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Abstract: We give a brief overview of our recent experimental and theoretical
work involving highly charged tungsten ions in high-temperature magnetically confined
plasmas. Our work includes X-ray and extreme ultraviolet spectroscopy, state-of-the-art
structure calculations, the generation of dielectronic recombination rate coefficients,
collisional-radiative spectral modeling and assessments of the atomic data need for X-ray
diagnostics monitoring of the parameters of the core plasma of future tokamaks, such as
ITER. We give examples of our recent results in these areas.
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1. Introduction

Atomic physics has played a very important role throughout the history of experimental plasma
physics. It has been crucial for understanding the plasma energy balance and for diagnostic
development [1]. With the shift in magnetic fusion research toward the very high-temperature burning
plasmas expected to be found in the ITER tokamak (Latin for “the way”; but originally, an acronym
for “International Tokamak Experimental Reactor”), the atomic physics of tungsten has become of high
importance [2]. The reason is that tungsten will be a constituent of ITER plasmas, because of its use as a



Atoms 2015, 3 261

plasma-facing component able to withstand high heat loads and with a lower tritium retention than other
possible materials [3–5].

ITER diagnostics are already being developed based on using tungsten radiation. In particular, the
ITER Core Imaging X-ray Spectrometer (CIXS), which is designed to measure the ion temperature and
bulk plasma motion of ITER’s plasma core, is being based on the X-ray emission of neon-like tungsten
ions (W64+) [6]. In addition, tungsten emission will be measured by extreme ultraviolet (EUV) and
optical spectrometers to determine its concentration in the plasma and to assess power loss and the
tungsten sputtering rate [7,8]. Moreover, tungsten is used on present-day tokamaks in preparation for
ITER [9–12].

In anticipation of the importance of tungsten for fusion plasmas, our group has focused on studying
the atomic properties of tungsten and its many ionization stages for over a decade. We have been doing
so primarily using the Livermore electron beam ion trap facility [13], which is a device that was first
designed at Livermore explicitly for studying the atomic physics of ions of heavy elements [14,15].
Our measurements have included spectral data in the X-ray region [16–23], the extreme ultraviolet
regime [24–26] and the optical wavelength band [27,28].

Electron beam ion traps are now being used at a variety of international laboratories [29]. Several of
these machines are being used for tungsten spectroscopy complementary to that performed on our
facility. This includes measurements at the Berlin [30–32], Gaithersburg [33–35], Shanghai [36,37]
and Tokyo facilities [38].

In addition to our measurements on the Livermore electron beam ion traps, we have utilized
magnetic fusion plasmas to study the spectra of tungsten. These include the Sustained Spheromak
Physics Experiment (SSPX), the National Spherical Torus Experiment (NSTX) and the Alcator C-mod
tokamak [39–41]. We have also been involved in a significant theoretical effort utilizing some of the
most advanced atomic physics computer codes [42,43].

In the past five years, our research on tungsten was shaped by our participation in the Coordinated
Research Project “Spectroscopic and Collisional Data for Tungsten from 1 eV to 20 keV”, which was led
by the International Atomic Energy Agency. We dubbed our effort at Livermore the “Wolfram Project”.
This project has had the goal of producing experimental and theoretical data for tungsten in various
spectral bands relevant to magnetic fusion research. In the following, we present an overview of the
results from this effort.

2. Experimental Results

The generation of experimental spectroscopic data has been a key component in our effort.
Measurements were carried out at the Livermore electron beam ion trap facility, which includes the first
electron beam ion trap ever built, dubbed EBIT-I , and a high-energy version, dubbed SuperEBIT [13,44].
The spectral lines we measured during recent years were emitted by ionization stages from as low as
thulium-like W5+ to as high as oxygen-like W66+ [45–47].

The Livermore electron beam ion traps have been optimized for spectroscopic measurements since
their inception almost thirty years ago [48]. The electron beam ion trap is a modified electron beam
ion source and built with the intent to spectroscopically study the interaction of highly charged ions
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with an electron beam by looking directly into the trap. It is described in detail by Levine et al. [15].
In this device, the electrons pass through the 2 cm-long trap region and are compressed to a beam with a
diameter of approximately 50 µm by a three-Tesla magnetic field generated by a pair of superconducting
Helmholtz coils. Neutral atoms or ions with low charge are injected into the trap where they are
collisionally ionized by the electron beam. The electrons can be accelerated to any energy between
0.05 keV (and lower) [49] and 200 keV (and higher) [50]. This energy is sufficient to produce any
charge state of tungsten, including completely ionized tungsten W74+ [1]. The ions are longitudinally
confined in the trap by applying the appropriate voltages to a set of three copper drift tubes through
which the beam passes. Radial confinement is provided by electrostatic attraction of the electron beam,
as well as flux freezing of the ions within the magnetic field. All three drift tube voltages float on top
of a potential (the common drift tube voltage) that is supplied by a low-noise high-voltage amplifier,
and the electron beam energy is determined by the sum of these potentials, provided the electron gun is
grounded. The electron beam density is about 5× 1011 cm−3, but can be varied [51].

Spectroscopic instrumentation includes a large variety of crystal spectrometers and grating
spectrometers that cover line emission from the X-ray to the visible regime. In addition, many X-ray
measurements have been made with microcalorimeters.

In Figure 1, we show the X-ray spectrum of the 3s→ 2p transitions of neon-like W64+ near 8500 eV.
The figure illustrates the power of our measurement approach: new lines are observed when the energy
of the electron beam is increased to allow the production of a higher ionization state. Lines from
fluorine-like and oxygen-like tungsten appear as the beam energy is raised from 15 to 21 keV. The lines
are absent at the lower beam energy, because the ionization potential of neon-like W64+ is calculated to
be 15,603.6 eV, while the ionization potential of fluorine-like W66+ is calculated to be 15,965.5 eV [1].
L-shell X-ray transitions from tungsten ions are of special interest for the ITER tokamak, because they
are under consideration as an ion temperature diagnostic of the core plasma [6].

Spectral lines from aluminum-like W61+ and from charge states as low as iron-like W48+ were
observed in the ultra-soft X-ray range between 26 and 44 Å [46]. These measurements utilized a
high-resolution grating spectrometer [52] that provided a resolving power (λ/∆λ ≈ 1500 to 2000)
similar to that afforded by the crystal spectrometer [53] employed to make the X-ray measurements
shown in Figure 1. Such a high resolving power is needed because of the high density of the 3d → 3p

and 3p → 3s lines in this wavelength band. In fact, the large number of lines has so far precluded the
identification of more than about half of the observed lines [46], which is a strong indication that more
research is highly desirable.

Lines from nickel-like W46+, which terminate in the closed 1s22s22p63s23p63d10 shell, fall into
the X-ray range near 4 to 5 Å and are best observed with a crystal spectrometer [17,54] or an X-ray
microcalorimeter [55,56]. Using the calorimeter, we were able to identify n = 7, 6, 5, 4 → n = 3

transitions in nickel-like W46+ through selenium-like W40+ [23] and to assess the charge balance
evolution as a function of electron energy [57].

Spectral lines from thulium-like W5+, erbium-like W6+ and holmium-like W7+ were produced at
very low electron beam energies (30 to 300 eV) [47]. An extended-range grazing incidence spectrometer
with resolving power as high as 5000 [58] was employed to record these lines in the extreme ultraviolet
wavelength range between 188 and 206 Å [46]. The measurements enabled us to newly identify five W5+
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lines near 200 Å, as illustrated in Figure 2. The corresponding transitions have not yet been determined.
However, we note that some of the transitions from erbium-like W6+ and holmium-like W7+ falling into
this wavelength region have been identified as 5d→ 5p transitions [59,60].
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Figure 1. X-ray emission of highly charged tungsten ions at an electron beam energy of
(a) 15 keV and (b) 21 keV. The strongest lines are from neon-like W64+ and are labeled
M2, 3G and E2L. Lines from fluorine-like W65+ and oxygen-like W66+ are labeled by
F and O, respectively.
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Figure 2. Emission of thulium-like W5+ in the extreme ultraviolet spectral band. The five
lines marked with an asterisk have been newly identified.
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Because several of our spectrometers have been installed on magnetic fusion devices in the
United States [61–66], we can obtain tungsten spectra also from these sources, provided that tungsten is
introduced into these machines. One such spectrum is shown in Figure 3. It was obtained on the Alcator
C-mod tokamak at the Massachusetts Institute of Technology [67] and shows bright tungsten emission
near 50 Å. Comparison with spectral data from other fusion machines, notably from the Large Helical
Device in Japan [68], points to charge states silver-like W27+, palladium-like W28+ and ruthenium-like
W29+ as the strongest emitters, as described by Podpaly et al. [67].
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Figure 3. Emission from tungsten ions observed on the Alcator C-mod tokamak.

3. Theoretical Atomic Data and Spectral Modeling

Our Wolfram project includes a significant collisional-radiative modeling effort using atomic data that
we have generated with the Flexible Atomic Code (FAC) developed by Gu [69]. For example, we have
generated modeled spectra of the n = 3 → n = 2 X-ray transitions of near neon-like tungsten ions
(W56+ to W71+) [2]. In addition, we have performed such modeling for essentially all of the ionization
stages we investigated experimentally, and the results can be found in our papers mentioned above.

In Figure 4, we show a spectrum predicted by our modeling calculations for vanadium-like W51+ in
the 1000 to 4000 eV X-ray range. This was part of a large effort that produced theoretical spectral data
from germanium-like W42+ through vanadium-like W51+ [70].

Our collisional-radiative modeling effort has been augmented with calculations of the ionization
potentials of all tungsten ions [1], as well as specific atomic parameters needed for spectral
measurements and diagnostics. The latter calculations include energy levels, radiative rates, oscillator
strengths and autoionization rates. We employed three very different atomic physics computer
codes, i.e., the Hartree–Fock-relativistic method (COWAN code), the multi-configuration relativistic
Hebrew University-Lawrence Livermore Atomic Code (HULLAC code) and the relativistic many-body
perturbation theory method (RMBPT code) [71–77], in order to estimate the reliability of the calculations
from the spread of the obtained results.
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Figure 4. Spectral emission of vanadium-like W51+ in the 1000 to 4000 eV X-ray range
predicted by calculations performed with the Flexible Atomic Code.

In Figure 5, we show the total dielectronic recombination rate coefficients we have calculated as
a function of electron temperature for the recombination of neon-like W64+, sodium-like W63+ and
copper-like W45+ into their respective next lower ionization states. In all cases, it is assumed that the
recombining ion is in its ground state. Because the ground state of neon-like W64+ is a completely closed
shell, there are no low-energy dielectronic resonances. As a consequence, the dielectronic recombination
rate vanishes as the electron temperature drops below 100 eV. By contrast, the ground state of both
sodium-like and copper-like tungsten has a single valence electron outside an otherwise closed shell.
This allows for low-energy resonances that contribute to the total recombination rate coefficient, even at
very low plasma temperatures, as shown by the figure.
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Figure 5. Total dielectronic recombination rate coefficients for neon-like W64+ (black trace
with solid squares), sodium-like W63+ (red trace with solid circles) and copper-like W45+

(light blue trace) recombining into their respective next lower ionization state.
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4. Assessment of Atomic Data Needs for ITER Core Diagnostics

Tungsten radiation will be observed on ITER with a variety of instrumentation. For example, various
survey-type instruments will monitor plasma performance near the plasma edge [7,78], where lower
ionization stages of tungsten will radiate. The core plasma will be monitored with the aforementioned
CIXS instrument [6] and possibly an X-ray microcalorimeter [79]. Both of these instruments are
designed to determine the ion temperature from the L-shell emission of tungsten ions.

Recently, we have compiled specific atomic data needs to increase the reliability of the core ITER
X-ray diagnostics [80,81]. These include: (1) absolute wavelength measurements with accuracy lines
on the order of about 0.02 eV of the L-shell lines of neon-like W64+ and of the neighboring sodium-like
and fluorine-like tungsten lines; (2) measurements and calculations of the position and intensity of the
dielectronic satellite lines associated with the neon-like W64+ lines, including those with a spectator
electron in a high principal quantum number; and (3) calculation and measurement of the excitation rates
at a level of accuracy of about 5%, including excitation by indirect processes [82], such as resonance
excitation and cascade contributions.

There is also a growing need for reliable ionization balance calculations, which for tungsten is a
nontrivial undertaking [83]. The reason for this need is that the CIXS will provide radial profiles of the
ion abundance in ITER. When compared to accurate ionization balance calculations, such radial profile
measurements can be used to extract the ion transport parameters, i.e., the radial ion diffusion coefficient
and the inward pinch velocities, as detailed recently by Beiersdorfer [81]. Diagnosing transport and
ultimately controlling it is a prime objective in fusion research, and reliable atomic physics is a
prerequisite for using the CIXS in this endeavor.
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