, 3p2{3d; 4l}, 3s{3p2; 3d2}, 360 [55]
3s{3p3d; 3p4l; 3p5s; 3d4l′}, 3p3d2, 3p3, 3d3

Si-like Ti-Ge, Sr, Zr, Mo 3s23p2, 3s3p3, 3s23p3d 27 [56]

To illustrate the accuracy of the RMCDHF/RCI calculation accounting for valence-valence and
core-valence effects, we look at Si-like Fe [56]. In Table 8, the computed excitation RMCDHF/RCI
energies are compared with observed energies from Del Zanna [57], as well as with energies by Vilkas
and Ishikawa [58] using the MRMP method. The mean deviation is 0.076% for RMCDHF/RCI and only
0.034% for MRMP. The expansions for the even and odd states contained 1,500,000 and 4,500,000 CSFs,
respectively.

The mean energy deviations for Mg-like, Al-like and Si-like iron from RMCDHF/RCI calculation
accounting for valence-valence and core-valence effects are 0.051%, 0.039% and 0.076%, respectively.
To improve the energies for the RMCDHF/RCI calculations, core-core correlation effects can be
included as perturbative corrections, and work is in progress to develop tractable computational
methods. For systems with five and more valence electrons, the expansions grow rapidly, and it
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may be necessary to start with valence-valence correlation and include core-valence effects as
perturbative corrections.

Table 8. Comparison of calculated and observed excitation energies in cm−1. ERCI RMCDHF/RCI
energies from [56], EMRMP MRMP energies from [58] and EDZ observed energies from [57]. Relative
errors in % for the calculated energies are shown in parenthesis.

Fe XIII

Level ERCI EMRMP EDZ

3s2 3p2 3P0 0 0 0
3s2 3p2 3P1 9281 (0.237) 9295 (0.086) 9303.1
3s2 3p2 3P2 18553 (0.048) 18576 (0.075) 18561.7
3s2 3p2 1D2 48236 (0.344) 47985 (1.077) 48069.7
3s2 3p2 1S0 91839 (0.357) 91508 (0.003) 91511.0
3s 3p3 5So

2 214152 (0.220) 214540 (0.039) 214624.0
3s 3p3 3Do

1 287123 (0.028) 287199 (0.002) 287205.0
3s 3p3 3Do

2 287270 (0.029) 287348 (0.002) 287356.0
3s 3p3 3Do

3 290095 (0.029) 290179 (0.000) 290180.0
3s 3p3 3Po

0 328974 (0.014) 328980 (0.016) 328927.0
3s 3p3 3Po

1 329689 (0.015) 329702 (0.019) 329637.0
3s 3p3 3Po

2 330323 (0.012) 330334 (0.015) 330282.0
3s 3p3 1Do

2 362482 (0.020) 362416 (0.002) 362407.0
3s 3p3 3So

1 415577 (0.027) 415519 (0.013) 415462.0
3s2 3p 3d 3Fo

2 430277 (0.035) 430129 (0.001) 430124.0
3s2 3p 3d 3Fo

3 437064 (0.033) 436905 (0.003) 436919.0
3s 3p3 1Po

1 438365 (0.063) 438005 (0.018) 438086.0
3s2 3p 3d 3Fo

4 447134 (0.029) 446959 (0.009) 447001.0
3s2 3p 3d 3Po

2 486542 (0.037) 486403 (0.009) 486358.0
3s2 3p 3d 3Po

1 495102 (0.032) 495242 (0.060) 494942.0
3s2 3p 3d 1Do

2 499060 (0.038) 498925 (0.011) 498870.0
3s2 3p 3d 3Po

0 501676 (0.032) 501667 (0.030) 501514.0
3s2 3p 3d 3Do

1 506661 (0.030) 506681 (0.034) 506505.0
3s2 3p 3d 3Do

3 509303 (0.024) 509479 (0.059) 509176.0
3s2 3p 3d 3Do

2 509394 (0.028) 509441 (0.037) 509250.0
3s2 3p 3d 1Fo

3 557432 (0.093) 557303 (0.070) 556911.0
3s2 3p 3d 1Po

1 571376 (0.110) 571187 (0.077) 570743.0

5. Transition Probabilities

Whereas there are enough observations to validate calculated excitation energies, the situation
is very different for transition rates. For highly charged ions, there are few experimental methods
available to determine transition rates. Lifetimes for long-lived states of the ground configuration or the
lowest excited configurations have been determined in accurate storage-ring and trapping experiments
(see for example, the review by Träbert [59]) and are used for benchmarking. Lifetimes for a large
range of short-lived states have been determined using beam-foil spectroscopy [60]. However, even if
these beam-foil data are very valuable, they are in general not accurate enough to discriminate between
different computational approaches. In addition, lifetimes are dominated by the strong decay channels
down to the lower configurations, and the lack of experimental transition rates, including weak
transitions, between states of the excited configurations is of a major concern.

5.1. Internal Validation and Uncertainty Estimates

Due to the almost complete lack of experimental transition rates for highly charged ions,
internal validation becomes important. For RMCDHF/RCI calculations, the convergence of the
transition rates should be monitored as the active set is increased. Then, based on the same logic,
the convergence of the transition rates should be monitored as the more involved correlation models
are used, e.g., VV, VV + CV and VV + CV + CC. Considering the fact that there often are tens of
thousands of transitions for extended spectrum calculations, this validation method is impractical,
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and only smaller numbers of selected transitions can be monitored. Another internal validation
method is based on the accuracy of the transition energy and the agreement between the computed
line strength S in the length and velocity gauge. Along these lines, Froese-Fischer [61] has suggested
that the uncertainties δA′ of the calculated transition rates for LS allowed transitions can be estimated
according to:

δA′ = (δE + δS)A′, (9)

where A′ is the energy-scaled transition rate computed from the observed transition energy (Eobs), δE =

|Ecalc − Eobs|/Eobs is the relative error in the transition energy and δS = |Slen − Svel |/ max(Slen, Svel) is
the relative discrepancy between the length and velocity forms of the line strengths. In cases where the
transition energies are not known, the expression reduces to:

δA = (δS)A. (10)

Based on a statistical analysis of large datasets of accurate E1 transition rates from many
independent calculations, Ekman et al. [62] found that the estimated errors from Equation (10)
are correlated with and very close to the presumed actual errors. A validation of the method extended
to intercombination lines reveals a smaller correlation in the statistical analysis and suggests that the
uncertainty estimate in this case should only be used if averaging over a larger sample. The analysis
further confirms the well-known fact that the uncertainty is large for weaker transitions, the general
explanation being cancellations between the contributions to the matrix elements from different pairs
of CSFs [63] or cancellations in the integrands of the transition integrals.

5.2. Transition Rates for the B- to Si-Like Sequences

The RMCDHF/RCI and SD-MR method has been used to compute tens of thousands of E1,
M1, E2, M2 transitions rates for the B- to Si-like sequences [28–32,43,45–52,54–56]. The E1 and E2
rates are internally validated by giving δA/A along with A. The results for C-like Fe [29], shown in
Table 9, illustrate the typical uncertainties. The table displays computed transition energies along
with relative uncertainties obtained by comparing with observations from NIST. The uncertainties
for the transition energies are all well below 1%, and many of them are around 0.1%, which is highly
satisfactory. The transition rates in the length form are given together with the uncertainty estimate
δA/A. The uncertainties for the transition rates are a few percent or less for the strong transitions,
but go up to around 20% for some of the weak intercombination transitions. To further shed light
on the situation, we compare the RMCDHF/RCI rates for Ne-like S [43] with rates from accurate
MCHF-BP calculations [19] and with CI calculations using CIV3 [64] in Table 10. From the table, we see
that there is in general a very good agreement between the rates from the different calculations. It is
clear that the largest differences are for the weak transitions.

Table 9. Transition energies in cm−1 and E1 rates A in s−1 in the length gauge for Fe XXI from
RMCDHF/RCI calculations [29]. Relative errors in % for the calculated transition energies and rates are
shown in parenthesis. For the transition energies, the relative errors were obtained by comparison with
observations from NIST. For the transition rates, the relative errors are estimated from Equation (10).

Upper Lower ∆Ecalc A

Fe XXI

2s2p3 3Do
1 2s22p2 3P0 776750 (0.049) 1.156E+10 (0.00)

2s2p3 3Po
1 2s22p2 3P0 925023 (0.120) 4.213E+09 (0.07)

2s2p3 3So
1 2s22p2 3P0 1096012 (0.089) 9.460E+09 (0.16)

2s2p3 1Po
1 2s22p2 3P0 1261529 (0.205) 2.850E+07 (1.82)

2s2p3 5So
2 2s22p2 3P1 412701 (0.293) 3.597E+07 (8.72)
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Table 9. Cont.

Upper Lower ∆Ecalc A

2s2p3 3Do
1 2s22p2 3P1 702930 (0.049) 7.606E+08 (1.64)

2s2p3 3Do
2 2s22p2 3P1 703550 (0.048) 9.240E+09 (0.66)

2s2p3 3Po
0 2s22p2 3P1 842581 (0.122) 2.200E+10 (0.31)

2s2p3 3Po
1 2s22p2 3P1 851203 (0.119) 1.602E+10 (0.12)

2s2p3 3Po
2 2s22p2 3P1 868735 (0.120) 3.820E+08 (1.85)

2s2p3 3So
1 2s22p2 3P1 1022191 (0.133) 2.533E+10 (0.11)

2s2p3 1Do
2 2s22p2 3P1 1053811 (0.089) 3.907E+08 (1.68)

2s2p3 1Po
1 2s22p2 3P1 1187709 (0.205) 4.909E+09 (0.34)

2s2p3 5So
2 2s22p2 3P2 369157 (0.293) 3.272E+07 (11.61)

2s2p3 3Do
1 2s22p2 3P2 659387 (0.050) 8.335E+07 (6.39)

2s2p3 3Do
2 2s22p2 3P2 660006 (0.050) 4.535E+06 (22.51)

2s2p3 3Do
3 2s22p2 3P2 686197 (0.050) 6.105E+09 (0.80)

2s2p3 3Po
1 2s22p2 3P2 807659 (0.120) 2.681E+09 (1.30)

2s2p3 3Po
2 2s22p2 3P2 825192 (0.121) 2.038E+10 (0.04)

2s2p3 3So
1 2s22p2 3P2 978647 (0.134) 6.104E+10 (0.24)

2s2p3 1Do
2 2s22p2 3P2 1010267 (0.090) 8.020E+09 (0.39)

2s2p3 1Po
1 2s22p2 3P2 1144165 (0.206) 2.491E+08 (0.16)

2s2p3 5So
2 2s22p2 1D2 241853 (0.714) 1.307E+06 (19.51)

2s2p3 3Do
1 2s22p2 1D2 532083 (0.048) 1.808E+08 (6.63)

2s2p3 3Do
2 2s22p2 1D2 532703 (0.048) 3.827E+07 (6.27)

2s2p3 3Do
3 2s22p2 1D2 558894 (0.049) 9.767E+08 (3.61)

2s2p3 3Po
1 2s22p2 1D2 680356 (0.051) 2.577E+08 (2.44)

2s2p3 3Po
2 2s22p2 1D2 697888 (0.052) 1.435E+08 (4.80)

2s2p3 3So
1 2s22p2 1D2 851344 (0.084) 3.607E+08 (3.16)

2s2p3 1Do
2 2s22p2 1D2 882963 (0.037) 4.485E+10 (0.37)

2s2p3 1Po
1 2s22p2 1D2 1016862 (0.170) 6.583E+10 (0.15)

2s2p3 3Do
1 2s22p2 1S0 404698 (0.165) 4.070E+07 (2.97)

2s2p3 3Po
1 2s22p2 1S0 552971 (0.014) 1.492E+08 (7.10)

2s2p3 3So
1 2s22p2 1S0 723959 (0.008) 6.511E+08 (2.13)

2s2p3 1Po
1 2s22p2 1S0 889477 (0.147) 1.727E+10 (0.52)

2p4 3P2 2s2p3 5So
2 1159940 (0.180) 1.422E+09 (2.39)

2p4 3P1 2s2p3 5So
2 1254085 (0.181) 2.381E+08 (3.65)

2p4 1D2 2s2p3 5So
2 1331255 (0.201) 5.282E+07 (2.48)

2p4 3P2 2s2p3 3Do
1 869710 (0.102) 3.455E+09 (0.75)

2p4 3P0 2s2p3 3Do
1 959080 (0.137) 3.474E+10 (0.43)

2p4 3P1 2s2p3 3Do
1 963855 (0.102) 1.434E+10 (0.27)

2p4 1D2 2s2p3 3Do
1 1041025 (0.103) 4.033E+06 (20.67)

2p4 1S0 2s2p3 3Do
1 1271738 (0.137) 2.331E+08 (1.32)

2p4 3P2 2s2p3 3Do
2 869090 (0.103) 1.335E+10 (0.00)

2p4 3P1 2s2p3 3Do
2 963235 (0.104) 2.124E+10 (0.28)

2p4 1D2 2s2p3 3Do
2 1040406 (0.106) 7.878E+08 (0.20)

2p4 3P2 2s2p3 3Do
3 842899 (0.137) 2.822E+10 (0.53)

2p4 1D2 2s2p3 3Do
3 1014215 (0.260) 5.622E+09 (0.85)

2p4 3P1 2s2p3 3Po
0 824204 (0.038) 4.813E+09 (0.02)

2p4 3P2 2s2p3 3Po
1 721437 (0.039) 3.678E+09 (0.32)

2p4 3P0 2s2p3 3Po
1 810807 (0.040) 1.827E+10 (0.93)

2p4 3P1 2s2p3 3Po
1 815582 (0.043) 1.273E+08 (3.29)

2p4 1D2 2s2p3 3Po
1 892752 (0.085) 1.241E+09 (1.85)

2p4 1S0 2s2p3 3Po
1 1123465 (0.233) 4.222E+09 (1.30)

2p4 3P2 2s2p3 3Po
2 703905 (0.039) 3.629E+09 (0.88)

2p4 3P1 2s2p3 3Po
2 798050 (0.040) 1.598E+10 (0.75)

2p4 1D2 2s2p3 3Po
2 875220 (0.085) 2.512E+09 (1.79)

2p4 3P2 2s2p3 3So
1 550450 (0.021) 6.005E+09 (0.76)

2p4 3P0 2s2p3 3So
1 639819 (0.020) 1.733E+10 (0.28)

2p4 3P1 2s2p3 3So
1 644594 (0.049) 1.290E+10 (0.00)

2p4 1D2 2s2p3 3So
1 721764 (0.059) 7.002E+06 (0.68)

2p4 1S0 2s2p3 3So
1 952477 (0.060) 5.111E+09 (0.25)

2p4 3P2 2s2p3 1Do
2 518830 (0.065) 7.538E+08 (1.85)

2p4 3P1 2s2p3 1Do
2 612975 (0.124) 3.767E+08 (3.31)

2p4 1D2 2s2p3 1Do
2 690145 (0.311) 3.182E+10 (0.28)

2p4 3P2 2s2p3 1Po
1 384932 (0.274) 8.409E+07 (3.44)

2p4 3P0 2s2p3 1Po
1 474302 (0.271) 9.885E+06 (20.99)

2p4 3P1 2s2p3 1Po
1 479076 (0.265) 6.387E+08 (1.58)

2p4 1D2 2s2p3 1Po
1 556247 (0.139) 4.499E+09 (1.15)

2p4 1S0 2s2p3 1Po
1 786959 (0.156) 7.549E+10 (0.09)
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Table 10. Transition rates for Ne-like S. ARCI transition rates from RMCDHF/RCI [43], ABP transition rates from multiconfiguration Hartree-Fock-Breit-Pauli [19] and
ACIV3 transition rates from CI calculations using CIV3 [64].

States
∆E (cm−1) Type ARCI ABP ACIV3

Upper Lower

S VII

2p53s 3Po
2 2p6 1S0 1371667 M2 7.638E+02 7.617E+02

2p53s 3Po
1 0.81 + 0.18 1Po

1 2p6 1S0 1376084 E1 1.855E+10 1.816E+10 1.989E+10
2p53s 1Po

1 0.81 + 0.18 3Po
1 2p6 1S0 1388242 E1 8.421E+10 8.507E+10 8.777E+10

2p53p 3D2 0.79 + 0.16 1D2 2p6 1S0 1484530 E2 3.021E+06 2.964E+06
2p53p 3P2 0.56 + 0.42 1D2 2p6 1S0 1492576 E2 8.028E+06 8.008E+06
2p53d 3Po

1 2p6 1S0 1624769 E1 2.160E+09 2.182E+09 2.312E+09
2p53d 3Po

2 2p6 1S0 1627240 M2 1.710E+04 1.728E+04
2p53d 3Do

1 2p6 1S0 1644545 E1 6.122E+10 6.206E+10 6.230E+10
2p53d 1Po

1 2p6 1S0 1662346 E1 9.452E+11 9.448E+11 9.087E+11
2p53s 3Po

1 0.81 + 0.18 1Po
1 2p53s 3Po

2 4417 M1 1.587E+00 1.601E+00
2p53s 1Po

1 0.81 + 0.18 3Po
1 2p53s 3Po

2 16575 M1 1.849E+01 1.867E+01
2p53p 3S1 2p53s 3Po

2 95373 E1 6.393E+08 6.504E+08 6.480E+08
2p53p 3D3 2p53s 3Po

2 111609 E1 1.566E+09 1.608E+09 1.594E+09
2p53p 3D2 0.79 + 0.16 1D2 2p53s 3Po

2 112863 E1 6.439E+08 6.627E+08 6.418E+08
2p53p 3D1 0.72 + 0.17 1P1 2p53s 3Po

2 116432 E1 1.994E+08 2.060E+08 2.023E+08
2p53p 3P2 0.56 + 0.42 1D2 2p53s 3Po

2 120909 E1 1.000E+09 1.031E+09 1.006E+09
2p53p 1P1 0.55 + 0.27 3D1 2p53s 3Po

2 124214 E1 7.124E+07 7.315E+07 6.807E+07
2p53p 1D2 0.42 + 0.38 3P2 2p53s 3Po

2 127448 E1 2.464E+08 2.501E+08 2.832E+08
2p53p 3S1 2p53s 1Po

1 0.81 + 0.18 3Po
1 78797 E1 1.188E+07 1.206E+07 1.253E+07

2p53p 3D2 0.79 + 0.16 1D2 2p53s 1Po
1 0.81 + 0.18 3Po

1 96287 E1 6.945E+06 7.197E+06 5.508E+06
2p53p 3D1 0.72 + 0.17 1P1 2p53s 1Po

1 0.81 + 0.18 3Po
1 99856 E1 3.825E+06 4.290E+06 4.536E+06

2p53p 3P2 0.56 + 0.42 1D2 2p53s 1Po
1 0.81 + 0.18 3Po

1 104333 E1 2.932E+08 2.977E+08 3.152E+08
2p53p 1P1 0.55 + 0.27 3D1 2p53s 1Po

1 0.81 + 0.18 3Po
1 107638 E1 7.415E+08 7.625E+08 7.557E+08



Atoms 2017, 5, 16 19 of 24

Table 10. Cont.

States
∆E (cm−1) Type ARCI ABP ACIV3

Upper Lower

2p53p 3P0 2p53s 1Po
1 0.81 + 0.18 3Po

1 110460 E1 1.908E+08 1.974E+08 2.006E+08
2p53p 1D2 0.42 + 0.38 3P2 2p53s 1Po

1 0.81 + 0.18 3Po
1 110872 E1 1.206E+09 1.243E+09 1.199E+09

2p53p 3P1 0.70 + 0.27 1P1 2p53s 1Po
1 0.81 + 0.18 3Po

1 112070 E1 7.082E+08 7.307E+08 7.000E+08
2p53p 3P1 0.70 + 0.27 1P1 2p53s 1Po

1 0.81 + 0.18 3Po
1 112070 M2 1.139E−01 1.191E−01

2p53p 1S0 2p53s 1Po
1 0.81 + 0.18 3Po

1 165149 E1 5.082E+09 5.118E+09 5.073E+09
2p53d 3Po

1 2p53p 1D2 0.42 + 0.38 3P2 125654 E1 1.229E+08 1.235E+08 1.323E+08
2p53d 3Po

2 2p53p 1D2 0.42 + 0.38 3P2 128125 E1 3.010E+08 3.017E+08 3.358E+08
2p53d 3Po

2 2p53p 1D2 0.42 + 0.38 3P2 128125 M2 1.161E−01 1.175E−01
2p53d 3Fo

3 0.77 + 0.20 1Fo
3 2p53p 1D2 0.42 + 0.38 3P2 132832 E1 1.471E+06 1.472E+06 1.078E+06

2p53d 3Fo
2 0.71 + 0.17 1Do

2 2p53p 1D2 0.42 + 0.38 3P2 136157 E1 1.190E+06 1.370E+06 1.643E+06
2p53d 1Fo

3 0.53 + 0.40 3Do
3 2p53p 1D2 0.42 + 0.38 3P2 138763 E1 1.511E+08 1.519E+08 1.131E+08

2p53d 3Do
1 2p53p 1D2 0.42 + 0.38 3P2 145430 E1 3.071E+06 3.159E+06 1.717E+06

2p53d 1Do
2 0.52 + 0.28 3Fo

2 2p53p 1D2 0.42 + 0.38 3P2 145447 E1 6.172E+08 6.286E+08 6.276E+08
2p53d 3Do

3 0.57 + 0.27 1Fo
3 2p53p 1D2 0.42 + 0.38 3P2 146716 E1 4.030E+09 4.093E+09 4.183E+09

2p53d 3Do
3 0.57 + 0.27 1Fo

3 2p53p 1D2 0.42 + 0.38 3P2 146716 M2 1.029E+00 1.054E+00
2p53d 3Do

2 0.65 + 0.27 1Do
2 2p53p 1D2 0.42 + 0.38 3P2 147358 E1 1.521E+08 1.531E+08 1.489E+08

2p53d 1Po
1 2p53p 1D2 0.42 + 0.38 3P2 163231 E1 4.854E+07 4.851E+07 5.550E+07
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5.3. Systematic Comparisons between Methods

Wang and co-workers have systematically compared large sets of transition rates from accurate
RMCDHF/RCI and RMBPT calculations [49–52]. These comparisons show that the rates from the
two methods agree within a few percent for the strong transitions and that the agreement gets slightly
worse for the weak intercombination and the two-electron, one photon transitions 1. The comparisons
also show that the differences between the methods are large for transitions for which there are large
differences between the rates in the length and velocity form, thus confirming the usefulness of δA/A
as an uncertainty estimate. In Figure 3, we show the results of a comparison between methods for
O-like Fe [31]. The figure clearly shows the consistency of the RMCDHF/RCI and RMBPT transitions
rates, but also the comparatively large differences with rates from the CHIANTI database. These types
of comparisons point to the fact that transition rates can be computed with high accuracy, but that
much effort remains in order to make data practically available for astronomers and astrophysicist in
updated databases.
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Figure 3. Results of a comparison between methods for O-like Fe [31]. Deviation in percent between
RMCDHF/RCI and RMBPT transition rates as a function of the transition rate in s−1. Deviations from
the values of the CHIANTI database [3,4] are given in red. The dashed lines give the 10% levels.

6. Conclusions

Current computational methodologies make it possible to compute excitation and transition
energies to almost spectroscopic accuracy for many ionized systems. In an astrophysical context,
this means that calculated transition energies can be used to unambiguously identify new lines from
spectra or correct old identifications. Transition data are lacking for many ions, and calculated values
fill this gap. Whereas many of the calculations have been done for systems with relatively few electrons
with a full RCI matrix, zero- and first-order methods, allowing for parts of the interactions to be treated
perturbatively, have extended the range of applicability, and many calculations with high accuracy are
in progress for isoelectronic sequences starting from the third and fourth row of the periodic table.

Accurate and consistent transition rates are essential for collisional and radiative plasma modelling
and for diagnostic purposes. Very few experimental data are available for the rates, and thus, the bulk
of the data must be computed. The lack of experimental data means that internal validation of

1 Transitions between two states for which the configurations differ by more than one electron. These transitions are zero in
the lowest approximation and are induced by CSFs that enter the calculation to correct for electron correlation effects.
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computed data becomes important. For accurate calculations that predict the energy structure at
the per millelevel, the differences between E1 rates in the length and velocity forms can be used to
estimate the uncertainties. Internal validation based on convergence analysis and agreement between
rates in length and velocity, as well as systematic comparisons of rates from RMCDHF/RCI and
RMBPT calculations show that the uncertainties of the E1 rates are at the level of a few percent for
the strong transitions. For the weakest transitions, the uncertainties are higher and come with a more
irregular pattern.

7. Further Developments and Outlook

The time for angular integration is a limiting factor for very large RCI calculations. This time
can be cut down by regrouping CSFs from SD-MR expansions in blocks that can be represented
symbolically. For example, in non-relativistic notation, 1s2nsmp 3P and 1s2npmd 3P with n = 2, . . . , 12
and m = 2, . . . , 12 represent two blocks where the angular integration between CSFs in the blocks,
as well as between CSFs in the different blocks is independent of the principal quantum numbers or
can be reduced to only a few cases. For large n and m, the reduction in computing time is substantial.
Discussed already decades ago [65], it seems essential that these ideas are now broadly implemented
in the generally available computer codes.

With angular integration being a negligible part of the computation comes the possibility to extend
the orbital set to higher n. Currently, the orbitals are variationally determined on a grid in RMCDHF
calculations. The variational determination is computationally costly, and it would be valuable
to augment the variationally-determined orbitals with analytical orbitals or orbitals determined in
simplified and fast procedures. Work along these lines is in progress.

Among the targeted systems for improved computer codes are the α-elements, including Mg, Si,
Ca and the iron group elements Sc, Ti, Cr, Mn, Fe at lower ionization states. These elements are of key
importance for stellar and galactic evolution studies [66].
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48. Radžiūtė, L.; Ekman, J.; Jönsson P.; Gaigalas, G. Extended calculations of level and transition properties in the
nitrogen isoelectronic sequence: Cr XVIII, Fe XX, Ni XXII, and Zn XXIV. Astron. Astrophys. 2015, 582, A61.

49. Wang, K.; Guo, X.L.; Li, S.; Si, R.; Dang, W.; Chen, Z.B.; Jönsson, P.; Hutton, R.; Chen, C.Y.; Yan, J. Calculations
with spectroscopic accuracy: Energies and transition rates in the nitrogen isoelectronic sequence from Ar XII
to Zn XXIV. Astrophys. J. Suppl. 2016, 223, 3.

50. Wang, K.; Jönsson, P.; Ekman, J.; Gaigalas, G.; Godefroid, M.R.; So, R.; Chen, Z.B.; Li, S.; Chen, C.Y.; Yan, J.
Extended Calculations of Spectroscopic Data Energy Levels, Lifetimes and Transition Rates for O-like Ions
from Cr XVII to Zn XXIII. Astrophys. J. Suppl. 2017, 229, 37.

51. Si, R.; Li, S.; Guo, X.L.; Chen, Z.B.; Brage, T.; Jönsson, P.; Wang, K.; Yan, J.; Chen, C.Y.; Zou, Y.M. Extended
calculations with spectroscopic accuracy: energy levels and transition properties for the fluorine isoelectronic
sequence with Z = 24− 30. Astrophys. J. Suppl. 2016, 227, 16.

http://physics.nist.gov/asd
http://physics.nist.gov/asd


Atoms 2017, 5, 16 24 of 24

52. Wang, K.; Chen, Z.B.; Si, R.; Jönsson, P.; Ekman, J.; Guo, X.L.; Li, S.; Long, F.Y.; Dang, W.; Zhao, X.H.; et al.
Extended relativistic configuration interaction and many-body perturbation calculations of spectroscopic data
for the n ≤ 6 configurations in Ne-like ions between Cr XV and Kr XXVII. Astrophys. J. Suppl. 2016, 226, 14.

53. Gu, M.F. Wavelengths of 2l → 3l′ transitions in L-shell ions of iron and nickel: A combined configuration
interaction and many-body perturbation approach. Astrophys. J. Suppl. 2005, 156, 105–110.

54. Gustafsson, S.; Jönsson, P.; Froese Fischer, C.; Grant, I.P. MCDHF and RCI calculations of energy levels,
lifetimes and transition rates for 3l3l′, 3l4l′ and 3s5l states in Ca IX—As XXII and Kr XXV. Astron. Astrophy
2017, 505, A76.

55. Ekman, J.; Jönsson, P.; Radžiūtė, L.; Gaigalas, G.; Del Zanna, G.; Grant, I.P. Large-scale calculations of atomic
level and transition properties in the aluminium isoelectronic sequence from Ti X through Kr XXIV, Xe XLII,
and W LXII. At. Data Nucl. Data Tables 2017, submitted.
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