
atoms

Article

Prospects for Precise Measurements with Echo
Atom Interferometry

Brynle Barrett 1,2, Adam Carew 1, Hermina C. Beica 1,∗, Andrejs Vorozcovs 1, Alexander Pouliot 1

and A. Kumarakrishnan 1

1 Department of Physics & Astronomy, York University, 4700 Keele, Toronto ON M3J 1P3, Canada;
brynle.barrett@institutoptique.fr (B.B.); accarew@gmail.com (A.C.); andrew.vorozcovs@gmail.com (A.V.);
alexpouliot@live.com (A.P.); akumar@yorku.ca (A.K.)

2 Institut d’Optique d’Aquitaine, rue François Mitterand, Talence 33400, France
* Correspondence: hermina@yorku.ca

Academic Editor: James F. Babb
Received: 30 March 2016; Accepted: 21 June 2016; Published: 27 June 2016

Abstract: Echo atom interferometers have emerged as interesting alternatives to Raman
interferometers for the realization of precise measurements of the gravitational acceleration g and
the determination of the atomic fine structure through measurements of the atomic recoil frequency
ωq. Here we review the development of different configurations of echo interferometers that are
best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of
laser-cooled rubidium atoms by a sequence of standing wave pulses to measure ωq with a statistical
uncertainty of 37 parts per billion (ppb) on a time scale of ∼50 ms and g with a statistical precision
of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise
measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent
systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.
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1. Introduction

Over the past few decades, there has been sustained interest in using the exquisite sensitivity of
atom interferometric techniques to gain a precise knowledge of the fundamental forces that govern
our universe through an improved understanding of light-matter interactions. Among pioneering
advances in this field include the diffraction of atomic beams using standing wave light fields [1,2]
and micro-scale material beam splitters [3,4], and sensitive measurements of the index of refraction
of an atomic gas [5]. The development of atom interferometers (AIs) to measure fundamental
constants [6] and inertial effects [7,8] using laser-cooled atoms showed the potential of AIs for
realizing precise studies of fundamental physics, and for industrial applications such as oil and
mineral prospecting or inertial navigation. During the last 25 years, there has been steady progress
toward developing AIs and coherent transient techniques [9–11] for measurements of fundamental
constants such as α (or the ratio of Planck’s constant to the mass of the test atom h/M) [12–16], the
gravitational constant G [17–20], studies of inertial effects such as gravitational acceleration [8,21,22],
gravity gradients [23–25] and rotations [7,26–29], sensing magnetic gradients [30–33] and for more
sensitive tests of the equivalence principle [34–42] and general relativity [43,44].

Most of the progress in both short-term and long-term sensitivity has been achieved using
Raman interferometers [8,22,45–48]. This AI relies on optical velocity-sensitive two-photon Raman
transitions between two long-lived hyperfine ground states in alkali atoms, such as the |F = 1〉 and
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|F = 2〉 states in 87Rb. Raman AIs were the first implementation of state-labeled interferometer [45],
where the coherent exchange of photon momentum between the atoms and the optical fields is
associated with a change in the internal atomic state. Hence, all the information regarding the
interference between atoms is stored in the relative population between states |F = 1〉 and |F = 2〉.

Despite the well-developed nature of Raman AIs, a number of alternate interferometer
configurations have been developed [49–53], particularly for measurements of gravity. In this article,
we report on recent developments and techniques for precision measurements using a unique,
single-state echo interferometer [54,55]. This AI requires only a single excitation frequency, and does
not require velocity selection. Recently, this configuration has achieved several milestones, including
an extension of the timescale to the transit time limit (∼250 ms for experimental conditions) [32], as
well as significant improvements in statistical precision relating to measurements of the atomic recoil
frequency (related to h/M) [56,57] and the acceleration due to gravity [58]. In what follows, we review
recent progress on both atomic recoil (Section 2) and gravity (Section 3) measurements. In these
sections, we also discuss various methods of reducing or eliminating the dominant systematic effects
which are currently limiting the measurements. In Section 4, we review related coherent transient
techniques [59,60] that have demonstrated precise measurements of atomic g-factor ratios. Finally,
in Section 5 we describe the development of a new class of auto-locked semiconductor diode lasers
operating at 780 nm and 633 nm [61]. These low-cost, high-power laser sources exhibit impressive
long-term lock stability that will be implemented in future generations of the experiments described
in Sections 2 and 3. Finally, we conclude with some perspectives in Section 6.

In the following subsections, we compare the operating principles of a Raman interferometer
with those of a single-state grating-echo AI, including a brief theoretical description of the two types.

1.1. Description of Raman-Type Interferometers

As previously mentioned, Raman-transition-based interferometers rely on coherently
transferring atoms between internal states of the atom. To make these transitions, two
counter-propagating optical fields are used, one at frequency ω1 with wavevector k1, and the other
at ω2 with −k2. These Raman fields satisfy the resonance condition ω1 − ω2 = ωHF + keff · v + ωkeff

for making two-photon transitions between ground states |F = 1, p〉 and |F = 2, p + h̄keff〉. Here,
ωHF is the hyperfine splitting between |F = 1〉 and |F = 2〉, p = Mv is the initial momentum of
the atom, keff = k1 + k2 is the effective wavevector of the counter-propagating Raman fields, and
ωkeff

= h̄k2
eff/2M is the atomic recoil frequency associated with the Raman transition.

The most basic and widely used type of Raman interferometer is the Mach-Zehnder
configuration [8] which consists of a π/2− π − π/2 sequence of pulses separated by a time T, as
shown in Figure 1a. The first π/2-pulse acts as a beam-splitter that creates a 50/50 superposition of
the states |1, p〉 and |2, p + h̄keff〉. The atoms then travel along two spatially separated pathways.
The π-pulse at t = T acts as a mirror, exchanging the population between the two states and
redirecting the wavepackets associated with each trajectory back toward one another. The final
π/2-pulse at t = 2T recombines the wavepackets by “closing” the interferometer pathways and
producing the interference. The two output ports of the interferometer correspond to the relative
populations in each state, for instance N1/(N1 + N2), where NF represents the number of atoms in
state |F〉. These populations are usually measured via resonant fluorescence, where many photons
can be scattered per atom. Since the Raman interferometer excites only two pathways, the fringe
pattern follows a simple sinusoidal function

N1,2

N1 + N2
≡ P1,2 =

1
2

(
1± C cos ∆Φtot

)
, (1)

where P1,2 is the probability of finding the atom in either state at the output of the interferometer, C is
the contrast of the interference fringes, and ∆Φtot is the total interferometer phase difference. The key
idea of a Raman interferometer is that the population between internal states oscillates as a function
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of the phase difference between interfering pathways. In general, this phase consists of three main
contributions [62]

∆Φtot = ∆φprop + ∆φsep + ∆φlas, (2)

where ∆φprop =
∮
L(r, v)dt/h̄ is the propagation phase corresponding to the difference of classical

action (integral of the lagrangian L) along the upper and lower pathways, ∆φsep = p ·∆r/h̄ is a phase
associated with a spatial separation ∆r between the wavepackets during the final π/2-pulse, and
∆φlas is due to the Raman laser phase imprinted on the atoms during each pulse, which is given by

∆φlas = keff ·
(
rc(0)− 2rc(T) + rc(2T)

)
+ ϕ1 − 2ϕ2 + ϕ3. (3)

Here, rc(t) represents the center-of-mass trajectory of the atom and ϕj is the phase difference between
the Raman fields at the jth pulse.

Figure 1. Raman and echo-type atom interferometer schemes. (a) Three-pulse Mach-Zehnder
configuration of a Raman interferometer for measuring inertial effects such as gravity. Each light
pulse is composed of two counter-propagating beams of frequencies ω1 and ω2 that induced
velocity-sensitive Raman transitions between states |1, p〉 (blue lines) and |2, p + h̄keff〉 (green lines).
The phase difference between these two beams during each pulse (ϕj) is imprinted on the wavepackets
wherever a change of momentum takes place. In the absence of any accelerations, the final atomic
populations at the output of the interferometer oscillate sinusoidally as a function of the total laser
phase difference ∆ϕ = ϕ1 − 2ϕ2 + ϕ3. (b) Two-pulse configuration of the grating-echo AI, which
is sensitive both to inertial effects and to the atomic recoil frequency. Each light pulse is composed
of counter-propagating beams of the same frequency ω and polarization, which create a standing
wave with phase ϕj. The two SW pulses, separated by a time T, diffract atoms in the same internal
state |1, p〉 into a superposition of momentum states |1, p + nh̄q〉 separated by integer multiples
of the two-photon momentum h̄q = 2h̄k. At time t = 2T, a subset of these momentum states
interfere and create a spatially modulated density grating with period λ/2. A traveling-wave read-out
pulse is applied at this time, and the back-scattered “echo” signal from the atoms is measured.
The phase of this back-scattered light is proportional to the phase shift of the interference pattern due
to gravity. Similarly, the back-scattered light intensity is modulated as a function of T at the atomic
recoil frequency.

Due to the limited bandwidth of two-photon Raman transitions given by the Rabi frequency
Ωeff/2π ' 10− 100 kHz, and the desire to use only atoms in magnetically “insensitive” mF = 0 states,
a large percentage of atoms are lost during the sample preparation process. To give a typical example,
a sample of N ∼ 108 laser-cooled 87Rb atoms at a temperature of∼5 µK has an initial velocity spread of
σv ' 3 cm/s. After preparing the atoms in the |F = 1, mF = 0〉 state using a sequence of near-resonant
push beams and microwave π-pulses, typically 1/3 of the atoms remain. Using a velocity-selective
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Raman pulse with Ωeff/2π ' 10 kHz transfers a narrow velocity class (σ′v = Ωeff/keff ' 0.4 cm/s)
of atoms to the |F = 2, mF = 0〉 state, while the remaining atoms are removed—resulting in an 8-fold
loss in atom number. Thus, in total, Raman AIs exhibit atom number loss factors on the order of
∼25. In this example, approximately N ∼ 4 × 106 contribute to the interferometer. However, each
atom can scatter several thousand photons during the resonant detection pulses, thereby ensuring
an adequate signal-to-noise ratio. A measure of a Raman interferometer’s sensitivity is the so-called
shot-noise or quantum-projection-noise limit [63], where the Poissonian fluctuations of atomic state
measurements limit the minimum uncertainty of individual phase measurements to δφshot = 1/

√
N.

Shot-noise limits of <1 mrad are considered to be state-of-the-art [64,65].
For the simple example of the Earth’s gravitational potential, where L = Mv2/2 − Mgz and

rc(t) =
(
z0 + (v0 +

h̄keff
2M )t − 1

2 gt2)ẑ, it is straightforward to show that the first two phase terms in
Equation (2) vanish—leaving only the laser phase. Hence, if the Raman beams are aligned along −ẑ
such that keff = −keff ẑ, the total phase shift is

∆Φtot = keffgT2 + ∆ϕ, (4)

with ∆ϕ = ϕ1 − 2ϕ2 + ϕ3, which is usually used as a control parameter in the experiment
to scan the interference fringes—enabling a direct measurement of the gravitational acceleration.
Equation (4) illustrates the strong sensitivity of atom interferometers to inertial effects such as
gravity. Since the phase shift scales as keffT2, with a modest interrogation time of T ∼ 50 ms and
keff ∼ 1.6 ×107 rad/m for light at wavelength λ = 780 nm, the acceleration due to gravity
induces a phase shift of ∆Φtot ' 4× 105 rad. Hence, with a phase uncertainty of 1 mrad, the
single-shot sensitivity of the interferometer is ∼3 × 10−9 g. State-of-the-art cold-atom gravimeters
have demonstrated precisions of 0.2 ppb after 1000 s of integration [47].

For measurements of the atomic recoil frequency with a Raman interferometer, typically the
Ramsey-Bordé configuration is used [14–16,45]. In this case, the central π-pulse is replaced with
two π/2-pulses separated by a time T′, which has the effect of spatially separating the two
output ports of the interferometer. The phase difference between interfering pathways is then
∆Φ±tot = 2ωkeff

T ± keffgT(T + T′), where the ± corresponds to the upper and lower output ports,
respectively [66]. The phase shift due to gravity can be rejected by operating the interferometer in
a conjugate mode where the upper and lower ports are detected simultaneously—yielding the sum
of the two phases ∆Φtot = 4ωkeff

T [67]. To increase the sensitivity to the recoil frequency ωkeff
, large

momentum transfer beam-splitters such as high-order Bragg transitions, have been used in place of
two-photon Raman transitions [68–70]. This has the effect of replacing the effective wave with nkeff
in the equations above, thus the recoil phase of the conjugate Ramsey-Bordé interferometers becomes
4n2ωkeff

T. Bloch oscillations have also been used to increase the common momentum transfer to the
atoms between the two pairs of π/2-pulses [14,15]. In this case, the recoil frequency is measured
from the phase shift between the two Ramsey fringe patterns created with the first and last pairs
of π/2-pulses [6]. This phase shift is proportional to the number of photon momenta transferred
to the atoms by the Bloch oscillations, where transfers as large as 1600 photon momenta have been
demonstrated [14,71]. Presently, the state-of-the-art in terms of precision for a measurement of h/M
is 1.2× 10−9 [15].

1.2. Description of Grating-Echo-Type Interferometers

The grating-echo AI is a single-state Talbot-Lau interferometer [72–74], the principles of which
can be understood on the basis of a plane-wave description of the two-pulse scheme shown in
Figure 1b [32,54,55,75–77]. This AI relies on matter-wave interference produced by Kapitza-Dirac
scattering of atoms by short, off-resonant standing wave (SW) pulses. Typically, the interferometer
uses a sub-Doppler-cooled atomic sample with a momentum spread σp � h̄k, initially prepared in a
single hyperfine ground state |F〉. Two SW pulses are applied to the sample separated by a time T.
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The first pulse excites a superposition of momentum states separated by integer multiples of h̄q. The
second excitation pulse further diffracts the momentum states, causing certain trajectories to interfere
in the vicinity of t = 2T, henceforth referred to as the “echo” time. This interference creates a spatial
modulation in the atomic probability density with a phase that is proportional to inertial effects (i.e.,
φa = q · aT2 due to an acceleration a), and a contrast that is temporally modulated at a harmonic
of the two-photon recoil frequency ωq = h̄q2/2M. To measure the properties of this interference, a
unique optical detection scheme is used—a traveling wave read-out pulse is applied the sample in
the vicinity of the echo time when the density modulation is strongest. A certain spatial harmonic
of this modulation satisfies the Bragg condition for scattering light in the backward direction (i.e.,
the harmonic with period λ/2) as shown in Figure 1b. This back-scattered “echo signal” carries
both the phase and contrast information about the atomic interference between certain classes of
trajectories—namely those whose momenta differ by h̄q at t = 2T.

A common feature of the echo AI experiments described in this article is that the contrast of
the density modulation (grating) is small, due to the relatively small atom-field coupling strength
and the short pulse durations of the SW pulses. Consequently, the experiments are limited by the
strength of the signal, which is defined by the reflectivity of the grating (≈ 0.2%). So although echo
experiments do not experience the appreciable atom loss characteristic of Raman AIs, they require
large atom numbers and high-contrast gratings to achieve appreciable signal strengths.

To understand how the atomic density grating comes about, we consider two overlapping
momentum states |F, nh̄q〉 and |F, n′ h̄q〉 labelled by integers n and n′. In comparison to Raman and
Bragg interferometers [8,78], no atom optical “combiner” pulse is required to produce interference
between two wavepacket trajectories since the momenta are in the same hyperfine ground state
|F〉. Spatial overlap is the only condition required to create an interference pattern, which can be
described by 〈

F, n′ h̄q |F, nh̄q
〉
∼ ei(n−n′)q·re−i∆φn,n′ . (5)

Here, ∆φn,n′ is the phase difference between the wavepackets, which has contributions from the
Doppler shift, atomic recoil and the SW laser phase, as we discuss below. If the integers n and
n′ satisfy n′ = n ± 1, then the real part of this interference is ∼cos(q · r + ∆φn,n±1). The density
distribution follows this simple sinusoidal pattern, which exhibits a period of λ/2 and hence satisfies
the Bragg scattering condition for detection. In reality, the pair of SW pulses excite multiple
interfering trajectories—each contributing its own spatial harmonic to the density distribution. To
account for this multi-path interference, one must sum over all possible trajectories to arrive at the
correct interference pattern. Although this can lead to extremely complex periodic structures in the
atomic density [55,75], a simplification that can always be made is the fact that the read-out light will
only scatter from the q-Fourier component of this structure.

We now give a detailed description of the plane-wave theory of grating-echo formation. Initially,
the atomic wavefunction is in a hyperfine ground state labeled by total angular momentum F with
momentum p, thus the wave function before the first SW pulse can be written as

|ψ0(p, t)〉 = |F, p〉 e−i(ω0+ωp)t, (6)

where h̄ω0 is the internal energy of the ground state, and ωp = p2/2Mh̄ is the frequency associated
with the initial kinetic energy of the atom. Since the phase term e−i(ω0+ωp)t is common to all diffracted
momentum states, it is unimportant for interference and we henceforth ignore it. In the short pulse
duration (i.e., Raman-Nath) regime, the interaction with the off-resonant SW pulse simply modulates
the phase of the wavefunction as e−iΩeffτj cos(q·r+ϕj) |ψ0〉, where Ωeff is the effective Rabi frequency
of the light, τj is the duration of the jth pulse and ϕj is the phase of the standing wave (usually
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defined by the location of the node created by a retro-reflecting mirror). We can use the Jacobi-Anger
expansion [79] to describe this modulation in a more convenient form

e−iΩeffτj cos(q·r+ϕj) =
∞

∑
n=−∞

(−i)n Jn(Ωeffτj)e
in(q·r+ϕj), (7)

where Jn(x) is the nth order Bessel function of the first kind. Thus, after the first standing wave pulse
applied at time t = t1, the wavefunction can be shown to be

|ψ1(p, t)〉 = ∑
n

An |F, p + nh̄q〉 einϕ1 e−inq·v(t−t1)e−in2ωq(t−t1), (8)

where An = (−i)n Jn(Ωeffτ1) and v = p/M is the initial center-of-mass velocity of the atom. Here,
we have used the fact that |F, p〉 einq·r = |F, p + nh̄q〉. After the second standing wave pulse at time
t = t2 = t1 + T21, the wavefunction is given by

|ψ2(p, t)〉 = ∑
n,m

AnBm |F, p + (n + m)h̄q〉 ei(nϕ1+mϕ2)

× e−iq·v[nT21+(n+m)(t−t2)]e−iωq [n2T21+(n+m)2(t−t2)],
(9)

where T21 = t2 − t1 and Bm = (−i)m Jm(Ωeffτ2). To find the interference pattern at time t = t1 + 2T21,
we compute the atomic density distribution ρ2 = 〈ψ2 |ψ2〉

ρ2(p, t) = ∑
n,m,n′ ,m′

An A∗n′BmB∗m′
〈

F, p + (n′ + m′)h̄q |F, p + (n + m)h̄q
〉

ei[(n−n′)ϕ1+(m−m′)ϕ2]

× e−iq·v[(n−n′)T21+(n+m−n′−m′)(t−t2)]e−iωq{(n2−n′2)T21+[(n+m)2−(n′+m′)2](t−t2)}.
(10)

This time-dependent expression, although complex, has a simple interpretation. Each term in
the sum is composed of three factors: (i) the complex amplitude factor An A∗n′BmB∗m′ which
determines the relative strength of different interfering trajectories, (ii) the interference term
〈F, p + (n′ + m′)h̄q |F, p + (n + m)h̄q〉 ∼ e−i(n+m−n′−m′)q·r , which produces a modulation in the
atomic density with spatial harmonic (n+m− n′−m′)q, and (iii) a series of phase factors that modify
the phase of the density modulation due to the laser interaction (ei[(n−n′)ϕ1+(m−m′)ϕ2]), the Doppler
shift (e−iφD(t)), and the atomic recoil (e−iφq(t)), where

φD(t) = q · v[(n− n′)T21 + (n + m− n′ −m′)(t− t2)], (11a)

φq(t) = ωq{(n2 − n′2)T21 + [(n + m)2 − (n′ + m′)2](t− t2)}. (11b)

The set of integers {n, m, n′, m′} label the momentum (in units of h̄q) transferred to the atom by the
SW pulses, and represent a particular pair of interfering trajectories in Figure 1b. For instance, the
integer labels corresponding to the trapezoidal trajectories of the Mach-Zehnder geometry shown in
Figure 1a are {n, m, n′, m′} = {1,−1, 0, 1} (Here, we interpret the unprimed integers {n, m} as the
momenta transferred along the upper pathway, while the primed integers {n′, m′} correspond to the
lower pathway of any two trajectories.). It follows that the interference between these trajectories
produces a density modulation with a period of 2π/|n + m− n′ −m′|q = 2π/q = λ/2, which is the
ideal period for back-scattering the electric field of the read-out pulse at wavelength λ.

Since the velocity distribution of the sample is assumed to be broad compared to the scale of
momentum transfer (σp � h̄k), the macroscopic density grating produced in the sample is found by
averaging the single-atom probability density (10) over this distribution of velocities. However, the
velocity-dependent Doppler phase causes a strong dephasing effect on the grating at all times except
certain “echo” times where this phase is zero [55,75,80]. One can show that these times must satisfy
t = t1 + (1− δ1/δ2)T21, where δ1 = n− n′ and δ2 = n + m− n′ − m′. Here, we are concerned with
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only the first echo time at t1 + 2T21, which implies a ratio of δ1/δ2 = −1. The back-scattering detection
method constrains δ2 = ±1, thus we require δ1 = ∓1 (i.e., n′ = n± 1). Inserting this constraint into δ2

yields m′ = m∓ 2. These two constraints define the class of trajectories that produce a macroscopic
interference pattern at t = t1 + 2T21 which can back-scatter light at wavelength λ. This interference
pattern, which represents only a subset of the total density modulation given by Equation (10), can
be shown to be

ρ̃2(r, t) ∼ ∑
s=−1,1

e−isq·re−is(ϕ1−2ϕ2)e−isq·v(t−t1−2T21)eis2ωq(t−t1)

×∑
n

An A∗n+se−i2nsωq(t−t1−2T21) ∑
m

BmB∗m−2se−i2msωq(t−t1−T21).
(12)

We now average over the velocity distribution of the sample, which is assumed to be a
Maxwell-Boltzmann distribution N(v) = 1

π3/2σ3
v

e−(v/σv)2
with e−1 radius σv

〈ρ̃2(r, t)〉 ∼ e−[qσv(t−t1−2T21)/2]2 cos(q · r + ϕ1 − 2ϕ2)

× J1
[
2Ωeffτ1 sin

(
ωq(t− t1 − 2T21)

)]
J2
[
2Ωeffτ2 sin

(
ωq(t− t1 − T21)

)]
.

(13)

Here, we have made use of the Bessel function identity ∑α Jα(x)Jα+β(x)eiαφ = (i)βe−iβφ Jβ(2x sin φ) [79]
to simplify the sums over n and m in Equation (12). Two important features of the interference
pattern are now clear. First, as a result of velocity dephasing, the grating only exhibits non-vanishing
contrast for a timescale of 2/qσv ' 1 µs in the vicinity of the echo time. Second, the atomic recoil
frequency, which initially appeared in the phase of the wavefunction, now affects only the contrast
of the interference pattern. This feature of echo AIs alleviates the need for phase sensitivity in a
recoil-sensitive experiment, since the effect can be measured in the back-scattered signal intensity.
This type of AI has also been referred to as a “contrast” interferometer in the context of recoil
measurements with ultra-cold atoms [81,82].

The final step is to compute from this macroscopic density the signal that is detected in
the experiment by back-scattering the traveling wave read-out light. The physical mechanism
that generates this light is elastic Rayleigh scattering from a spatial modulation of the sample’s
refractive index that satisfies the Bragg condition [83–85]. This coherent scattering process results
from a phase-matching condition along the Bragg angle. Whereas the intensity of diffuse atomic
scattering scales as the number of scatters N, here the intensity scales as N2—a well-known feature
of coherent Bragg scattering [84]. The drawback of this process is that, since it depends on a coherent
superposition of momentum states, each atom scatters at most one photon before being projected
into one of the two states. In comparison, the incoherent process of near-resonant fluorescence used
in Raman interferometers allows one to scatter many photons per atom to increase the signal-to-noise
ratio. This emphasizes the need for large atom numbers, low-sample temperatures, and high-contrast
gratings to reach signal-to-noise ratios comparable with Raman AIs.

The macroscopic density grating described by Equation (13) acts as a linear reflector for light of
wavelength λ [85,86]. Thus, a traveling-wave read-out field of EROei(k·r−ωt+ϕ3) couples to the atomic
grating and produces a back-scattered field given by

EBS(t) ∼ r(t)EROei(−k·r−ωt+ϕ3), (14)

where r(t) is a time-dependent reflection coefficient [85], which depends on the detuning of the
read-out light, and the contrast of the density modulation at spatial frequency q. Hence, for a fixed
detuning, the back-scattered field is proportional to the probability density given by Equation (13)

EBS(t) ∼ EROe−i(k·r+ωt)ei(ϕ1−2ϕ2+ϕ3)e−[qσv(t−t1−2T21)/2]2

× J1
[
2Ωeffτ1 sin

(
ωq(t− t1 − 2T21)

)]
J2
[
2Ωeffτ2 sin

(
ωq(t− t1 − T21)

)]
.

(15)
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This back-scattered field contains all the information about the atomic interference between
momentum states differing by h̄q. For instance, the time-integrated power of the back-scattered
light (referred to as the echo energy) is a measure of the contrast produced by this interference.
Experiments utilizing the two-pulse AI, where the echo energy is measured as a function of T21, are
described in Refs. [32,54–57,76,77].

Similarly, the effect of gravity on the echo AI is to shift the phase of the atomic grating, which
in turn causes a phase shift on the back-scattered electric field. In the same spirit as described in
Section 1.1, the phase shift due to gravity can be computed solely by considering the interaction with
the lasers. From Equation (15), the laser phase has the same form as for the Raman interferometer:
∆φlas = ∆ϕ ≡ ϕ1− 2ϕ2 + ϕ3. By replacing the each ϕj with ϕj + q · rc(tj), where rc(t) = r0 + v0t + 1

2 gt2

is the center-of-mass trajectory of the atom under gravity, we find at t = t1 + 2T21

∆φlas = q · gT2
21 + ∆ϕ. (16)

Echo AI experiments that have demonstrated sensitivity to this gravitational phase shift are described
in Refs. [30,54,55,58,87].

2. Measurements of Atomic Recoil Frequency

2.1. Introduction

There is an ongoing, international effort to develop precise, independent techniques for
measuring the atomic fine structure constant, α—a dimensionless parameter that quantifies the
strength of the electromagnetic force which lies at the heart of light-matter interactions. These
measurements can be used to stringently test the theory of quantum electrodynamics (QED).
Historically, two types of determinations of α have been carried out: (i) those that use other precisely
measured quantities to determine α through challenging QED calculations [88,89], and (ii) those that
are independent of QED, and depend on only the quantities appearing in the definition α ≡ e2/2ε0hc,
where e is the elementary charge, ε0 is the vacuum permittivity, h is Planck’s constant and c is the
speed of light. Some examples of α determinations that require QED are the measurements of the
anomalous magnetic moment of the electron (precise to 0.37 ppb) [90], and the fine structure intervals
of helium (precise to 5 ppb) [91]. The most precise examples of QED-independent determinations are
those based on measurements of the von Klitzing constant, RK = h/e2, using the quantum-Hall
effect [92,93], and the ratio h/M using (i) Bloch oscillations in cold atoms [13,94] and (ii) atom
interferometric techniques [6,12,14,15]. Within these examples, atom interferometry has emerged as a
powerful tool because of its inherently high sensitivity to h/M, which can be related to α according to

α2 =
2R∞

c
h

me
=

2R∞

c

(
M
me

)(
h
M

)
. (17)

Here, R∞ is the Rydberg constant, me is the electron mass, and M is the mass of the test atom. Since
R∞ is known to 6 parts in 1012, and the mass ratio M/me is typically known to a few parts in 1010 [95],
the quantity that limits the precision of a determination of α using Equation (17) is the ratio h/M.
The most precise measurement of this ratio was recently carried out with 87Rb, where h/M was
determined to 1.2 ppb after 15 hours of data acquisition [15]. The corresponding determination of α

was precise to 0.66 ppb. Other interferometric techniques that have demonstrated high sensitivity to
h/M include Refs. [16,81,82,96–99].

In this section, we describe recent improvements in measurements of the atomic recoil frequency
ωq = h̄q2/2M using echo AIs [54,55,57]. The appeal of this type of AI lies in it’s reduced sensitivity
to common systematic effects, such as phase shifts due to the AC Stark or Zeeman effects, since it
involves only a single internal state. In addition, since echo AIs rely on short-duration standing-wave
pulses, only a single laser is required, and the large bandwidth of these pulses alleviates the need
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for velocity selection. Finally, as mentioned in Section 1.2, the signature of atomic recoil affects only
the contrast of the interference pattern and is insensitive to low-frequency phase noise of the standing
wave. Thus, in comparison to Raman interferometers, a phase-stable apparatus is not required to
make high-precision measurements of ωq.

We have developed a “modified” three-pulse echo AI (This configuration is distinct from
the “stimulated” three-pulse AI used for measurements of g that we present in Section 3.5.3.)
which exhibits increased sensitivity to atomic recoil compared to the aforementioned two-pulse
configuration [57]. This modified geometry has been described in previous work using the formalism
of coherence functions [100] and a full quantum-mechanical treatment that accurately describes the
fringe shape [54,56,100]. In the same articles, we also discussed connections to δ-kicked rotors and
quantum chaos, as well as scaling laws that apply to excitation with multiple SW pulses that have
been used in other work [101,102].

2.2. Description of the Modified Three-Pulse AI

For the modified three-pulse AI described in this section, an additional SW pulse is applied
between the first two pulses at t = δT, as shown in Figure 2b [54,56,100–102]. This pulse has the effect
of diffracting the atom into higher-order momentum states that contribute additional harmonics of ωq

to the temporal modulation of the macroscopic grating contrast. Intuitively, the third SW pulse acts
as a phase mask analogous to the function of a multi-slit pattern in classical optics. More specifically,
this pulse shifts the phase of the momentum states by ηωqδT, where η is an integer that depends on
the particular pathways that lead to interference at t = 2T. Hence, varying the time of this pulse δT is
analogous to moving the slit pattern along the propagation axis of light—yielding periodic revivals
of the contrast of the interference pattern. An example of a pair of low-order interfering trajectories
created by this interferometer is shown in Figure 2b (We emphasize that only a small subset of the
trajectories excited by the SW pulses will interfere at t = 2T for an arbitrary third pulse time, δT (i.e.,
trajectories which, when combined, exhibit a Doppler phase that is independent of δT). Specifically,
the only momentum states contributing to the signal are those that differ by h̄q after SW3 and after
SW2.). When one accounts for all possible trajectories, the resulting signal consists of a series of
narrow fringes separated by the recoil period, τq = π/ωq (∼32 µs for rubidium), as a result of the
interference between all excited momentum states differing by h̄q.

When all relevant trajectories are summed over, it can be shown [56,100] that the resulting echo
energy is modulated by J0[2u3 sin(ωqδT)]2, provided the third pulse area u3 = Ωeffτ3 . 1. Here, J0(x)
is the zeroth-order Bessel function of the first kind, Ωeff is the effective two-photon Rabi frequency,
and τ3 is the third SW pulse duration. Figure 2c illustrates the predicted dependence of the echo
energy—that is, the energy in the back-scattered electric field—as a function of δT. The sensitivity
of this AI to ωq scales inversely with the time scale T over which the signal can be measured, and it
scales in proportion to the width of the fringes. The advantage of using this AI over the two-pulse
configuration is the ability to narrow the fringe width using the third pulse. Additionally, since T is
fixed, the same number of atoms remain in the excitation beams at the time of detection—avoiding a
loss of signal with increasing δT due to effects like the thermal expansion of the sample. The fringe
width is effectively determined by the width of the excited momentum distribution. By increasing the
proportion of high-order momentum states (and thus the proportion of high-order harmonics of ωq)
that contribute to the signal, the fringes become more sharply defined. The excitation is controlled
by the interaction strength and duration of the third SW pulse. It can be shown that for small pulse
durations (i.e., τ3 � (Ωeffωq)−1/2) the full-width at half-maximum (FWHM) of the fringe scales
as 1/u3, as illustrated in Figure 2c [54,56,100].
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(c)

Figure 2. (a) An example of two, low-order trajectories that contribute to the two-pulse atom
interferometer (AI) (SWj = jth SW pulse, RO = read-out pulse). Three momentum states are shown
(|p0〉, |p0 + h̄q〉, and |p0 + 2h̄q〉) corresponding to the solid, dashed, and dotted lines, respectively.
The contrast of the interference fringe created at the echo time t = 2T is modulated sinusoidally
by a phase 2ωqT. (b) Low-order trajectories for the modified three-pulse AI. Here, a third pulse is
applied at t = δT between SW1 and SW2 which further modulates the phase of the interference by
2ωqδT. (c) Echo energy as a function of δT/τq for the modified AI. Line shapes are shown for three
different pulse areas, u3 = Ωeffτ3, to illustrate the effect of fringe narrowing that occurs for increasing
interaction strength.

2.3. Experimental Setup

As described in Refs. [32,56,57], two major improvements to our experiment have enabled us to
reach time scales of T ' 60 ms: (i) utilizing a non-magnetizable glass vacuum system, which reduced
decoherence effects related to inhomogeneous B-fields [58] and improved the molasses cooling of
the sample, and (ii) using large-diameter, chirped excitation beams, which increased the transit time
of the atoms in the beam and compensated for the Doppler shift due to gravity (The non-uniform
magnetic field produced by a stainless-steel vacuum chamber, and the gravity-induced Doppler shift
limited previous experiments to T . 10 ms [76,100].).

The experiment utilizes a laser-cooled sample of rubidium typically containing ∼5 ×109 atoms
at temperatures of T . 5 µK. Either 85Rb or 87Rb atoms are loaded into a six-beam, vapor-loaded
magneto-optical trap (MOT) in 250 ms. Prior to the AI experiment, the sample is prepared in the
upper hyperfine atomic ground state (5S1/2 F = 3 for 85Rb or F = 2 for 87Rb). The light for the AI is
derived from a Ti:sapphire laser (linewidth ∼1 MHz) that is locked above the D2 cycling transition
using Doppler-free saturated absorption spectroscopy. A network of acousto-optic modulators
(AOMs) is used to generate the frequencies necessary for the AI excitation and the read-out beams.
The read-out light is detuned to the blue of the cycling transition by ∆RO = 40 MHz, which optimizes
the back-scattered signal intensity for our sample size and density [56]. The AI beams are detuned
by ∆AI = 220 MHz, and a frequency chirp of δ(t) = gt/λ is added to (subtracted from) the
downward- (upward-) traveling component of the SW pulses. This compensates the Doppler shift
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induced by the falling atoms, and ensures that the beams remain resonant with the two-photon
transition [32,56,57]. A “gate” AOM is used upstream of the AI AOMs as both a frequency shifter
and a high-speed shutter to reduce the amount of stray light in the experiment. All RF sources
and digital-delay generators used to define the pulse timing for the AI are externally referenced to
a 10 MHz rubidium clock.

The AI beams are coupled into two AR-coated, single-mode optical fibers and aligned through
the sample, as shown in Figure 3a. At the output of the fibers, the beams are expanded to a e−2

diameter of d ∼ 1.7 cm and are circularly polarized in the same sense by a pair of λ/4 wave plates.
The timing sequence for the experiment is illustrated in Figure 3b. A mechanical shutter on the upper
platform closes before the read-out pulse in order to block the back-scatter of stray read-out light
produced by various optical elements. This light would otherwise interfere with the coherent signal
from the atoms. A gated photo-multiplier tube (PMT, 8 × 10−5 W/V at 780 nm, noise equivalent
power 100 nW) is used to detect the power in the back-scattered field. Figure 3c shows an example
of the echo signal recorded by the PMT averaged over 16 repetitions of the two-pulse AI. This signal
is converted to units of optical power and numerically integrated to obtain a quantity which we term
the echo energy. This quantity is proportional to the contrast of the atomic density modulation and
the intensity of read-out light incident on the atoms. As a result, the signal is sensitive to both atom
number fluctuations and photon number shot noise. This is a drawback compared to fluorescence
detection techniques, where the optical transition can be saturated and is therefore less sensitive to
photon shot noise [65]. In these experiments, we typically observe a noise floor of 0.1 pJ per shot, or
∼0.025 pJ after averaging over 16 repetitions, which was dominated primarily by the NEP of the PMT.
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Figure 3. (a) Optical setup for the interferometer. The glass cell has dimensions 7.6 × 7.6 × 84 cm
and is oriented along the vertical. (b) Timing diagram for the AI. The gate acousto-optic modulator
(AOM) is pulsed on to allow light for each excitation pulse produced by the k1 and k2 AOMs. The
pulse occurring at t = T1 + δT corresponds to the third standing wave (SW) pulse. The read-out pulse
(which is independent of the gate AOM) and the photo-multiplier tube (PMT) gate are turned on for
∼9 µs in the vicinity of the echo time, t = T1 + 2T. (c) Example of a two-pulse grating-echo signal
(from a 10 µK 87Rb sample) recorded by the PMT, which corresponds to an echo energy of 130 pJ.
AI pulse spacing: T = 1.06338 ms; pulse durations: τ1 = 3.8 µs, τ2 = 1.2 µs; AI and read-out beam
detunings: ∆AI = 220 MHz, ∆RO = 40 MHz; AI and read-out beam intensity: I ∼ 40 mW/cm2.
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2.4. Results

Measurements of ωq were obtained using the modified three-pulse AI by measuring the echo
energy as a function of the third pulse time, δT, as illustrated in Figure 4a. This figure shows a
measurement of ωq in 85Rb on a time scale of T ' 36.7 ms, which was acquired in 15 minutes.
Clearly, the shape of the fringes does not resemble that predicted by the theory shown in Figure 2(c).
This is due to the contribution from each of the magnetic sub-levels in the F = 3 ground state of
85Rb, which tend to smear out the higher harmonics in the signal as a result of their different optical
coupling strengths. Furthermore, the presence of additional, nearby excited states (F′ = 2 and 3 in
the case of 85Rb) produces an asymmetry in the fringe lineshape [56]. This effect is reduced in 87Rb
because the frequency difference between neighboring excited states is larger. To measure ωq, the
data are fit to a phenomenological model that consists of a periodic sum of exponentially-modified
Gaussian functions

F(δT; τq) = ∑
l

Al exp
[

1
2

(σl
υ

)2
+

δT − lτq

υ

]
erfc

[
1√
2

(
σl
υ
+

δT − lτq

σl

)]
, (18)

and the recoil frequency, ωq = π/τq, is extracted from the fit. In this model, erfc(x) is the
complementary error function, and the parameter υ, which determines the amount of asymmetry
in the lineshape, is the same for all fringes. The fit to the data shown in Figure 4a yielded a reduced
chi-squared of χ2/dof = 0.51 for dof = 300 degrees of freedom. This corresponds to a relative
statistical precision of ∼180 ppb in ωq—representing a factor of ∼9 improvement over previous
work [100].

(b)

0.062 0.064 0.066

Figure 4. (a) Demonstration of an individual recoil measurement in 85Rb using the modified
three-pulse AI. Data were recorded in two temporal windows separated by T = 1132 τq ' 36.67 ms.
A least-squares fit to the data yields a statistical uncertainty in ωq of 180 ppb. Inset: expanded view
of the fringe near δT = 64 µs. (b) 82 chronological measurements of ωq in 87Rb using T ' 45.5 ms.
Each measurement was acquired in 10 minutes and produced a typical statistical error of ∼380 ppb.

We have scaled these results by the expected value of the recoil frequency, ω
(0)
q = 94.77384783(12)

rad/ms, which is based on the value of h/M(87Rb) from Ref. [15] and the F = 2 → F′ = 3
transition frequency in 87Rb from Ref. [103]. The dashed grid lines indicate the weighted standard
deviation of 339 ppb, and the standard deviation of the mean is 37 ppb. The corresponding reduced
chi-squared is χ2/dof = 0.93 for dof = 81 degrees of freedom. The mean value, shown by the
solid grid line, is ∼2.8 ppm below the expected value, which is due to systematic effects. AI pulse
parameters: T = 45.4837 ms, τ1 = 2.2 µs, τ2 = 1.4 µs, τ3 = 3 µs, ∆AI = 219.8 MHz, ∆RO ∼ 40 MHz,
I ∼ 95 mW/cm2.

To demonstrate the long-term statistical sensitivity of the interferometer, 82 independent
measurements of ωq in 87Rb were recorded (see Figure 4b) while holding all experimental parameters
fixed to the extent possible. Here, ωq is determined from a weighted average over all individual
measurements, where the points are weighted inversely proportional to the square of their statistical
errors. The mean value shown in Figure 4b, which has not been corrected for systematic effects,
is found with a statistical uncertainty of 37 ppb as determined by the standard deviation of the
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mean. An autocorrelation analysis of these data indicate that they are correlated at the 20% level
with measurements taken at a previous time. This is attributed to slowly-varying environmental
conditions, such as temperature and magnetic field, over the 14 hours of data acquisition.

2.5. Discussion of Systematic Effects

We have investigated systematic effects on the measurement of ωq related to the angle between
excitation beams, the refractive indices of the sample and the background Rb vapor, light shifts,
Zeeman shifts, B-field curvature and the SW pulse durations [56]. The total systematic uncertainty in
this measurement is estimated to be ∼5.7 parts per million (ppm), and is dominated by two effects:
(i) the refractive index of the sample, and (ii) the curvature of the B-field that the atoms experience as
they fall under gravity. We now discuss these two effects in detail.

The refractive index of the atomic sample affects the wave vector of the excitation beams, since a
photon in a dispersive medium acts as if it has momentum nh̄k, where n is the index of refraction [104].
For near-resonant light, the index becomes a function of both the density of the medium, ρ, and the
detuning of the applied light from the atomic resonance, ∆AI. The systematic effect on the recoil
frequency due to the refractive index can be expressed as ωq(ρ, ∆AI) = ω

(0)
q n2(ρ, ∆AI), where ω

(0)
q

is the recoil frequency in the absence of systematic effects. The index of refraction can be computed
from the electric susceptibility and the light-induced polarization of the medium [104]. Taking into
account the level structure of the atom, it can be shown that [56]:

n(ρ, ∆HG) =

√
1− ρ

ε0h̄Γ ∑
H

µ2
HG

∆HG/Γ
1 + (∆HG/Γ)2 . (19)

Here, ∆HG ≡ ω − (ωH − ωG) is the atom-field detuning between the ground and excited manifolds,
|g, G〉 and |e, H〉, for laser frequency ω, G (H) is a quantum number representing the total angular
momentum of a particular ground (excited) manifold, and µHG is the reduced dipole matrix element
for transitions between those manifolds [74]. The root-mean-squared density of the cold sample
at the time of trap release was estimated to be (4.1± 1.2) × 1010 atom/cm3 based on time-of-flight
images [56]. Hence, we estimate a refractive-index-induced shift in ωq of −10.5 ± 3.0 ppm at a
detuning of ∆AI = 220 MHz.

The other dominating systematic effect is due to the inhomogeneity of the magnetic field
sampled by the atoms during the total interrogation time (2T ∼ 91 ms) of the interferometer.
This field primarily originates from nearby ferromagnetic material, such as an ion pump magnet and
a glass-to-metal adaptor, and from the set of quadrupole coils we use to cancel the residual field in the
vicinity of the MOT [56]. At the end of the optical molasses cooling phase, the atoms are distributed
roughly equally in population among the magnetic sub-levels of the upper ground state |F = 2〉.
A spatially-varying B-field with a non-zero curvature (i.e., β2 ≡ ∂2B/∂z2 6= 0) has a parasitic impact
on the interferometer as a result of a position-dependent force on the mF 6= 0 states similar to a
harmonic oscillator (We have also considered the effect of a constant background B-field, and found
that it produces a small systematic effect on ωq (∼7.5 ppb per Gauss of residual B-field) as a result
of the distribution of sub-level populations. Similarly, linear magnetic gradients do not affect the
measurement of ωq using the echo AI [32].). For each momentum state trajectory, the atom samples
a different region of space and experiences a different acceleration than that of a neighbouring
trajectory. Since the momentum of each trajectory is differentially modified between excitation
pulses, the interference for each class of trajectories occurs at a slightly different time—causing both a
systematic shift of ωq and a loss of interference contrast. For a given state |F, mF〉, the corresponding
systematic correction to ωq is

ωq(β2, T) = ω
(0)
q

[
1 +

2
3

(
mFgFµBβ2

M

)
T2
]

. (20)
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where gF is a Landé g-factor, and µB is the Bohr magneton. In the worst case scenario, the systematic
shift in the recoil frequency is dominated by the state |F = 2, mF = 2〉. Based on measurements of the
B-field in the vicinity of the atoms, we estimate β2 ∼ 0.1 mG/cm2 = 10−4 T/m2. Thus, for T = 50 ms
we estimate a relative shift of ∼11 ppm. A more detailed analysis [56,57], which accounts of the
distribution of magnetic sub-level populations, yields a more realistic estimate of 6.3± 4.4 ppm.

Including other minor systematic effects, such as the relative beam angle (−15 ± 8 ppb), the
refractive index of the background vapor (−52± 31 ppb), light shifts due to the interferometer beams
and the saturated absorption setup (−55± 2 ppb), and the finite SW pulse durations (0± 2 ppm), we
estimate the total systematic shift on our measurement of ωq to be−4.3± 5.7 ppm [56]. Correcting for
this shift, we find that our measurement ωq = 94.77400(54) rad/ms is within 1.6 ppm of the expected

value of ω
(0)
q = 94.77384783(51) rad/ms, as derived from the most precise measurement of h/M [15].

The combined statistical (37 ppb) and systematic (5.7 ppm) uncertainties of our measurement are
enough to account for this discrepancy.

We now discuss techniques for reducing the aforementioned systematic effects. Equation (19) for
the refractive index suggests that the relative correction to ωq can be reduced by decreasing the sample
density, ρ, or by increasing the excitation beam detuning, ∆AI. However, the current configuration
of the AI relies on a large number of atoms to achieve a sufficient signal-to-noise ratio. Thus, a
decrease in the sample density leads to a reduction in the signal size. Furthermore, the sensitivity
of the three-pulse AI relies on a relatively strong atom-field coupling in order to excite many orders
of momentum states. An increase in the excitation beam detuning without a corresponding increase
in the field intensity leads to a reduction in the sensitivity to ωq. The refractive index systematic could
be reduced by a factor of 103 by a 10-fold reduction in the rms density of the sample, accompanied by
a 100-fold increase in the detuning. This would require an increase in the excitation field intensity
by a factor of 100 (corresponding to ∼ 10 W/cm2) in order to retain the same sensitivity to ωq.
A more promising way forward is to utilize the frequency-dependence of the refractive index,
which exhibits “magic” frequencies where the systematic shift cancels, as shown in Figure 5. These
frequency are located between two excited state manifolds, where the dispersive corrections to the
refractive index due to each state have the same magnitude but opposite sign. Since these frequencies
are independent of the density ρ, they are ideal for cancelling the refractive index shift due to both
the cold-atom sample and the background vapor [56]. Using this feature of the refractive index, one
can avoid both reducing the sample density and using high-intensity excitation beams.
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Figure 5. Relative correction to the recoil frequency due to the refractive index as a function of the
detuning of the excitation field, ∆AI. These curves are based on Equation (19) with a density of
ρ = 1010 atoms/cm3. Predictions for both 85Rb and 87Rb are shown. The detuning is plotted with
respect to the F = 3 → F′ = 4 transition in 85Rb, and the F = 2 → F′ = 3 transition in 87Rb.
The dashed grid lines label the location of excited states [103,105]. The “magic” frequencies, where
the relative correction crosses zero, are indicated with arrows at ∆AI ≈ −66.4 MHz for 85Rb and at
∆AI ≈ −162.6 MHz for 87Rb.
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The systematic shift due to the B-field curvature can be significantly reduced by preparing the
sample in the magnetically “insensitive” state |F = 2, mF = 0〉 (This can be achieved by employing
a combination of optical pumping, resonant push beams and microwave π-pulses resonant
with the |F = 1, mF = 0〉 → |F = 2, mF = 0〉 transition, which the standard technique in Raman
interferometers and atomic clocks.). Then, any systematics due to the B-field would originate from the
second-order Zeeman effect which shifts all sub-levels the F = 2 hyperfine manifold by a frequency
1
2 KB2, where K ' 575 Hz/G2 is the Zeeman shift of the clock transition in 87Rb [103]. Compared to
the first-order Zeeman shift of mFgFµB ' 1.4 MHz/G for the state |F = 2, mF = 2〉, the corresponding
force on the atom is reduced by many orders of magnitude for the same B-field strength. Utilizing
only mF = 0 atoms in the interferometer will have the added benefit of significantly reducing
decoherence due to the B-field curvature—enabling an increase in T and a corresponding reduction
in the statistical error of each measurement. Under current conditions, we have achieved a maximum
time scale of T ∼ 65 ms. However, previous studies indicate that the transit time of the atoms in the
excitation beams is∼270 ms [32], suggesting that T can be as large as∼135 ms before the temperature
of the sample becomes the limiting factor.

Another avenue for improvement to increase the signal-to-noise ratio in the experiment, which
directly affects the sensitivity to ωq. As mentioned in Section 1.2, the macroscopic grating behaves
as a linear reflector for an optical field of wavelength λ with a complex reflectivity r [85,86]. Using
measurements of the energy in the back-scattered echo signal and the optical power in the read-out
pulse, we estimate a reflection coefficient of R = |r|2 ∼ 0.001 under typical experimental conditions.
The reflectivity can potentially be increased by pre-loading the sample in an optical lattice such that
the initial spatial distribution has a significant λ/2-periodic component [106]. Experimental studies
of MOTs loaded into an intense, off-resonant optical lattice have shown that the reflection coefficient
of the light that is Bragg-scattered off the resulting atomic grating can be as large as R ' 0.8 [107].
This motivates the pursuit of high-contrast grating production using a far-detuned lattice pulse that
precedes the AI excitations. Numerical simulations of the reflection coefficient from the grating
produced by a lattice-loaded sample indicate that a 100-fold increase in the back-scattered signal is
feasible. Such an endeavor would require an apparatus with good stability and control of the phase of
the SW fields (i) to effectively channel atoms into the nodes of the lattice potential without significant
heating, and (ii) to match the phases of the excitation and lattice fields.

By implementing these improvements to the echo AI, we anticipate that a future round
of recoil measurements will yield results with both statistical and systematic uncertainties at
competitive levels.

3. Measurements of Gravitational Acceleration

3.1. Overview of Gravity Measurements

Interest in precise measurements of the gravitational acceleration g have been stimulated in part
by the connection of such measurements to the determination of the universal gravitational constant
G [18–20,108] and the possibility of the variation of the gravitational force on small-length scales [109].
Since these measurements can be designed to measure the absolute value of g or relative changes due
to temporal effects such as tides and positional variations due to changes in density, gravimeters have
played a ubiquitous role in the exploration of natural resources by detecting characteristic density
profiles associated with minerals, petroleum, and natural gas. An important practical consideration
is the ability of these sensors to provide a non-invasive technique for exploration in wide area (air,
sea, or submersible) mineral assays involving environmentally-sensitive areas. Other applications
include borehole mapping for verifying properties of rocks, determination of bulk density for the
detection of cavities, and tidal forecasts. The most precise relative measurements of g are derived
from superconducting quantum interference-based devices (SQUIDs) [110,111], whereas absolute
measurements of g based on an optical Mach-Zehnder interferometer [112] can achieve an absolute



Atoms 2016, 4, 19 16 of 42

accuracy of 1 ppb in an integration time of 20 minutes. This sensor relies on recording the chirped
accumulation of fringes when a corner-cube retro-reflector on one arm of the interferometer falls
through a height 0.3 m.

Interest in cold-atom-based interferometers began with the path breaking experiments in
Refs. [8,113], which relied on a Raman interferometer to achieve a statistical precision of 3 ppm
in a measurement time of 1000 s. Raman AIs have also obtained the most sensitive atom-based
measurements of g. To select some examples, Ref. [114] achieved a statistical precision of 1.3 ppb
in 75 s of data acquisition, whereas Ref. [22] included a detailed study of systematic effects and
reported a statistical precision of 3 ppb over 1 min of integration. A key feature of both
experiments was the active vibration stabilization of the inertial reference frame (i.e., the surface of
the retro-reflection mirror) with respect to which the measurements were carried out. Additionally,
in these examples atoms were launched in a 50 cm atomic fountain to obtain a free-fall time of
over 300 ms. More recently, a Raman AI with a 6.5 m drop zone achieved an inferred single-shot
sensitivity of 7× 10−12 g [36,37]. The Raman AI has also been developed to realize the best atom-based
measurements of gravity gradients [23,24] and rotations [27–29,36,115]. As a consequence, this AI has
been the preferred configuration for remote sensing applications [11,47,48,52,64,116–121].

Alternative techniques have also demonstrated competitive measurements of g. Experiments
relying on Bloch oscillations report statistical precisions of 50–200 ppb after a few minutes of
integration time [51,53], and 220 ppb of total systematic uncertainty after a few hours in the case of
Ref. [122] (This latter measurement relies on the precision of Planck’s constant h, which is presently
known to 12 ppb [95].). Additionally, a single-state Mach-Zehnder interferometer involving Bragg
transitions reported a sensitivity of 2.7 ppb after 1000 seconds of data acquisition using a drop height
of 20 cm and passive vibration stabilization [52]. More recently, the same group demonstrated a
Bragg-pulse gravimeter using a Bose-condensed sample which yielded an asymptotic uncertainty
of 2.1 ppb [33]. The echo AI described in Ref. [58], which we review in this article, achieved a
statistical precision of 75 ppb in one hour using a drop height of 1 cm and an apparatus in which
only key components were passively vibration stabilized.

We now review measurements of g using echo AIs that rely on samples of laser-cooled
rubidium atoms released from a MOT. The theoretical background and earlier results are described in
Refs. [30,32,54,55,58,87,123].

3.2. Description of Echo AI Techniques for Measuring g

We first provide a discussion of the physical principles of AI configurations used for
measurements of g that are based on the earlier theoretical description. Figure 6a represents the recoil
diagram which shows displacements of centre-of-mass trajectories of wavepackets for momentum
states for the two-pulse configuration of the AI based on a billiard ball model [124–126]. A sample
of laser-cooled 85Rb or 87Rb atoms is excited along the vertical by two blue-detuned standing wave
(SW) pulses separated by a time T21. Each SW pulse is composed of two traveling wave components,
each carrying a wave vector with wavenumber k = 2π/λ. Atoms in each of the magnetic sublevels
of the F = 3 ground state in 85Rb or the F = 2 ground state in 87Rb are diffracted into a superposition
of momentum states separated by h̄q at t = 0, where q = 2k. This process involves the absorption
of a photon from one travelling wave component of the standing wave and stimulated emission
along the counter-propagating traveling wave component. The durations of the SW pulses are
sufficiently short that they meet the Raman-Nath criterion [127,128], where the displacement of
the atoms due to the momentum transfer from standing wave pulses is small compared to the
spacing of the quasi-sinusoidal standing wave potential. For counter-propagating traveling wave
components, the wavelength of the potential is λ/2. The classical description of the effect of the
standing wave interaction is that the atoms are focused toward the nodes of the standing wave
potential. The focusing of atoms into the nodes produces a one-dimensional density grating with
a period of λ/2. In the quantum mechanical description, it is the interference between momentum
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states that produces this one-dimensional density grating. In this latter description, the atomic wave
function develops a recoil modulation on a time scale τq = π/ωq ∼ 32 µs, where ωq = h̄q2/2M is
frequency associated with the two-photon recoil energy of the atom. The velocity distribution of the
cold sample along the SW axis causes the grating to dephase on a much shorter time scale τcoh = 1/ku,
where u =

√
2kBT /M is the 1/e width of the velocity distribution and T is the temperature of the

laser-cooled sample. For typical sample temperatures of∼20 µK, the dephasing time scale is∼2 µs. A
long time T21 after the grating has dephased, a second SW pulse is applied to diffract the momentum
states. The effect of this SW pulse is to cause the momentum states separated by h̄q to rephase at the
echo time 2T21. Momentum state interference produces a maximum contrast in the density grating
just before and just after the echo time. The rephasing is reminiscent of a two-pulse photon echo
experiment [129] that involves a superposition of ground and excited states. The echo technique is
a general method of cancelling Doppler dephasing in an atomic gas. In echo atom interferometry,
this technique has been extended to ground states so that velocity selection is not required. The
effect of cooling the sample is simply to ensure that the time scale of the experiment is suitably long.
Under ideal conditions, the experimental time scale is limited by the transit time of atoms across the
excitation beam.

Figure 6. Recoil diagrams for (a) two-pulse and (b) three-pulse AIs in the absence of gravity.
Only a subset of all trajectories are shown. SW refers to standing wave pulses and RO is a
traveling wave read-out pulse. The SW pulses, composed of two counter-propagating traveling
wave components, each with wave vector |k|, diffract atoms into a superposition of momentum
states separated by h̄q. For both two-pulse and three-pulse AIs, the backscattered signal arises from
interferences between states differing by h̄q at the echo time.

Since the atoms are in the ground state, it is necessary to apply a near-resonant, travelling-wave
read-out pulse in the vicinity of the echo time to detect the contrast and phase of the re-phased density
grating. The periodic array of atoms formed at the echo time coherently back-scatters the read-out
pulse. This process is known as Bragg scattering. The grating spacing of λ/2 causes a total path
difference change of λ for light reflecting from adjacent planes of the grating. This effect produces
constructive interference since the phase difference of reflections from adjacent planes is 2π. In this
case, the wavelength of the back-scattered light is matched with the Fourier component of the density
grating with spacing λ/2. The back-scattered signal due to the read-out pulse is called the echo signal.
To determine g, the phase of this coherent signal, which scales as qgT2

21, is measured as a function of
the pulse separation, T21.

The read-out light is back-scattered as a consequence of the law of conservation of momentum.
If an incoming read-out photon is backscattered, then the total momentum delivered to the sample
is h̄q. This momentum transfer allows the two arms of the interferometer that differ by h̄q to
recombine. This action of the read-out pulse also creates a coherent superposition of ground and
excited states throughout the sample. The total radiation pattern from this system of dipole radiators
is phase-matched only along the backward direction. The experiment measures the phase of the echo
signal with respect to an inertial frame of reference defined by an optical local oscillator (LO) with a
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frequency ωLO. A convenient reference frame is defined by the nodal point of a standing wave, such
as a reflecting surface.

The back-scattered light at frequency ωAI is detected as a beat note at frequency |ωLO − ωAI|
using a heterodyne technique [55]. Although the quadratic accumulation of phase as a function
of T21 is appealing for a precision measurement of g (among various interferometer geometries,
this configuration also encloses the largest space-time area), the signal amplitude exhibits recoil
modulation as well as a chirped frequency, resulting in the need for a complicated fit function to
extract g. The signal from the two pulse AI is analogous to the interference fringes recorded by the
falling corner-cube optical interferometer discussed in Ref. [112].

An alternate configuration involves a three-pulse stimulated echo AI [32,75,123,130], as shown
in Figure 6b. Here, the first SW pulse creates a superposition of momentum states separated by
h̄q. A second SW pulse applied at t = T21 produces momentum states that are co-propagating at
a fixed spatial separation with the same momentum during a central time window of duration T32.
A third SW pulse applied at t = T21 + T32 causes the co-propagating states to interfere at the echo
time t = 2T21 + T32, resulting in a density grating. Just like the two-pulse AI, the grating formation is
associated with interference of momentum states separated by h̄q. The signal amplitude as a function
of pulse separation T32 shows no recoil modulation and exhibits a fixed angular frequency qgT21 due
to the velocity gT21 acquired by the atoms during the time interval T21 in the presence of gravity.
The period of the signal amplitude is given by τv = λ/2gT21.

The constant modulation period improves the quality of the fits to the data, thereby resulting
in improved statistical precision in measurements of g. For our experimental conditions, in which
the setup was partially shielded from vibrations, the stimulated echo AI proved particularly useful.
This is because the time window T21 can be made small compared to the time scale over
which vibrations cause mirror positions to become uncorrelated, while T32 can be relatively large,
thereby realizing a larger total time scale than the two-pulse AI. This feature is due to the
co-propagating momentum states that have a constant spatial separation during the time window T32.
The disadvantages include the reduction of the signal amplitude due to the additional SW pulse and
the inherent sensitivity to any initial velocity along the SW axis.

3.3. Experimental Setup

Figure 7a shows a block diagram of the experimental setup. The details are described in [58].
A Ti:Sapphire laser is used to generate light for atom trapping and interferometry using a chain of
acousto-optic modulators (AOMs) that serve as frequency shifters and amplitude modulators. All
these elements are placed on a pneumatically-supported optical table. Light from these AOMs is
transported to the atom trap using angle-cleaved, anti-reflection (AR) coated optical fibers.

The experimental setup for atom trapping and atom interferometry is shown in Figure 7b.
The vacuum chamber used for atom trapping is made of 316 L stainless steel and it is anchored to
an optical table mounted on pneumatic vibration isolators. The chamber is maintained at 5× 10−9

Torr by an ion pump with a pumping speed of 270 L/s located 1 m away to reduce ambient magnetic
fields. The chamber is surrounded by three pairs of magnetic field and gradient cancelling coils.
A separate set of tapered coils wound on the chamber provides the magnetic gradient for atom
trapping. The trapping optics, vacuum chamber, anti-Helmholtz and cancellation coils, and ion
pump are supported by the optical table. The MOT is loaded from background vapor, with
approximately 5× 108 atoms loaded in 1 second. Time-of-flight charge-coupled device (CCD) camera
images of atoms released after molasses cooling [131] show that the typical sample temperature
is 20 µK.

The fiber-coupled beam used for atom interferometry identified in Figure 7a is aligned through
a single-pass AOM operating at 250 MHz, as shown in Figure 7b. The circularly-polarized diffracted
beam from this AOM, which is directed along the vertical and used for excitation of atoms, is
detuned by ∆ ∼ 55 MHz above resonance [76]. This beam is retro-reflected through the atom cloud
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by a corner-cube reflector to produce standing wave excitation. The undiffracted beam, with a
frequency of ω0 + 305 MHz is spatially separated from the excitation beam by 2.5 cm. It is aligned
through the same optical elements as the excitation beam to minimize the impact of relative phase
changes due to vibrations and serves as an LO. The LO is physically displaced upon reflection
by the corner-cube. The background light entering the apparatus during the AI pulse sequence
is minimized by pulsing the gate AOM in Figure 7a only when the AI AOM is turned on. The
excitation and LO beams, combined on a beam splitter and a balanced heterodyne detector with two
oppositely-biased Si photodiodes with rise-times of 1 ns, are used to record a beat signal at a frequency
ωRF = |ωAI −ωLO| = 250 MHz. During the read-out pulse, the retro-reflection of the excitation beam
is blocked by a mechanical shutter with an open/close time of 1 ms [132].
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Figure 7. Schematic of experimental setup. (a) Block diagram of laser sources and frequency control.
The frequency of the laser light is defined with respect to ω0, the resonant frequency of the 87Rb
F = 2 → F′ = 3 transition or the 85Rb F = 3 → F′ = 4 transition. (b) Schematic of the atom
interferometry setup. The lower-detection optics and the upper corner-cube reflector are anchored
together and placed on a vibration isolation platform. The vacuum chamber and vibration isolation
platform rest on an optical table supported by pneumatic legs. The photodiodes detect a 250 MHz
beat note, which is the frequency difference between the AI and LO beams. The forms of the ion
pump, cancelling coils, and anti-Helmholtz trapping coils are not shown.
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The corner-cube reflector, AI AOM, balanced detector, and related optics are anchored
to a vibration isolation platform with a resonance frequency of 1 Hz, which rests on the
pneumatically-supported optical table, as shown in Figure 7b. The optical table is effective in
suppressing vibration frequencies above 100 Hz, whereas the vibration isolation platform suppresses
frequencies in the range of 1–100 Hz. The mechanical shutter is separately anchored to the ceiling of
the laboratory to reduce vibrational coupling. In this setup, only critical components are passively
isolated with the vibration isolation platform.

Digital delay generators with time bases controlled by a 10 MHz signal from a rubidium clock
(Allan variance of 10−12 in 100 seconds) are used to produce RF pulses with an on/off contrast
of 90 dB to drive the AOMs. The time delays of optical pulses are controlled with a precision
of 50 ps. The read-out pulse intensity is comparable to the saturation intensity of Rb atoms so that
the entire echo signal envelope can be recorded without appreciably decohering the signal. This
signal, which is measured as a 250 MHz beat note, is recorded on an oscilloscope with an analog
bandwidth of 3.5 GHz and mixed down to DC using the RF oscillator driving the AI AOM to produce
the in-phase (E0 cos(φg)), and in-quadrature (E0 sin(φg)) components of the back-scattered electric
field. While the atom trap is loaded, an attenuated excitation beam is turned on to record a 250 MHz
beat note. This measurement re-initializes the RF phase used to mix the signal down to DC at the
beginning of each repetition of the experiment and ensures that the relative phases between the
excitation beam and the LO are the same at the start of the experiment. Although the LO and AI
beams are strongly correlated at the beginning of the experiment, the phase uncertainty progressively
increases with the time scale of the experiment and it cannot be corrected mainly because the motion
of the corner-cube reflector is not measured. The typical repetition rate of the experiment varies
between 0.8–3 Hz.

3.4. Theory

We now review the theoretical description of the signal shapes and characteristics for both two-
and three-pulse stimulated AI configurations using simplified equations that apply to an atomic
system with a single magnetic ground state sublevel as in Refs. [32,58,87]. Here, g represents a
constant gravitational acceleration along the axis of SW excitation.

3.4.1. Two-Pulse AI

The backscattered electric field due to the readout pulse for the two-pulse AI can be written as

E(2)
g = E(2)

0 eiφ(2)
g , (21)

where E(2)
0 is the electric field amplitude and φ

(2)
g is the gravitational phase. The electric field

amplitude for the two-pulse AI can be shown to be

E(2)
0 ∝ EROe−(∆t/τcoh)

2
J1
[
2θ1 sin(ωq∆t)

]
J2
[
2θ2 sin

(
ωq(T21 + ∆t)

)]
e−techo/τdecay , (22)

where ERO is the electric field amplitude of the read-out pulse, Jn(x) is the nth-order Bessel function of
the first kind, θ1 and θ2 are the pulse areas of the first and second SW pulses respectively, ∆t = t− 2T21

is the time relative to the echo time techo = 2T21, and ωq = h̄q2/(2M) is the two-photon recoil
frequency. Here, τcoh = 1/ku is the coherence time due to Doppler dephasing that defines the
temporal width of the signal shown in Figure 8a, where u =

√
2kBT /M is the 1/e width of the

one-dimensional velocity distribution along the excitation beams and T is the sample temperature.
The last term in Equation (22) represents a phenomenological decay, with a time constant τdecay
that models signal loss due to decoherence mechanisms in the experiment (e.g., from spontaneous
emission and the spatial curvature of the ambient magnetic field), as well as the transit time of cold
atoms through the interaction zone defined by the excitation beams.
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Figure 8. Predicted shape of the in-phase component of the echo envelope at (a) 2T21 = 0.1 ms
for the two-pulse AI and (b) 2T21 + T32 = 100 ms for the three-pulse AI are shown as solid red
lines. Here, g = 9.8 m/s2, and ∆t is the time measured with respect to the echo time. In (a), a
time slice used in the analysis is shown as a gray rectangle. The two echo envelopes shown in red

are described by E(2)
D eiφ(2)

D for the two-pulse AI (see Equations (25) and (27)), and E(3)
D eiφ(3)

D for the
three-pulse AI (see Equations (34) and (36)). The black dashed lines show the envelopes in the absence
of gravity. The echo envelope exhibits an increase in the oscillation frequency as the free-fall time
increases. (c) Predicted shape of the in-phase component of the signal amplitude for the two-pulse

AI as a function of T21 as predicted by E(2)
AI eiφ(2)

AI (see Equations (26) and (28)), and shown as a solid

red line. The signal exhibits chirped sinusoidal behaviour due to the quadratic dependence of φ
(2)
AI on

T21, and also shows recoil modulation with a period τq = 33.151µs. Here, we set g = 980 m/s2 for
illustrative purposes. The black dashed lines show the total signal amplitude. (d) Predicted shape of
the in-phase component of the signal amplitude for the three-pulse AI as a function of T32 as predicted

by E(3)
AI eiφ(3)

AI (see Equations (35) and (37)), shown as a solid red line. The signal exhibits a constant
modulation frequency with a period τv and shows no recoil modulation. Here, T21 = 15 ms. Again,
we set g = 980 m/s2 for illustrative purposes. The total signal amplitudes for both two-pulse and
three-pulse AIs show a phenomenological exponential decay (gray line) to illustrate signal loss due to
decoherence and transit time effects.

In the presence of gravity, the space-time area enclosed by the interferometer determines the
phase accumulation and for the two-pulse AI [30,32,54,58,87], the phase is given by

φ
(2)
g = q · g(T2

21 + 2T21∆t + ∆t2/2). (23)

We decouple the expression for the echo signal into two parts that are dependent on the time scales
T21 and ∆t to explain its characteristics. Accordingly, the two-pulse signal becomes

E(2)
g = E(2)

D (∆t)E(2)
AI (T21)eiφ(2)

D (∆t)eiφ(2)
AI (T21), (24)

where
φ
(2)
D (∆t) = q · g(2T21∆t + ∆t2/2) (25)

is the Doppler phase which is dependent on ∆t, and

φ
(2)
AI (T21) = q · gT2

21 (26)
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is the AI phase which is dependent only on T21. The Doppler component of the electric field
amplitude is given by

E(2)
D (∆t) ∝ EROe−(∆t/τcoh)

2
J1
[
2θ1 sin(ωq∆t)

]
, (27)

and in the limit ∆t� T21, the AI electric field amplitude is given by

E(2)
AI (T21) = J2

[
2θ2 sin(ωqT21)

]
e−techo/τdecay . (28)

The measurement of gravity is based on detecting the amplitude and phase of the back-scattered light
from the atomic grating (which has a frequency ωAI and phase φAI) with reference to an optical LO,
which has a fixed frequency ωLO and phase φLO. The signal is recorded as a beat note at the frequency
ωAI − ωLO and with a phase difference φsignal = φAI − φLO. The phase shifts associated with the
atoms are sensitive to optical phase shifts of the SW pulses and the LO due to the environment.
The total signal amplitude can be expressed in terms of the in-phase and in-quadrature components
E(2)

0 cos(φ(2)
g ) and E(2)

0 sin(φ(2)
g ) as

E(2)
0 =

1√
2

{[
E(2)

0 cos(φ(2)
g )
]2

+
[

E(2)
0 sin(φ(2)

g )
]2
}1/2

. (29)

The recoil modulation and signal decay terms can be removed from the in-phase and in-quadrature
components of the back-scattered field amplitude by normalizing with respect to E(2)

0 . We are then

left with cos(φ(2)
g ) and sin(φ(2)

g ) as the two components of the signal.
The dashed lines in Figure 8a show the Doppler electric field amplitude as predicted by

Equation (27). Here, a convenient T21 was chosen to maximize the recoil modulated signal, modeled
by Equation (28). The solid red line shows gravity-induced oscillations within the echo envelope,

as predicted by E(2)
D eiφ(2)

D . The oscillations are attributed to the free fall of atoms through a grating
spacing of λ/2, which results in a phase increment of 2π. This effect can also be described as a
Doppler shift of the backscattered field due to the falling grating.

The solid red line in Figure 8c shows the predicted in-phase component of the signal amplitude

for the two-pulse AI as a function of T21 given by E(2)
AI eiφ(2)

AI (see Equations (26) and (28)).
The recoil modulation its readily apparent and the frequency-chirped oscillations due to gravity are
illustrated by setting g = 980 m/s2 . The dashed black line shows the recoil-modulated total signal
amplitude E(2)

AI .

3.4.2. Three-Pulse AI

Based on Refs. [32,58,87], the backscattered electric field for the three-pulse stimulated echo AI
shown in Figure 6b can be written as

E(3)
g = E(3)

0 eiφ(3)
g , (30)

where E(3)
0 is the electric field amplitude and φ

(3)
g is the gravitational phase. The electric field

amplitude can be shown to be:

E(3)
0 ∝ EROe−(∆t/τcoh)

2
J1
[
2θ1 sin(ωq∆t)

]
× J1

[
2θ2 sin

(
ωq(T21 + ∆t)

)]
J1
[
2θ3 sin

(
ωq(T21 + ∆t)

)]
e−techo/τdecay .

(31)

Here, θ3 is the pulse area of the third SW pulse and the time relative to the echo time is
∆t = t− 2T21 − T32. This signal exhibits recoil modulation as a function of T21 but not as a function
of T32.
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In the presence of gravity, the phase of the three-pulse stimulated echo signal can be shown to be

φ
(3)
g = q · g(T2

21 + T21T32 + T32∆t + 2T21∆t + ∆t2/2). (32)

As in the two-pulse case, this phase is proportional to the space-time area enclosed by the
interferometer. Setting T32 = 0 reduces φ

(3)
g to the earlier result for φ

(2)
g .

To explain the characteristics of the echo signal, we once again decouple the prediction into a part
that is dependent on the time scales T21, T32, and a second part that is dependent on ∆t. Therefore,
the three-pulse echo signal is written as

E(3)
g = E(3)

D (∆t)E(3)
AI (T21, T32)eiφ(3)

D (∆t)eiφ(3)
AI (T21,T32), (33)

where
φ
(3)
D (∆t) = q · g

[
(T32 + 2T21)∆t + ∆t2/2

]
(34)

is the Doppler phase, and
φ
(3)
AI (T21, T32) = q · g(T2

21 + T21T32) (35)

is the AI phase. The Doppler component of the electric field amplitude is given by

E(3)
D (∆t) ∝ EROe−(∆t/τcoh)

2
J1
[
2θ1 sin(ωq∆t)

]
, (36)

and the AI electric field amplitude is given by

E(3)
AI (T21, T32) = J1

[
2θ2 sin

(
ωq(T21 + ∆t)

)]
J1
[
2θ3 sin

(
ωq(T21 + ∆t)

)]
e−techo/τdecay . (37)

We note that φD can be varied by changing either T32 or T21. As in the two pulse AI, this term
produces a modulation of the echo envelope due to gravitational acceleration. Since techo = 2T21 for
the two-pulse AI and techo = 2T21 + T32 for the three-pulse AI, the functional forms of φ

(2)
D and φ

(3)
D

are in fact identical.
The functional forms of the electric field amplitudes in Equation (22) and Equation (31) are

similar. However, since the three-pulse stimulated AI amplitude involves the additional experimental
parameter T32, the envelope of this echo signal can be recorded as a function of T32 for an optimized
value of T21. For non-zero T32, φ

(3)
AI is maximized if T32 = 2T21.

The dashed lines in Figure 8b show the Doppler electric field amplitude predicted by
Equation (36). This shape is plotted by choosing a convenient T21 to maximize the recoil-modulated
signal, modelled by Equation (37). The solid red line shows oscillations within the echo envelope due

to gravity, as predicted by E(3)
D eiφ(3)

D .
The solid red line in Figure 8d shows the shape of the in-phase component of the signal

amplitude for the three-pulse stimulated echo AI as a function of T32, as predicted by E(3)
AI eiφ(3)

AI

(see Equations (35) and (37)). This signal exhibits a characteristic period τv determined by T21 and
shows no recoil modulation. The total signal amplitude E(3)(T21, T32) predicted by Equation (37) as a
function of T32 is shown in Figure 8d as a grey line. This curve exhibits a smooth decay due to signal
loss arising from transit time and decoherence effects.

3.5. Results

3.5.1. Doppler Phase Measurements

The characteristics of the echo envelope can be used to measure g along the axis of SW excitation.
Equation (25) for the two-pulse AI and Equation (34) for the three-pulse stimulated echo AI show that
the Doppler phase φD produces a similar modulation of the echo envelope for the two configurations.
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The echo envelope has a simple dispersion shape shown in Figure 8a, and predicted by
Equation (27) if T21 and T32 are small. As T21 and T32 are increased, the signal envelope exhibits
oscillations due to gravity as shown by the single sequence acquisitions in Figure 9a,b for the
two-pulse and three-pulse stimulated echo configurations, respectively. The oscillations due to g
are evident for the echo time 2T21 = 9.3 ms in Figure 9a. In Figure 9b, the echo time 2T21 + T32 = 45.1
ms with T21 = 1.5 ms. The increase in modulation frequency within the echo envelope as a function
of T21 for the two-pulse AI (see Equations (25) and (27)) and as function of T32 for the three-pulse
AI (see Equations (34) and (36)) were used in Refs. [58,87] to measure g with a precision ranging
from 0.6% to 0.8%. For these measurements, the Doppler modulation frequency across the echo
envelope was assumed to be a constant since T21, T32 � ∆t and the frequency was determined from
eight repetitions. Although the relatively short measurement time scale is appealing, the sensitivity
to the fit functions used to model the echo envelope and the temporal duration of the signal (a few
microseconds) limited the statistical uncertainty. The utility of this technique can be re-examined in
an actively vibration-stabilized apparatus that is discussed later in this section.
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Figure 9. (a) Example of fit to the in-phase component of the two-pulse echo signal obtained on a
single acquisition for 2T21 = 9.3 ms. (b) Example of fit to the in-phase component of the three-pulse
echo signal obtained on a single acquisition for 2T21 + T32 = 45.1 ms.

3.5.2. Two-Pulse AI Measurement

The best method of obtaining amplitudes of the in-phase and in-quadrature components of
the signal requires fitting to the signal shape as in Figure 9, but the consistency of the results is
affected by the complicated fit functions. As a result, the signal from the two pulse AI is usually
background subtracted, and the points are squared and summed over the signal duration to extract
the two components of the signal amplitude as a function of either T21. The quadrature sum of the
component amplitudes gives the total signal amplitude E(2)

0 , and each of the component amplitudes is

normalized with respect to E(2)
0 to obtain cos(φ(2)

AI ) and sin(φ(2)
AI ). Although this procedure is suitable

for extracting φ
(2)
AI predicted by Equation (26), it is particularly sensitive to background subtraction

and the signal strength, and ignores the frequency variation across the echo envelope predicted by
Equation (23). For each value of T21, the signal amplitude E(2)

0 is calculated by averaging over three
successive points on either side. This procedure ensures that the sinusoidal fits are not skewed by the
scatter in the signal strength.

Figure 10 shows a measurement of g using the quadratic dependence of φ
(2)
AI on T21 as predicted

by Equation (26). The amplitude of the in-phase component is recorded as a function of T21 for one
hour with four observational windows, with each window consisting of 200–325 points acquired in
a randomized sequence. Each data point represents the average of 16 repetitions. The error bars
are determined on the basis of a probability density function (PDF) analysis [120]. The weights of
the error bars are assigned as the product of the error bars from the PDF analysis and the error bars
based on the signal amplitude E(2)

0 . The overall time scale was limited to T21 = 12.8 ms due to
the progressive breakdown of the periodically initialized RF phase. These data show the expected
chirped frequency dependence of cos(φ(2)

AI ) on T21. The data are fit to a multi-parameter function of
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the form cos(qgT2
21 + qv0T21 + φ0), which yielded a measurement of g = 9.79123(9) m/s2. Similarly,

we obtain g = 9.79130(9) m/s2 from the in-quadrature component with a similar uncertainty.
A weighted average of the in-phase and in-quadrature components allowed the acceleration to be
determined with a statistical precision of 7 ppm. In the fit function, v0 models a velocity parameter for
the atoms, and φ0 is the initial phase of the grating with respect to the nodal point on the corner-cube
reflector. The typical value of v0 from the fit was 0.107(1) mm/s, which was much smaller than
results obtained by tracking the centroid of the falling cloud with a CCD camera. Since cloud launch
does not affect the phase of the two-pulse AI, we speculate that intensity imbalances in the two SW
components produce this effect.
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Figure 10. (a–d) Four observational windows for the two-pulse AI experiment showing the amplitude
of the in-phase component as a function of T21. The frequency of the signal increases linearly as a

function of T21 (∂φ
(2)
AI /∂T21 = 2qgT21). The solid red line indicates a simultaneous least-squares fit to

all four windows. These results were obtained using 85Rb, with SW pulse lengths τ1 = 800 ns and
τ2 = 90 ns, optical intensity of 50 mW/cm2, at a detuning of ∆ = 55 MHz relative to the F = 3 → 4
cycling transition.

We note that the size of the residuals in all four windows of Figure 10 is smaller than the standard
deviation for a random distribution of points [58]. Here, the standard deviation of the histogram of
the residuals in phase units for the entire data sets is 0.7 rad out of a total phase accumulation of
|φ(2)

AI | ∼ 2.6× 104 rad for T21 = 12.85 ms. The increasing size of the residuals for T21 > 10 ms in
Ref. [58] indicates the sensitivity of the two-pulse AI to vibrations and decoherence effects such as
magnetic field curvature.

3.5.3. Three-Pulse Measurement

We now discuss the improvements obtained using the three-pulse stimulated echo AI. Due
to the relative insensitivity of the three-pulse AI to vibrations compared to the two-pulse AI, two
previously-mentioned analysis techniques that have distinct disadvantages, namely fitting to the
echo envelope, as well as the faster square-sum method can be avoided. Instead, the instantaneous
amplitude of the background-subtracted signal is found from a single time slice of the echo envelope,
as shown in Figure 8a. The best statistical precision was obtained with a temporal slice duration
of 10 ns in which there is effectively no change in the signal amplitude. The average amplitude of
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each slice was determined by averaging 16 repetitions. This method ensures that the signal amplitude
can be measured for 200 slices over the the echo envelope for each value of T32.

Figure 11a,b show cos(φ(3)
g ) for a single slice as a function of T32 with T21 fixed at 7.431900 ms.

The in-phase and in-quadrature components cos(φ(3)
g ) and sin(φ(3)

g ) were obtained by normalizing

with respect to the total signal amplitude E(2)
0 as for the two-pulse AI. These data were recorded in

one hour with 100 points in each window acquired in randomized sequence. The data shows that the
signal exhibits a single frequency as predicted by Equation (35). Two widely spaced observational
windows allow this frequency to be determined precisely. The frequency for a single slice can be
written as

ω
(3)
AI =

∣∣∣∣∣∂φ
(3)
AI

∂T32

∣∣∣∣∣ = q · gT21. (38)

Here, the frequency change across the echo envelope predicted by Equation (32) is ignored.
We use Equation (38) to fit data for the in phase component with T21 = 7.431900 ms and
q = 16105651.65 rad/m [103], to obtain g = 9.833245(4) m/s2, which represents a statistical precision
of 0.4 ppm. This value can be compared to the 7 ppm statistical uncertainty for the two-pulse AI.

Figure 11. Two observational windows of the amplitude of the in-phase component for the three-pulse
AI with T21 = 7.4319 ms as a function of T32 in the vicinity of (a) T32 = 0.2 ms and (b) T32 = 30 ms.
These data correspond to a single time slice and exhibit a constant frequency as a function of T32

(∂φ
(3)
AI /∂T32 = qgT21). The solid red line indicates a simultaneous least-squares fit to both data

windows, which yields a frequency of 187324.75(8) Hz. An analysis of the fit residuals indicates
the standard deviation of phase noise for the entire data set is 0.2 rad. These results were obtained
using 87Rb.

The enhancement in precision can be attributed to several factors. Firstly, the determination of
a single frequency in the absence of recoil modulation increases the robustness of fits. Secondly, the
measurement time scale is significantly extended in comparison to the two-pulse AI since these data
represent a total time scale 2T21 + T32 = 45 ms, while limiting T21 to ∼7.5 ms. Therefore, there is
reduced sensitivity to the effects of magnetic curvature and vibrations, which also leads to a more
gradual decay of the signal amplitude. As a result, the standard deviation of the residuals (∼0.11) is
similar in each observational window. In phase units, the standard deviation of the residuals for the
entire data set is 0.2 rad. In comparison, the overall standard deviation is 0.7 rad for the two-pulse
AI. The results show that the slicing technique works well only because of good phase stability.

The slicing technique also allows the frequency across the echo envelope predicted Equation (32)
to be observed. Additionally, a further improvement in statistical uncertainty is achieved by
determining the frequencies of all time slices across the echo envelope. Figure 12a shows the
frequency of each time slice obtained using two widely spaced observational windows as in Figure 11
as a function of ∆t. Here, the echo envelope is divided into 200 slices, each with a duration of 10 ns.
The data confirm the linear dependence of the angular frequency on ∆t predicted by

ω
(3)
a =

∣∣∣∣∣∂φ
(3)
a

∂T32

∣∣∣∣∣ = q · g(T21 + ∆t), (39)
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with φ
(3)
a given by Equation (32). Each data point in Figure 12a has a typical error bar of 1 ppm. The

reduction in error in comparison to the two-pulse AI is a result of the extended (30 ms) time scale.
The improved sensitivity makes it possible to observe the change in frequency with ∆t across the
echo envelope. In contrast, for the data associated with measurements of g using the Doppler phase
modulation inside the echo envelope, we assume a constant frequency across the echo envelope since
the observational window is only a few microseconds long and the measurement does not have the
desired sensitivity.

Figure 12. (a) Measurement of ω
(3)
a across the echo envelope using 200 time slices. Here, we use T21 =

7.431900 ms. The intercept of the line is 188192.095(17) Hz, giving a value of g = 9.8774458(9) m/s2

and a corresponding statistical error of 90 ppb (not corrected for systematic effects). Similar analysis
of the in-quadrature component reduces the combined statistical error to 75 ppb. (b) Residuals of the
linear fit. These results were obtained using 87Rb.

For the data in Figure 12a, the limited time scale of the echo envelope and the scatter lead to an
overall statistical error in the slope that is appreciable (600 ppm) despite the relatively small statistical
error in each of the points (1 ppm). The scatter is attributed to magnetic field effects described in
Refs. [58,87]. However, the uncertainty in the frequency intercept is much more tightly constrained
since the data are closely clustered near ∆t = 0. Based on Equation (39), the frequency intercept
is q · gT21. From the linear fit in Figure 12a, we find the intercept at ∆t = 0 to be 188192.095(17)
Hz. Using the values of q and T21, we obtain g = 9.8774458(9) m/s2, which represents a statistical
precision of 90 ppb. A weighted average from the in-phase and in-quadrature components gives a
combined statistical precision of 75 ppb. Figure 12b shows the residuals to the straight line fit in
Figure 12a. The residuals increase in size in the regions where the echo envelope is small such as in
the extremities and in the vicinity of ∆t = 0.

3.6. Improvements and Future Work

To summarize the gravity measurements described here, we note that an analysis of the
Doppler phase oscillations of the echo envelope resulted in measurements statistically precise
to 0.6%. Experiments with the amplitude and phase of the two-pulse AI yielded a statistical
uncertainty of 7 ppm. Experiments with the three-pulse AI with a drop height of 1.2 cm in a
passively vibration-stabilized chamber demonstrated the best statistical precision of 75 ppb, but it
is currently not competitive with the precision of interferometers based on two-photon Raman or
Bragg transitions [22,36,46–48,52,114].

The time scale of the experiments described here was principally limited by the magnetized
vacuum chamber. The magnetization of the chamber and a correction due to the index of refraction
were the dominant sources of systematic errors [58]. Other constraints were associated with the
signal-to-noise ratio due to the power available from the laser source. The index correction, which
impacts q, is dependent on both the sample density and the detuning of the excitation [104], and
it is prominent because of the near-resonant nature of the experiment. Based on the improved
signal-to-noise ratio obtained in recent echo experiments that utilized a non-magnetic apparatus [32,57],
we have projected a measurement sensitivity of 0.6 ppb for the three-pulse AI and 0.3 ppb for the



Atoms 2016, 4, 19 28 of 42

two-pulse AI. Such an experiment can be realized with drop heights of 30 cm in a non-magnetic
apparatus with active stabilization of the inertial reference frame. Such an experiment will also
require excitation beams with a power output of several Watts so that far-off resonant excitation is
feasible. This seemingly challenging requirement can be addressed by using low-cost laser systems
consisting of tapered amplifier waveguides seeded by auto-locked diode laser systems [61] that are
discussed in Section 5. It is expected that the new laser source will produce a ten-fold increase in
signal size due to excitation of higher-order momentum states. Active vibration stabilization will
allow cold atoms to be preloaded into a one-dimensional optical lattice so that the initial spatial
distribution of atoms has a significant λ/2-periodic component [106]. This approach will produce
gratings with reflectivities approaching unity [107], which would represent an appreciable increase
in the signal-to-noise ratio compared to current experiments in which the reflectivity is ∼ 0.001. This
increase will permit the experiment to be carried out at a lower density to further reduce the refractive
index correction. Atoms will also be selected in the magnetically “insensitive” mF = 0 state to avoid
systematic effects due to magnetic interactions. A reduction in measurement time will be realized
by using techniques for under-sampling fringe patterns [133] developed for commercial corner-cube
gravimeters. We now discuss the layout of the improved apparatus.

The main limitation in the passively-stabilized experiment discussed here is the lack of
reference to a proper inertial frame. Since the interferometer’s SW excitation beam is generated
by retro-reflecting a traveling-wave beam off of a corner-cube retro-reflector, the phase of the SW
excitation was linked to the position of the corner-cube with respect to Earth’s gravity field. This
means that during the course of the experiment, there would be an uncontrolled phase accumulation
in the signal proportional to the drift of the position of the apparatus. This puts an upper limit on
the possible time scale of experiments, which in turn limits the achievable precision. Depending
on the vibration spectrum of the lab environment, there might also be aliasing effects for certain
experimental repetition rates, as suggested by the data in Refs. [58,87].

The new apparatus shown in Figure 13 will include a high-precision accelerometer, attached to
the corner-cube reflector to provide a more reliable reference of the experiment’s frame of reference
to the Earth’s frame. The position of the reflector as a whole can be measured at the beginning of
each experiment, and this data can be used to either post-correct the data, or to actively correct the
frame of reference using a mechanical actuator such as a voice-coil [22,24]. The sensitivity of the
interferometer to motion of the SW potential during the experiment can be easily calculated [40,134],
making the post-correction process relatively straightforward.

Figure 13. Improved apparatus to measure of g using an echo AI.

The apparatus will be passively-isolated from ambient vibrations by a two-stage system.
The first stage consists of a laminar flow pneumatic isolator, on which the optics table is mounted.
This isolator has a vertical resonance around 1 Hz. To further decrease the system’s susceptibility
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to low-frequency vibrations, the atom trapping optics, AI optics, and vacuum chamber are mounted
on a passively-tuned spring damping system that has a sub-1 Hz vertical resonance. This isolator
is, in turn, mounted on top of the previously-mentioned pneumatic isolation system. The only
component of the apparatus that is not mounted to the spring-based isolator is the field cancellation
coils, due to the mass limit of the spring-based isolator. The coils are instead attached directly to
the pneumatically-isolated table. Since the zero field/gradient region created by the cancelling coils
is quite large compared to the expected motion of the apparatus due to vibrations, the mounting
scheme for the coils is not expected to affect the stability of the measurements.

Because the AI relies on two traveling wave components to produce SW excitation, it is necessary
to monitor the drift of the retro-reflecting mirror with respect to the other optics in the system using
a Michelson-type interferometer and a far-off resonance probe beam. One arm of this interferometer
will include the retro-reflecting mirror and the polarizing-cube beam splitter along the path of the
vertical excitation beam path and the output of the interferometer will be recorded on a sensitive
photodetector. This signal from the probe will be used to postcorrect the AI phase measurement.
Such a correction will account for the movement of the lower optics with respect to the retro-mirror.
Since the retro-mirror’s position with respect to Earth will be monitored by a sensitive accelerometer,
the phase of the SW excitation with respect to Earth will be fully determined. In an alternative scheme,
the signal from the interferometer could be used to actively control the position of the retro-mirror
with respect to the lower optics through the aforementioned voice coil and a PID control loop [8,22].

Another important shortcoming of the apparatus used in this work related to the magnetic field
canceling coils. In the absence of state selection, the presence of magnetic field gradients and magnetic
field curvature in the vicinity of the atoms during the experiment results in an additional force, which
cannot be separated from the gravitational force. As such, the available time scale for experiments
was also limited by the incomplete magnetic field cancellation and the magnetization of the vacuum
chamber. The cancellation was incomplete due to the non-optimal geometry of the field-canceling
coils and the magnetization of the vacuum chamber. In brief, the B-field at the position of the atoms
is canceled by 3 sets of mutually-perpendicular coils. Optimal cancellation is obtained when each
set of coils is arranged in a “Helmholtz” configuration, where the (circular) coils are separated by
a distance equal to their radius. In our experiment, the coils were set up in a pseudo-Helmholtz
configuration, with square coils separated by their side length. This resulted in a well-controlled field
only in the immediate vicinity of the atom trap, with no extended volume of zero field. The new
apparatus will make use of three sets of square cross-section Helmholtz coils, whose ideal distance of
separation was found using numerical modeling to be 0.55 times the side length. These coils produce
an extended volume of zero magnetic field, allowing the atoms to experience free-fall for several
hundred milliseconds. If the atoms are launched in a fountain, the experimental time scale can be
further extended to 1 s. Extension of time scales beyond 50 ms used in this work is also expected
to require chirped standing wave excitation to avoid loss of signal amplitude due to the differential
Doppler shift of falling atoms with respect to the traveling wave components of the standing wave.
This limitation can be overcome using chirped, counter-propagating traveling-wave beams to cancel
the Doppler shift due to falling atoms [32,57].

4. Magnetic Coherences

Properties of atomic coherences have been exploited for interesting applications such as
quantum state preparation [135] and control [136], nondemolition measurements [137,138],
entanglement [139], and precision magnetometry [140,141]. Other interesting applications have
related to studies of velocity-changing collisions using both radio frequency (RF) [142] and optical
excitation [143] and experiments with coherent transient effects that involve coupling between
Zeeman sublevels [144,145]. In this section, we review applications of coherent transient techniques
developed for atom interferometry for precise measurements of the strength of magnetic interactions
such as atomic g-factor ratios [59,60].
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For the experiments considered in Ref. [60], the sample of atoms is excited using two
simultaneous traveling-wave laser pulses applied at t = 0 with wave vectors~k1 and~k2 at a small angle
θ ∼ 10 mrad, as shown in Figure 14a. The atomic sample is a cloud of laser-cooled atoms loaded into a
MOT. The individual traveling waves pulses have orthogonal linear or circular polarizations and are
detuned from the excited state. However, the pulses are resonant with the two-photon transition that
couples two magnetic sublevels of the ground state, as shown in Figure 14b. The timing diagram is
shown in Figure 14c. The excitation creates a spatially-periodic superposition between the magnetic
sublevels of the ground state coupled by the laser fields. The superposition has a period of λ/θ,
where λ is the wavelength of the excitation. This coherence grating is probed by a read-out pulse
along~k2 and the resulting signal, referred to as magnetic-grating free induction decay (MGFID) [146],
is coherently scattered along~k1 due to conservation of momentum. The grating dephases due to the
thermal motion of the atoms, and the time scale of the signal decay is determined by the time taken
by a typical atom to move a distance on the order of a grating spacing (λ/θu), where u is the most
probable speed associated with the Maxwell-Boltzmann velocity distribution. A magnetic grating
echo (MGE) is observed using a second set of excitation pulses at t = T to rephase the coherence
grating, as in Figure 14c [146–148]. The second pulse modifies the time-dependent coefficients that
describe the coherent superposition of magnetic sublevels so that the grating reforms at t = 2T.
This is analogous to the reversal of the Doppler phases of individual atoms in a traditional two-pulse
photon echo experiment [149] that can be used for measuring the excited state lifetime [150]. In the
absence of decoherence due to collisions and background light, the MGE amplitude should decay on
a time scale determined by the transit time of atoms through the laser beams [148].

Figure 14. (a) Laser pulses along ~k1 and ~k2 excite a sample of laser-cooled atoms; θ ∼ 10 mrad.
(b) Level diagram for the experiment with~k1 and~k2 having orthogonal linear polarizations; detuning
∆ ∼ 40 MHz. (c) Timing diagram for the magnetic grating echo (MGE) signal.

The focus of initial experimental work using the MGE was related to observing effects due
to atomic recoil [147]. The MGFID and MGE were used to verify the expected dependence
of the dephasing time of the coherences on the velocity distribution of the sample [147,148],
observing the effect of magnetic fields for particular experimental configurations [147], and studying
the effects of collisions [148]. Other applications of the MGFID include measurements of the
diffusion constants [151] and phase space imaging [152]. Echo techniques were also used to
investigate applications related to detecting nanostructures and depositing periodic arrays of atoms
on substrates [153].
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In a static magnetic field, the Zeeman shift between magnetic sublevels causes temporal
oscillations within the envelopes of the MGFID and MGE signals at multiples of the Larmor frequency
ωL. In Ref. [60], an analytical calculation was developed to predict the functional form of the Larmor
oscillations in the MGFID for arbitrarily-directed weak static magnetic fields in situations in which
the excitation pulses consisted of traveling waves with orthogonal linear and circular polarizations.
This theoretical treatment is based on a rotation matrix approach [154–156], in which the effect of
the magnetic field can be described as a time-dependent rotation of the atomic system about the
quantization axis. This treatment accurately described signals observed from room temperature
vapor and laser-cooled atoms. In the absence of magnetic fields, the velocity distribution of a cold
sample measured using the MGFID agreed with the results of an independent technique used to
measure the sample temperature [131]. Additionally, a rate equation treatment [157,158] was used to
understand the properties of the MGE in a magnetic field. Thus, Ref. [60] renewed interest in precise
measurements of atomic g-factor ratios using the MGFID and MGE signals and compact laser-cooled
samples that could be excited in uniform magnetic fields.

The best measurements of Zeeman shifts [159] and atomic g-factor ratios [160] were carried
out with uniform ∼50 G B fields in centimeter-length, paraffin-coated atomic vapor cells to avoid
decoherence due to wall collisions. These experiments relied on RF spectroscopy and lamp-based
optical pumping to determine the centers of transitions between atomic ground states of Rb isotopes.
The typical accuracies of a few ppm were sufficient for independent tests of the non-relativistic
Zeeman Hamiltonian. However, a measurement of g-factor ratios precise to 500 ppb or better can
be used to test corrections arising from the self-energy of the electron and vacuum polarization.
These effects have been incorporated into atomic theory describing the electron and nuclear g-factors
gJ and gI , respectively [161], but have not been verified by experiments. The predicted corrections to
gJ and gI depend on the nuclear mass and spin, which of course differ among isotopes. Measurements
of isotopic atomic g-factor ratios therefore constitute a sensitive test of specific aspects of QED
that relate to magnetic interactions. The importance of such experiments for matter-antimatter
comparisons has been highlighted by the recent measurements of the magnetic moment of the
antiproton [162].

Although measurements of atomic g-factor ratios were undertaken using the MGFID [54], the
statistical precision was overwhelmed by systematic effects due to AC Stark shifts. Therefore, an
alternative technique, which is the basis of atomic magnetometers [163] was adopted in Ref. [59] to
demonstrate the most sensitive measurement of g-factor ratios. Our statistical precision of 690 ppb,
obtained on a 10-ms time scale, exceeded the 2 ppm sensitivity of a long-standing measurement [160].
In our experiment, Larmor oscillations of ground state coherences from a dual isotope MOT
containing 85Rb and 87Rb atoms were simultaneously recorded. The measurement exploited the
compact dimensions of the sample (few millimeters) over which a uniform, actively-stabilized
magnetic field was applied. Coherences involving F = 3 (F = 2) hyperfine ground states in 85Rb
(87Rb) were optically excited with a circularly-polarized pulse with a wave vector perpendicular to
a constant, weak (B < 1 G) magnetic field. Coherences between adjacent magnetic sublevels in each
isotope can be modeled as a magnetization that precesses in the B field at the Larmor frequency
ωL = gFµBB/h̄. The precession can be measured with a linearly-polarized probe pulse directed
orthogonal to the B field. A rotation in the polarization of the probe pulse due to the differential
absorption of its σ+ and σ− components can be recorded on a balanced detector. This signal exhibits
sinusoidal oscillations at ωL. Therefore, simultaneous measurements of ω85

L and ω87
L as a beat note

(see Figure 15) can be used to measure the ratio of Lande gF-factors.
The precision of 690 ppb and data acquisition time (3 minutes) allowed systematic effects due to

Breit-Rabi corrections and AC Stark shifts to be investigated [59]. Results showed that the nonlinear
variation of ωL on B due to the Breit-Rabi effect did not cancel when the ratio of gF-factors was
measured, resulting in a systematic shift that depended on B. The shift also depended on the
magnetic quantum number mF. Therefore, parameters of the probe pulse and B fields affected the
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weighted sum (of pairs) of coherences across the ground state manifolds that contribute to the signal.
These systematic effects were also qualitatively confirmed using numerical simulations.

Figure 15. Ground-state coherence signal from dual-isotope magneto-optical trap (MOT) showing
multiple-frequency components in the signal. Only one eighth of the points are displayed so that the
fit (red line) and the data (black dots) can be distinguished. From a single shot, the ratio of effective
atomic g-factors r = gF

87/gF
85 is typically determined to a precision of ∼1.5 ppm.

Subsequently, atom interferometric experiments that shared the same setup [32,57] achieved
even better control of B-fields and B-gradients resulting in observation times of ∼250 ms—limited
only by the transit time of cold atoms. Such an experiment with a 100-ms time scale will be ideally
suited for this measurement. The experiment will resolve Larmor oscillations associated with all pairs
of coherences in the ground state manifolds of the two isotopes by using a larger, uniform, pulsed B
field of about 5 G. Additionally, Larmor oscillations from coherences in the F = 2(F = 1) ground
states of 85Rb (87Rb) will be measured in addition to signals from the F = 3(F = 2) ground states
in 85Rb (87Rb). This approach will eliminate Breit-Rabi corrections and allow the measurement of gJ
and gI . The estimated measurement precision of ∼100 ppb will permit tests of predicted relativistic
corrections at the desired level [161]. The possibility of realizing similar measurements with RF
excitation and optical pumping techniques can also be investigated.

5. Auto-Locked Lasers

We have presented a review of recent results pertaining to measurements of g, atomic recoil
frequency, and atomic g-factor ratios. Although all these experiments have recorded significant
improvements in precision, the measurements are dominated by systematic effects such as the index
of refraction due to the near-resonant excitation using laser beams with power outputs of ∼100 mW.
We envision control of systematic effects at the ppb level by using far-detuned excitation beams with
relatively high-power outputs of a few Watts. Ideally, several high-power lasers will be required for
atom trapping, atom interferometry, and lattice loading—a crucial step for increasing the contrast
(and signal-to-noise ratio) of density gratings in future echo interferometer experiments. Commercial
laser sources such as Ti:Sapphire lasers with output powers of ∼1 W are inadequate apart from
being expensive to maintain over the data collection times of several thousand hours. A possible
option is to use frequency-doubled light from erbium-doped fiber-amplified laser sources operating
in the 1560 nm telecommunications band [164,165], with output powers of >10 W. However, the cost
is comparable to Ti:Sapphire lasers and the lifetime of these sources has not been tested beyond a
few years.

To fulfill experimental requirements, we have relied on elegant and practical designs for external
cavity diode lasers (ECDLs) and controllers [166–171] that produce power outputs of 1-100 mW and
linewidths of ∼1 MHz, to develop unique, low-cost, vacuum-sealed, auto-locked external cavity
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diode laser systems (ALDLS) that can be integrated using components from original equipment
manufacturers (OEM), specially machined parts, and powerful central processors [61]. The laser
source depends on optical feedback from a narrow-band interference filter to realize a narrow
laser linewidth and improved spatial mode quality. The thermally-stabilized laser cavity can be
evacuated within minutes and vacuum-sealed for several months, so that laser system exhibits
reduced sensitivity to environmental temperature and pressure fluctuations. These lasers can be
locked or scanned with respect to atomic or molecular spectral lines without the need for human
intervention using a digital controller. The laser cavity relies on an interchangeable optics kit
consisting of a laser diode and optical feedback elements to operate in the desired wavelength
range. The digital signal processor of the controller is capable of storing a variety of algorithms in
its memory for laser frequency stabilization using techniques such as pattern matching and first
or third derivative feedback. Additional features include power amplification to several Watts
using semiconductor waveguides [172], frequency locking to external cavities, and rapid amplitude
modulation for wide-ranging applications. These capabilities are not commercially available as a
package despite the widespread availability of the constituent OEM components.

In recent trials, ALDLS systems, operating at both 780 nm and 633 nm, have proven their
linewidth (∼300 kHz) and lock stability (∼500 kHz) through accurate measurements of gravitational
acceleration g using a state-of-the-art industrial gravimeter (Scintrex FG5X) with an absolute accuracy
of 1 ppb. The value of g determined using our prototype lasers was in agreement with the baseline
established using an iodine-stabilized He-Ne laser (which is an industrial standard), and exhibited
lower scatter. These results suggest that systematic effects in cold-atom measurements of g [58] can
be characterized using an industrial gravimeter and a common ALDLS-based light source operating
at 780 nm. Three improvements that were targeted have also been realized in recent tests. Firstly,
the vacuum-sealed cavity reduced frequency drifts by a factor of fifty, as shown in Figure 16,
so that the lock stability could be extended to 24-hour time scales. Figure 17 shows the Allan
deviation of a typical OEM current controller used to operate the ALDLS. Our results suggest that
significant reduction in current noise is possible, since the best current noise density specification
achieved in commercial controllers (which use a Libbrecht-Hall design [171]) is ∼200 pA/

√
Hz.

Secondly, interchangeable optics kits used in the same laser head have allowed operation at two
widely-separated wavelengths accessible to laser diodes. Thirdly, the controller demonstrated the
use of different algorithms for locking to atomic and molecular resonances. In the 780 nm band, the
control system relied on atomic rubidium spectroscopy. To lock the laser, the controller implemented
pattern matching between Doppler-free spectra obtained in real time by scanning the laser and the
reference peaks stored in the processor’s memory by using a sliding correlation algorithm. This
technique determines the frequency offset between the scanned pattern and the reference pattern.
The offset is fed back as a control voltage to the piezo transducer that controls the length of the laser
cavity. As a result, the laser frequency is iteratively brought closer to the desired frequency with
variable scan amplitude. In the 633 nm band, the controller achieved tighter locks by generating
the third derivatives of narrower molecular resonances in iodine. Additionally, the controller was
automatically able to relock even in the event of a mode hop, because it could be programmed to vary
the diode current and temperature and compare spectral peaks over a scan range of up to 10 GHz.
The availability of tapered amplifier waveguides with power outputs of several Watts, and techniques
to transiently increase the drive current [173] to achieve a several-fold enhancement in output power,
suggest that suitable low-cost laser systems can be developed for pursuing echo experiments in a
far-off resonance configuration.
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(a) (b)
(c)

Figure 16. (a) Correction signal (red) and lock signal (blue) obtained with laser auto-locked to an
iodine transition. The laser head was maintained at atmospheric pressure so that pressure-induced
drifts of the correction signal extend over nearly 100 MHz. (b) Same signals as in part (a) with the
laser head pumped down to 1 mTorr. The correction signal is uncorrelated with pressure changes and
the range of frequency drifts shows a tenfold reduction. (c) Typical histogram of lock signals (blue
curves in parts (a) and (b)) exhibits a full width at half maximum of 500 kHz, which is a measure of
lock stability.
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Figure 17. Allan deviation of an original equipment manufacturer (OEM) current controller showing
shot-noise-limited behavior for τ < 0.3 s. The minimum Allan deviation is 4.2× 10−6 at τ = 0.34 s.
The long-term Allan deviation is 10.7× 10−6. This data was acquired with bandwidth filter cut-offs at
0.01 Hz and 10 kHz. The typical rms deviation in the DC current is 0.32 µA. The current noise density
measured with a 10 kHz bandwidth is 0.35 µA/

√
Hz.

6. Conclusion

We have presented an overview of the best-suited echo interferometric techniques to realize
precision measurements of g and ωq, and we have reviewed coherent transient methods for obtaining
the most sensitive measurement of atomic g-factor ratios. The proposed apparatus outlined at the end
of Section 3 will combine features of long-lived echo experiments in a non-magnetic chamber in which
atoms can be routinely cooled to ∼ 1 µK using polarization-gradient cooling with the advantages of
vibration stabilization. As a result, it should be possible to load the laser-cooled sample into a deep
optical lattice to achieve a several hundred-fold increase in grating contrast and signal size. Echo AIs
operating in this setup in an off-resonant configuration using low-cost, high-power lasers appear to be
capable of reducing both the statistical and systematic uncertainties to competitive levels. As a result,
the relative simplicity of echo AI experiments may be well suited for several precision measurements.
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