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Abstract: In this paper, the current status of time-dependent density functional theory (TDDFT)-
based calculations for ion–atom collision problems is reviewed. Most if not all reported calculations
rely on the semiclassical approximation of heavy particle collision physics and the time-dependent
Kohn–Sham (TDKS) scheme for computing the electronic density of the system. According to the
foundational Runge–Gross theorem, all information available about the electronic many-body system
is encoded in the density; however, in practice it is often not known how to extract it without resorting
to modelling and approximations. This is in addition to a necessarily approximate implementation of
the TDKS scheme due to the lack of precise knowledge about the potential that drives the equations.
Notwithstanding these limitations, an impressive body of work has been accumulated over the past
few decades. A sample of the results obtained for various collision systems is discussed here, in
addition to the formal underpinnings and theoretical and practical challenges of the application of
TDDFT to atomic collision problems, which are expounded in mostly nontechnical terms. Open
problems and potential future directions are outlined as well.

Keywords: time-dependent density functional theory; ion–atom collisions; semiclassical approximation;
time-dependent Kohn–Sham scheme; independent electron model; correlation integral

1. Introduction

Time-dependent density functional theory (TDDFT) was established as a formally
exact framework for the discussion of time-dependent many-body problems by Runge
and Gross in a landmark foundational paper 40 years ago [1]. While formal in scope and
execution, their work took inspiration from a nascent practical interest in treating time-
dependent problems such as atomic collisions in terms of density functionals. Interestingly,
it took until the late 1990s for systematic TDDFT-based computational studies of many-
electron collision systems to emerge [2–5]. This is similar to the situation in the related
field of strong laser field interactions with atoms, in which the TDDFT approach took off
as a practical tool just a few years earlier [6–9]. The considerable time gap between the
foundation and execution of TDDFT in the nonlinear response regime is a reflection of two
problems: (i) the Runge–Gross theorem of [1] does not provide all the ingredients needed
for setting up a practical calculation; and (ii) practical schemes based on high-quality
ingredients established in subsequent works turned out to be computationally demanding.

For collision studies, the latter problem is exacerbated by a lack of symmetries that
can be exploited and the inherent two-center nature of problems involving a positively
charged projectile ion that can capture target atom electrons in addition to promoting them
to excited bound and continuum states. As a matter of fact, the community has struggled to
reach agreement even on the most basic one-electron ion–atom scattering problem, namely,
the proton–hydrogen system, for which one does not need TDDFT or any other many-body
approach. Only recently has this changed, with consensus being reported regarding the
magnitude of the total ionization cross-section in the intermediate energy region, where it
peaks and competes with capture and target excitation [10].
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The promise of TDDFT is that a full solution of a time-dependent many-body problem
is possible, at least in principle, without determination of the state vector. The Runge–Gross
theorem establishes that the one-particle density, a function of three spatial coordinates and
time, suffices to extract all information, and can be obtained from solving a set of effective
single-particle equations, that is, the time-dependent Kohn–Sham (TDKS) equations. Con-
trasting this with the multidimensional time-dependent Schrödinger equation (TDSE) for
the state vector, this approach sounds like an enormous simplification; however, there is
a hitch. The Runge–Gross theorem has the form of an existence theorem, and, as alluded
to above, does not come with prescriptions for how to determine the exact form of im-
portant quantities such as the single-particle potential that drives the TDKS equations or
many observables of interest. As a consequence, it is necessary to resort to models and
approximations in order to turn TDDFT into a workable scheme for practical applications.

The present article attempts to assess the current status of TDDFT as a viable approach
to the solution of many-electron collision problems which can be discussed within the
semiclassical approximation. Semiclassical here means that the heavy particles (nuclei)
are assumed to move on classical trajectories, with only the electrons following the laws
of quantum mechanics. In some ways, this paper can be seen as an update of (the more
theoretical) Chapter 12 and (the more practical) Chapter 24 of the book [11], published
some twenty years ago, although it is not our intention to be comprehensive and review
all works published since. Rather, the goal is to illustrate what can and cannot be done
with current TDDFT methods so as to provide some pointers for prospective and desirable
future developments. The focus is on collisions involving atoms, which is well-suited to
outlining the main accomplishments and remaining difficulties and is in line with the
theme of this special issue, although much of the current activity in the field is concerned
with larger objects such as molecules and clusters.

The theoretical underpinnings of TDDFT have not changed since the publication of [11].
Considering that book’s Chapter 12 and the availability of other books [12,13] and review
articles [14] on TDDFT, a condensed and rather nontechnical summary of the main con-
cepts should suffice for our purposes. Section 2 provides that summary, covering the
contents of the Runge–Gross theorem (Section 2.1), available options for the TDKS potential
(Section 2.2), and a somewhat more detailed discussion of open problems related to the cal-
culation of the observables of interest (Section 2.3). These problems can be best exemplified
for two electrons; hence, this case receives special attention in Section 2.3.3, following brief
discussions of known exact observable functionals (Section 2.3.1) and functionals at the
independent electron model (IEM) level (Section 2.3.2). Section 3 presents an overview of
recent results obtained for various observables and collision systems, including negatively
and positively charged projectiles. The paper ends with a few summarizing remarks,
including a brief outlook on potential future research directions in Section 4. Atomic units,
characterized by h̄ = me = e = 4πϵ0 = 1, are used unless otherwise stated.

2. Theoretical Considerations

The evolution of a nonrelativistic many-body system driven by a Hamiltonian that
may explicitly depend on time is governed by the TDSE(

Ĥ(t)− i∂t
)
Ψ(t) = 0, (1)

to be solved for some given initial state Ψ(t0) = Ψ0. We are interested in systems of inter-
acting electrons which, in addition to their (time-independent) mutual Coulomb repulsion,
experience Coulomb fields associated with stationary and/or classically moving nuclei.
For ion–atom collisions at collision energies above, say, 1 keV/amu, simple straightline pro-
jectile trajectories characterized by an impact parameter b and constant speed v are known
to represent the situation very well [15]. At lower energies or for molecular systems and
clusters which may rearrange or dissociate upon the ion impact induced electron dynamics,
it is possible to go beyond the simple recipe of prescribed (linear) trajectories and couple
the quantum mechanical electron motion with classical nuclear dynamics, e.g., by using
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the so-called Ehrenfest dynamics approach (see, e.g., Chapter 17 of the book [13]). In any
case, within the semiclassical approximation, the Hamiltonian in Equation (1) consists of
the kinetic energy operator T̂ of the electrons, the universal electron–electron repulsion V̂ee,
and the system-specific external potential V̂ext(t):

Ĥ(t) = T̂ + V̂ee + V̂ext(t)

=
N

∑
j=1

(
−1

2
∇2

j

)
+

N

∑
i<j

1
|ri − rj|

+
N

∑
j=1

vext(rj, t). (2)

For an ion–atom collision system, we can write for the external single-electron potentials in
Equation (2):

vext(r, t) = −ZT
r

− ZP
|r − R(t)| (3)

where ZT and ZP are the atomic charge numbers of the target and projectile nuclei. The
target nucleus is placed at the origin of the reference frame, and for sufficiently high collision
energies the projectile position vector takes the simple straightline form R(t) = (b, 0, vt).

It is not impossible to attack this time-dependent many-electron problem directly,
e.g., by a correlated configuration-interaction approach based on an atomic orbital expan-
sion. In practice, such explicit many-electron approaches are mostly restricted to collision
systems with two and three active electrons, and become prohibitively expensive for larger
electron numbers N. An example of a recent state-of-the-art three-electron calculation can
be found in [16], and a compact overview of existing full and approximate many-electron
methods is provided in the handbook chapter [17].

2.1. TDDFT Foundations

TDDFT is based on the rather nonintuitve insight that the solution of the TDSE (1) is
fully encoded in the time-dependent density of the N-electron system

n(r, t) = N ∑
σ1 ...σN

∫
d3r2 . . . d3rN |Ψ(r, σ1, r2, σ2, . . . , rN , σN , t)|2, (4)

where rk, σk are the position and spin of the kth electron with σk =↑, ↓. The density is
a measure of the electronic charge distribution, and is normalized to the total number
of electrons ∫

n(r, t)d3r = N, (5)

which corresponds to the statement that the total charge is N times the (negative) elementary
charge constant.

In more technical terms, the Runge–Gross theorem establishes that, for a given initial
state and up to a purely time-dependent phase factor, Ψ(t) is a unique functional of n:
Ψ = Ψ[n](t). This has the immediate consequence that any observable that can be written
as an expectation value of some operator Ô is a functional of n as well:

O(t) ≡ ⟨Ψ[n](t)|Ô(t)|Ψ[n](t)⟩ = O[n](t). (6)

In other words, any such observable is determined by the density alone. This was proven by
Runge and Gross for rather general situations. Paralleling the argumentation of stationary
ground-state DFT, they proceeded to show that the density can be obtained from solving
single-particle equations, that is, the TDKS equations1

i∂tψi(r, t) =
(
−1

2
∇2 + vTDKS[n](r, t)

)
ψi(r, t) , i = 1, . . . , N, (7)
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by adding up the orbital densities

n(r, t) =
N

∑
i=1

|ψi(r, t)|2. (8)

As indicated, the TDKS potential vTDKS is also a (unique) functional of n. If its exact form
and the exact density dependence of all observables of interest were known, it would be
possible to determine all the relevant properties of an interacting quantum system without
solving the complicated many-body TDSE (1). In reality, however, most of these density
functionals are unknown, and we must content ourselves with models and approximations
in practical applications of TDDFT.

2.2. Approximate TDKS Potentials

The TDKS potential is usually decomposed into several pieces, thereby locating and
specifying the unknown part. The most obvious known piece is the external potential (3);
thus, what remains can be identified as being due to electron–electron interactions:

vTDKS[n](r, t) ≡ vext(r, t) + vee[n](r, t). (9)

Now, we have several options. The standard approach is to extract a classical potential,
the so-called Hartree potential vH , from vee and call the remaining piece the exchange-
correlation potential vxc:

vee[n](r, t) = vH [n](r, t) + vxc[n](r, t), (10)

vH [n](r, t) =
∫ n(r′, t)

|r − r′|d
3r′. (11)

The Hartree potential, which accounts for the screening of the external potential by the
electron cloud, is an explicit density functional. The unknown exchange correlation poten-
tial is a density functional as well; however, depending on the model used in practice, the
n-dependence can be explicit or implicit. An important approach that takes advantage of
the second option is the optimized potential method (OPM). In it, vxc is made to depend
on the TDKS orbitals explicitly, which in turn, by virtue of the Runge–Gross theorem,
are density functionals [19,20]. It is known how to take exchange into account exactly
in this framework [21], or, alternatively, with high accuracy when adopting the so-called
Krieger–Li–Iafrate (KLI) approximation [21,22], which is easier to implement than the
full OPM.

A popular example of the former option is the (adiabatic) local density approximation
(ALDA), which is based on the density dependence of the homogeneous electron gas. While
this is a seemingly inadequate model for an inhomogeneous atomic density, as the existing
body of work indicates, it works quite well in certain circumstances, in particular when
combined with a self-interaction correction scheme [23].

Both OPM and ALDA calculations are computationally demanding, the OPM even
more so than the ALDA, and present problems associated with the nonlinearity of the
evolution equations. Similar issues were first encountered and discussed in the context of
the time-dependent Hartree–Fock (TDHF) method, and are often referred to collectively as
the TDHF projection problem (cf. [24] and references therein). The projection problem can
be avoided by resorting to a simpler class of models based on the decomposition

vee[n](r, t) = v0
ee(r) + δvee[n](r, t), (12)

where v0
ee is a ground-state potential (radially symmetric for atoms), which reflects the

situation at asymptotic times before the collision of a bare projectile with an N-electron
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atom. It can be determined using ground-state DFT, and should decay asymptotically like
(N − 1)/r, meaning that for the total target potential of a neutral atom (ZT = N) we have

−ZT
r

+ v0
ee(r)

r→∞−→ −1
r

. (13)

The “response potential” δvee accounts for the time-dependent changes in the electron–
electron potential during the collision. In fast collisions or in situations in which one-electron
transitions dominate strongly, it may be assumed that the no-response approximation

δvee[n](r, t) = 0 (14)

holds. If such conditions are not met, time-dependent screening effects can be modeled in a
global fashion. The target response model introduced in [24] accounts for the increased
attraction of the target potential as electron removal sets in during the collision via the ansatz

δvee(r, t) = f (Prem
net (t))v

0
ee(r), (15)

where Prem
net is the net electron removal (properly defined in Section 2.3.1) and f is some

simple negative function, i.e., f < 0 for Prem
net > 0, such that the total electron–electron

potential (12), when taken together with the Coulomb potential of the target nucleus,
acquires ionic character with fractional charge. No matter the exact form of f , a procedure
that fixes the TDHF projection problem is known for the target response model [24].
Dynamic projectile response to account for changes in the effective projectile potential
during multiple capture can be treated in a similar fashion [25].

The situation becomes more involved when dealing with a collision system in which,
in addition to a number of electrons initially occupying orbitals of the target atom, projectile
electrons participate actively, i.e., undergo transitions. Simple models of δvee do not have
the flexibility to produce a total effective potential with the correct asymptotic behavior for
all electrons involved, and approaches based on different potentials for target and projectile
electrons so as to avoid this deficiency create other problems associated with losing the
orthogonality of the TDKS orbitals. A systematic solution to all these issues can be attained
by implementing a first-principles based approach, such as (a spin-dependent version of)
the KLI method mentioned above, though at the price of more delicate numerics and higher
computational cost [26].

2.3. Observables of Interest in Ion–Atom Collision Systems

Suppose that we knew the exact form of vee[n] and have the computational tools and
means to solve the TDKS equations with high numerical accuracy; we would then have the
exact electron density at our disposal. What experimentally accessible information about
the collision system would this provide us with? The Runge–Gross theorem says that in
principle all observables are determined (cf. Equation (6)); however, this does not answer
the more practical question of how these observable functionals look like.

This subsection discusses the above problem at three levels. First, we look at a few
observables that are directly related to the density, i.e., that can be calculated exactly. These
quantities correspond to average electron numbers. Then, we briefly outline the standard
approach to the calculation of less global observables at the level of the IEM. Next, we zero
in on the two-electron problem, for which the limitations of the IEM are most obvious and
well known. Finally, the so-called correlation integral is introduced as a tool for analyzing
and potentially overcoming these limitations, in an approximate fashion, in practice.

2.3.1. Explicit Exact Density Functionals

One of the quantities whose exact density dependence is known is the energy loss of
the projectile, or more precisely that part of it associated with the electronic excitations of
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the target system2. It can be obtained by comparing the energy expectation value of the
electronic system

E(t) = ⟨Ψ(t)|Ĥ(t)|Ψ(t)⟩ (16)

at a final time t f and the initial time ti, which characterize the situation long after and
long before the collision, when projectile and target are far away from each other and their
interaction can be neglected. We can write

EL ≡ E(t f )− E(ti) =
∫ t f

ti

Ė(t)dt (17)

and use Ehrenfest’s theorem for the time derivative of expectation values of observables
for the Hamiltonian of Equation (2):

Ė(t) = ⟨Ψ(t)|∂tĤ(t)|Ψ(t)⟩ = ⟨Ψ(t)|
N

∑
j=1

v̇ext(rj, t)|Ψ(t)⟩ =
∫

n(r, t)v̇ext(r, t)d3r. (18)

EL is an explicit density functional, albeit one that depends on the density at all times
during the collision.

Simpler explicit density functionals of practical interest are the so-called net electron
numbers, which involve integrals of the density over disjoint regions in space at asymptotic
times. Net electron removal, for example, can be defined as

Prem
net = N −

∫
T

n(r, t f )d3r, (19)

where T is a region around the target center that contains all bound-state contributions to n.
If the projectile is a bare ion initially, we can define net electron capture analogously:

Pcap
net =

∫
P

n(r, t f )d3r (20)

and net ionization to the continuum as follows

Pion
net = Prem

net − Pcap
net =

∫
I

n(r, t f )d3r (21)

where I = R3\(T ∪ P).

2.3.2. Approximate Functionals at the IEM Level

Reference [28] explains how to express final-state observables, such as the probabil-
ity of finding a certain number of electrons in the continuum or a number of electrons
transferred to the projectile and detected in coincidence with a number of electrons in the
continuum, in terms of q-particle densities, a concept introduced by Löwdin in 1955 [29].
The Runge–Gross theorem ensures that the q-particle densities are functionals of n; how-
ever, the exact forms of these functionals are not known. To make progress, we can assume
that the N-electron state vector Ψ is a single Slater determinant or even a non-symmetrized
product of the TDKS orbitals. This allows explicit expressions to be established for the q-
particle densities in terms of elements of the one-particle density matrix, an analysis which
can be carried out in practice. In fact, the concept of q-particle densities is unnecessary
after making these crucial approximations; the N-particle density itself, i.e., the operator
γ̂N = |Ψ⟩⟨Ψ|, can readily be written in terms of the one-particle density matrix at the IEM
level, and the quantities of interest can be obtained without further detours. To quote
two well-known explicit results, in the simplest model, in which γ̂N is approximated as
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a product of one-particle densities, for the probability of capturing k and simultaneously
ionizing l electrons to the continuum (k + l ≤ N) we obtain [30]

PIEM
kl =

(
N

k + l

)(
k + l

l

)
pk

cap pl
ion(1 − pcap − pion)

N−k−l , (22)

where px = Px
net/N for x = cap, ion, and for the more inclusive probability of removing

q = k + l electrons from the target,

PIEM
q =

(
N
q

)
pq

rem(1 − prem)N−q, (23)

where prem = Prem
net /N = pcap + pion.

Equations (22) and (23) correspond to an analysis in which the antisymmetry of the
N-electron state is ignored and orbital-specific information is either unavailable or aver-
aged out, i.e., the probabilities px can be interpreted as average (effective) single-electron
probabilities. Normalization is fulfilled, e.g., from Equation (23) we obtain ∑q PIEM

q = 1.

2.3.3. The Correlation Integral for the Two-Electron Problem

The IEM outlined in the previous subsection has a long and successful track record in
ion–atom collision studies; however, it has several known limitations. Considering electron
removal in a two-electron spin–singlet system, either zero, one, or two electrons can be
removed in a collision event. Using the short-hand p ≡ prem, Equation (23) yields

PIEM
0 = (1 − p)2, (24)

PIEM
1 = 2p(1 − p), (25)

PIEM
2 = p2, (26)

respectively, for the three channels. Obviously, the probabilities for one-electron and
two-electron removal have a fixed relation

PIEM
1 = 2

√
PIEM

2

(
1 −

√
PIEM

2

)
, (27)

with the maximum PIEM
1,max = 0.5 occuring together with PIEM

2 = 0.25. This cannot be correct
in general, i.e., the full solution of the two-electron TDSE (1) allows for more freedom. This
can be seen from the following. An explicit two-electron treatment of a spin–singlet system
begins with recognizing that the solution of Equation (1) can be written as Ψ = Ψ̃χ with an
antisymmetric spin function χ, then expressing the removal of zero, one, or two electrons
by suitably integrating the spatial two-electron density ρ(r1, r2, t f ) = |Ψ̃(r1, r2, t f )|2 at the
final time t = t f over the disjoint regions in space T and C = R3\T:

P0 =
∫∫
T

d3r1 d3r2 ρ(r1, r2, t f ), (28)

P1 = 2
∫

T

∫
C

d3r1 d3r2 ρ(r1, r2, t f ), (29)

P2 =
∫∫
C

d3r1 d3r2 ρ(r1, r2, t f ). (30)

The condition P0 + P1 + P2 = 1 is observed. Provided that the target region T contains all
bound-state contributions, these formulae are exact, just as Equations (19)–(21) for the net
electron numbers. There is no fixed relation between P1 and P2.
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Using the analogue of Equation (4) for the spatial two-electron density ρ, we can
establish that

P1 + 2P2 = Prem
net = 2p, (31)

which obviously also holds within the IEM and affirms that the net numbers are indeed
average electron numbers. In a next step, we can link the exact expressions (28)–(30) for
P0, P1 and P2 with their IEM counterparts by introducing the correlation integral [31]

Ic = 2P0 −
1
2
(2 − Prem

net )
2 = 2(P0 − (1 − p)2) (32)

to obtain

P0 = (1 − p)2 +
1
2

Ic, (33)

P1 = 2p(1 − p)− Ic, (34)

P2 = p2 +
1
2

Ic. (35)

From Equations (33)–(35), it is readily found that

Ic = 2P0P2 −
1
2

P2
1 . (36)

All we have done so far is rewrite the exact expressions (28)–(30) for electron removal
by introducing the correlation integral in such a way that it would be zero if the IEM were
exact, i.e., Ic really measures the departure from the IEM. This raises two questions: (i) how
does Ic look like for a prototypical collision problem? and (ii) how can it be modeled or
approximated without knowledge of the exact solution of the problem?

The first question was studied in [32], in which configuration-interaction calculations
for antiproton–helium and antiproton–molecular hydrogen collisions were carried out and
Ic was calculated from P0, P1, P2 using Equation (36). To address the second question, we
can begin by rewriting Equation (32) as

Ic =
∫∫
T

d3r1 d3r2 gc(r1, r2, t f )n(r1, t f ) n(r2, t f ) (37)

with

gc(r1, r2, t f ) ≡ g(r1, r2, t f )− gx(r1, r2, t f ) =
2ρ(r1, r2, t f )

n(r1, t f )n(r2, t f )
− 1

2
, (38)

and then introducing approximations to the correlation contribution gc of the pair correla-
tion function g. The first such attempt was made in the context of laser-induced ionization
of helium, and involved using parametrizations and models of gc[n] established previously
for ground-state systems applied now to the time-dependent density, in the spirit of an
adiabatic approximation [33]. This turned out to have only a small effect on the calculated
probabilities, a result that was later understood to be a general feature of models in which
gc approaches zero in the long-range limit |r1 − r2| → ∞, which is a desirable property in
ground-state systems but obviously not in ionization problems [34].

An improved adiabatic model was introduced in [35]. It was later applied to antiproton–
helium collisions [31] and extended to deal with coincident capture and ionization events
in positively-charged ion collisions [36]. In it, the two-particle and one-particle densities in
gc are approximated by linear combinations of ground-state densities [35]. The model is a
density functional insofar as the coefficients of these linear combinations are determined
by the net removal (19); however, the two-particle ground state density of neutral helium
and the ground state density of the singly-charged ion are needed as additional ingredients.
The former can be viewed, if not calculated, as an implicit functional of the helium ground-
state density, i.e., the initial condition of the collision problem; however, the latter does not
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seem to have any relation to the density of the collision system. In practice, both quantities
can be calculated independently from the collision problem and then fed into the analysis.

Other approximations, some similar to those of [33] and one consisting of scaling a
coupling-constant average of g by a two-parameter fit function, were proposed and applied
to the problem of single and double capture in proton collisions with neon and argon atoms
in [37].

3. Discussion of Selected Results

We now look at a set of results obtained from (variants of) the models discussed in
Section 2. The data shown here are taken from a number of recent papers, with a view
to outlining typical trends and highlighting open problems as opposed to providing a
comprehensive review.

3.1. Projectile Energy Loss and Net Removal, Capture, and Ionization Cross-Sections

We begin with the projectile energy loss discussed in Section 2.3.1. A cross-section,
sometimes called the (electronic) stopping cross-section, is obtained by the usual integration
over the impact parameter:

Se = 2π
∫ ∞

0
bEL(b)db. (39)

In [27], Se was calculated for antiproton collisions from first- and second-row atoms using
Equations (17) and (18) together with densities obtained from the no-response approxima-
tion and the simple target response model discussed in Section 2.2. Orbital propagation was
achieved by using the basis generator method (BGM), which is a basis expansion method
in terms of atomic orbitals and a set of pseudostates constructed in a specific way so as
to achieve an efficient representation of the ionization continuum [38]. There is obviously
no electron capture channel for antiproton collisions, i.e., target electron removal can be
identified with ionization to the continuum. The BGM pseudobasis used in [27] has a
one-center character and is time-independent, which simplifies the calculations.

In Figure 1, Se is shown for a neon target. The response and no-response results are
virtually identical at collision energies above 200 keV, and are only marginally different from
each other at lower energies. More striking is how they both differ from the semiclassical
convergent close-coupling (SC-CCC) calculation from [39]. That calculation, also based
on an expansion technique in terms of (single-center) pseudostates, does not rely on
Equations (17) and (18) to extract the energy loss, instead using a more traditional approach
to directly represent the expectation value of the electronic Hamiltonian in the basis. It also
ignores multielectron contributions, only taking the 2p shell of neon into account, i.e., it
is associated with energy loss due to single-electron processes involving one of the initial
Ne(2p) electrons. The appararent discrepancy between the BGM and CCC calculations
indicates that multielectron processes do contribute to energy loss; unfortunately, neither
calculation provides direct evidence for this. From the TDDFT standpoint adopted in [27],
decomposition of energy loss into single-electron and multiple-electron processes is not
straightforward, and in practice would involve additional approximations similar to those
described in Section 2.3.2. On the other hand, extending the CCC calculation of [39] to deal
with multi-electron contributions would amount to turning a single active electron into a
multiconfiguration calculation, which is not at all a routine step for a collision problem,
if feasible at all. Qualitative support for the above interpretation is derived from the fact
that nonzero multiple-ionization cross-sections have been measured (and calculated) for the
antiproton–neon system (see [27] and references cited therein), i.e., multielectron processes
do occur. Stopping power measurements, on the other hand, are outstanding, and would
be most welcome to settle the issue. We note that BGM and CCC energy loss calculations
for the one-electron antiproton–hydrogen system agree to within 10% [27].

Figure 2 displays a comparison of the energy loss cross-sections obtained for antiproton
collisions with hydrogen, helium, carbon, nitrogen, oxygen, and neon atoms (right panel)
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along with a corresponding comparison of the net ionization cross-sections (left panel). All
calculations are based on the target response model and the BGM [27].

Energy loss

BGM

BGM; response

SC-CCC Bailey 15

Figure 1. Energy loss cross-section for antiproton collisions with neon as a function of collision energy.
The green dashed and solid lines represent the BGM calculations with static and dynamic response
from [27]. The red-dashed energy loss curve is from the SC-CCC calculation of [39]. Reproduced
with permission from [27].

Ionization

H

He

C

N

O

Ne

Energy loss

H

He

C

N

O

Ne

Figure 2. BGM response cross-sections for antiproton impact induced net ionization (left panel)
and energy loss (right panel) for atoms of H (dotted black), He (dashed purple, close to H at high
energies), C (solid blue), N (solid green), O (solid red), and Ne (dashed magenta) as functions of the
collision energy. Reproduced with permission from [27].

The ordering of the energy loss and net ionization cross-sections is similar at low
to intermediate collision energies, with helium at the bottom, followed by hydrogen,
with which it crosses towards higher energies. The largest cross-sections are obtained for
carbon, nitrogen, and oxygen, while neon is close to hydrogen in the case of net ionization,
even falling below its cross-section at the lowest collision energies shown here, but rising
towards the values for oxygen, nitrogen, and carbon in the case of energy loss before
eventually surpassing them in the 200–300 keV impact energy range. There is no obvious
common scaling of the results for either observable with the number of electrons and/or
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the magnitude of the atomic ionization energies, although it is clear that both parameters
play an important role in determining the cross-sections.

At higher impact energies, a grouping is observed more clearly for net ionization, for
which hydrogen and helium remain at the bottom and are clearly separated from the rest
while neon almost catches up with the data obtained for the other atoms, which basically
land on a single curve. In the energy loss case, by contrast, neon emerges at the top, and
the sequence of the cross-sections is strictly in accord with the number of electrons. In [27],
it was shown for the quantity Se/ZT that the results for the (N > 2) many-electron systems
fall on a common curve at high energies, and that the hydrogen and helium results are
close together and higher than this common curve.

Moving from antiprotons to positively charged projectiles opens up the electron
capture channel, and in general requires the use of a two-center computational approach.
An early TDDFT-based BGM calculation for net capture and net ionization in collisions
of protons and He2+ ions with helium atoms was reported in [40]. Although it did not
explicitly include bound projectile states in the basis, the (time-dependent) pseudostates had
a two-center character, and capture probabilities were extracted from their population at
asymptotic times using a projection technique. The effective electron–electron potential (10)
was taken at the exchange-only level, i.e., correlation was neglected while exchange was
included exactly. For helium, this is accomplished by multiplying the Hartree potential (11)
by a factor of one half, as the elimination of the unphysical self-interaction contributions is
the only role of exchange in this two-electron spin–singlet system.

Results for net capture and net ionization are shown in Figures 3 and 4, respectively.
The exchange-only calculations (labeled as “response” in the figures) are compared with
no-response results obtained using Equation (14) and with experimental data. As expected
from the discussion in Section 2.2 (and see Figure 1), the two versions of theory agree with
each other at high collision energies.

For the case of capture (Figure 3), an interesting difference is observed for proton
vs. He2+ impact at low to intermediate energies. For the singly-charged projectile, the
response results are below the no-response results; however, for the doubly-charged ion
it is the other way around (below 20 keV/amu). In [40], this was explained with the aid
of “dynamical correlation diagrams” obtained from diagonalizing the TDKS Hamiltonian
in the BGM basis. For the (HeHe)2+ system, response effects bring the two potential
curves relevant for ground-state electron transfer closer together, thereby increasing their
coupling and the capture cross-section, while for the (HHe)+ system the energy gap between
the potential curves widens so that capture becomes less likely. The experimental data
displayed in the figure send a mixed message, as only in the case of the doubly-charged
projectile does the inclusion of response appear to lead to better agreement. For proton impact,
a more recent exchange-only level calculation [41] reported good agreement with the results
of [40]. Calculations at the ALDA level appear to overestimate the capture cross-section
at low collision energies [41,42]. A spin-dependent ALDA calculation with self-interaction
corrections included, on the other hand, showed better agreement with the experimental data
in the low-energy range [23]. State-resolved TDDFT capture results were reported in [43].

For the case of ionization (Figure 4), the theoretical situation is simpler. Response
always reduces the cross-section, as it is associated with an increase in the binding of
the electrons. The effect is relatively small, however, and comparison with the experi-
mental data does not provide a clear-cut answer as to whether the response results are
superior. In an ideal world in which the experimental data had negligible error bars and
the theoretical results had exceedingly high numerical accuracy, it could be concluded
from Figures 3 and 4 that any remaining discrepancy between theory and experiment
would be resolved if we knew how to include correlation in the effective electron–electron
potential (10).
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Figure 3. Total cross-sections for net capture in proton (top) and He2+ (bottom) collisions with helium
as functions of collision energy. Curves: BGM calculations from [40]. Experiments: filled circles [44,45]
(average deviation 8.8%); filled squares [46]; open squares [47,48]. Reproduced with permission from [40].

Figure 4. Total cross-sections for net ionization in proton (top) and He2+ (bottom) collisions with helium
as functions of collision energy. Curves: BGM calculations from [40]. Experiments: filled circles [44,45]
(average deviation 8.7%); filled squares [46] (uncertainty 80%); open squares [47,48] (typical uncertainties
are ±15%). Reproduced with permission from [40].
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3.2. Single-Electron and Double-Electron Processes in Collisions Involving Helium Atoms

The situation becomes more complicated when looking at, e.g., one-electron and
two-electron removal, as opposed to net removal, in collisions involving helium atoms.
As explained in Section 2, we face the problem that, in addition to the effective electron–
electron potential, the observables have to be modeled or approximated. The available
options are the IEM and, for the two-electron problem, one of the adiabatic correlation
integral models described in Section 2.3.3. In Figure 5, the IEM and the adiabatic model
proposed by Wilken and Bauer in [35] (labeled “WB” after the authors in the following text
and figures) are compared for one-electron and two-electron removal in proton–helium
and antiproton–helium collisions. The two plots are taken from [36], where results for
proton–helium collisions for individual capture and ionization channels were shown and
discussed in comparison with experimental data and other theoretical results. For the
case of antiproton impact, a comparison with previous calculations was made in [31].
More recent (non-DFT) state-of-the-art studies of antiproton–helium collisions have been
presented in [32,49,50].
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Figure 5. Total cross-sections for one-electron (left panel) and two-electron (right panel) removal from
helium by proton and antiproton impact as functions of collision energy. Theory (BGM calculations
from [36] with different final-state analyses): blue dotted lines, IEM for proton impact; red dash-
dotted lines, IEM for antiproton impact; blue dashed lines, WB for proton impact; red solid lines,
WB for antiproton impact. Experiments for proton impact: filled triangles [51], pluses [52], filled
circles [53], filled diamonds [54], filled rightward triangles [55], filled downward triangles [56], filled
squares [57]. Experiments for antiproton impact: open squares [58], open circles [59], crosses [60].
Reproduced with permission from [36].

The theoretical results displayed in Figure 5 were again obtained from BGM calcula-
tions. In addition to exact time-dependent screening and exchange contributions, the effec-
tive electron–electron potential (10) used here includes an accurate ground state correlation
potential determined numerically by an inversion procedure [31]. The correlation potential
was found to be unimportant for the collision calculations; thus, the single-particle solutions
are in fact very similar to the exchange-only results (cf. Figures 3 and 4 for proton impact).

For both projectiles, the WB model enhances single removal (left panel) at the expense
of double removal (right panel). Overall, this represents an improvement compared to
the IEM, which shows very clear deficiencies in the case of double removal for both
projectiles, overestimating the experimental data significantly except at very high energies
(around 1 MeV and higher). For antiproton impact, the adiabatic correlation integral brings
the double-removal cross-section close to the experimental data points (which tend to
have large error bars).3 For protons, however, there remains a discrepancy larger than a
factor of two over a wide impact energy range. The more detailed analysis carried out
in [36] suggests that the WB model presents limitations in situations where capture is
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an important reaction channel. Regardless of this, the single-removal cross-section (left
panel of Figure 5) shows nice agreement with the experimental data over the entire energy
range. For antiproton impact, the IEM and WB predictions are very similar and fare equally
well in explaining the experimental data. Comparing the absolute scales of the single-
and double-removal cross-sections, we are led to conclude that we should focus on the
two-electron process in order to shed more light on the role of Ic.

With this in mind, let us now come back to the observation that the WB model tends
to reduce two-electron removal. A more detailed analysis of the transition probabilities
confirms that IWB

c < 0 (cf. Equation (35)) at all impact parameters and collision energies
considered [36]. This raises the question of whether this feature can be understood on more
general grounds. In lieu of a strict proof (which seems impossible in light of the somewhat
heuristic nature of the WB model), we present a simplified argument.

The adiabatic densities that feed into gc (38) in the WB model are defined in a piecewise
manner for the two cases, namely, where the net removal (19) is between zero and one
and where it is between one and two. Only the former case is relevant for singly-charged
projectiles. The WB model assumes that

gc(r1, r2, t f ) =
2ρA(r1, r2, t f )

nA(r1, t f )nA(r2, t f )
− 1

2
(40)

with
ρA(r1, r2, t f ) = (1 − Prem

net )ρ2(r1, r2) = (1 − 2p)ρ2(r1, r2), (41)

where ρ2 is the two-electron ground-state density of the (helium) atom, 0 ≤ p = Prem
net /2 ≤

1/2, and
nA(r, t f ) = (1 − 2p)n2(r) + 2pn1(r) (42)

with the ground-state densities n2 of the two-electron helium atom and n1 of the one-
electron helium ion. If we make the additional assumptions that ρ2(r1, r2) =

1
4 n2(r1)n2(r2)

and n1(r) = 1
2 n2(r), i.e., that the two-electron density of the neutral atom is uncorrelated

and that the ground-state orbital of the singly-charged ion is identical to the (doubly-
occupied) ground-state orbital of the atom, we arrive at

gc = − p2

2(1 − p)2 (43)

and
Ic = −2p2 ≡ Iquadratic

c , (44)

i.e., a strictly negative correlation integral. However, the quadratic p dependence (44) is too
extreme, in that it implies P2 = 0 (cf. Equation (35)). We can relax it somewhat by writing
(cf. Equation (36))

Ic = −1
2

P2
1 (45)

and substituting the IEM probability (25) to obtain the quartic function

Iquartic
c = −2p2 + 4p3 − 2p4. (46)

Alternatively, for small p it is justified to neglect the highest-order term to arrive at the
cubic form

Icubic
c = −2p2 + 4p3 (47)

as a compromise. Both the quartic and cubic forms of Ic are negative for p < 1/2, just
as is the case with IWB

c ; in fact, when used to calculate the single- and double-removal
cross-sections, they yield similar results to the WB model, as demonstrated in Figure 6.
For antiproton impact (left panel), the cubic model’s double ionization results are remark-
ably close to the WB cross-sections, while the quartic model produces a cross-section curve
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that is similar in shape but visibly lower. For proton impact (right panel), on the other
hand, the quartic model is in better overall agreement with the WB results than the cubic
model. Either way, it is interesting to see that the obtained results are of similar quality to
the numerically nontrivial WB model. Both the cubic and the quartic models are as easy to
implement as the IEM.

Figure 6. Total cross-section for two-electron removal from helium by antiproton (left panel) and
proton (right panel) impact as functions of the collision energy. All results shown are obtained from
the BGM calculations of [36] employing different final-state analyses. In addition to the IEM and
WB data included in Figure 5, results when using Equations (47) (‘cubic’) and (46) (‘quartic’) are
displayed.

From a more fundamental perspective, however, it must be conceded that the above-
mentioned problem of a fixed relation between the single- and double-removal probabilities
(cf. Equation (27)) remains unsolved; the cubic and quartic models merely replace the IEM
relation by a different one, and given the similarity of cross-section results displayed in
Figure 6, it must be concluded that the WB model does not offer more flexibility in practice.
The two-electron calculations reported in Reference [32] indicate that such flexibility is
needed in reality. In particular, it has been shown there that the correlation integral
tends to be positive at relatively high impact energies, a feature that is clearly beyond the
capabilities of the models discussed in this section. Looking at the (exact) expression (36),
we can conclude that a model for both the first and second terms of Ic would be needed
to replicate this behavior, involving at least one variable in addition to the effective single-
electron probability p. Going back to Equations (33)–(35) and using Pj ≥ 0 for j = 0, 1, 2
as conditions, it can easily be established that the allowed values of Ic in the 0 ≤ p ≤ 1
domain fall within the encircled area4 shown in Figure 7.

Figure 7. Correlation integral versus p; the allowed values fall within the encircled area.
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Obviously, this leaves us with many viable options for modeling the correlation
integral. Whether an improved model with more flexibility can be found without resorting
to essentially fitting the target results is unknown at present.

3.3. Multiple Electron Processes in Collisions Involving Neon Atoms

The preceding discussion seems to suggest that we should not hope for the IEM to be
able to explain multi-electron removal processes. While this is obviously true for proton–
helium and antiproton–helium collisions, the statement needs to be qualified when the
projectile has a higher charge state and/or the target atom has more than two electrons.
The He2+-Ne system represents an interesting case for demonstrating this. It was studied
in [24] using the simple target response model and the BGM for orbital propagation. More
recently, real-space finite-difference calculations at the ALDA level, including self-interaction
corrections, were carried out in [61]. The Ehrenfest dynamics method was used to couple
the motion of the nuclei to the electron dynamics, although it seems unlikely that this
would cause any notable changes in the cross-section results compared to a calculation
with straightline trajectories unless very low collision energies are considered. Another
feature of the calculations reported in [61] involved the use of a so-called coordinate space
translation technique to separately analyze the electronic states of projectile and target
centers [62]. Similar techniques were used in a number of recent studies for many-electron
systems [63–65], all of which used the Octopus code [66].

Figure 8 compares the total cross-sections for q-fold electron removal from neon
obtained from both methods with each other and with experimental data. Different variants
of IEM analyses were employed; in [24], a so-called products-of-binomials analysis designed
to prevent unphysical higher-order electron capture was used, while [61] used an analysis
based on Slater determinantal wave functions. Good overall agreement is observed in
Figure 8 for both single (q = 1) and double (q = 2) electron removal. For q = 3, the ALDA
calculation from [61] is in better agreement with the measurements than the target response
calculation at most energies, although it could be argued that the latter fares better in
matching the energy dependence of the experimental data points. The same appears to be
true for q = 4, notwithstanding a substantial overestimation of the data by the calculations
of [24] in the entire range of impact energies shown. The ALDA calculation, by contrast,
overestimates the measurements only at low and intermediate impact energies, a tendency
that is already visible for q = 3.

Figure 8. Total cross-sections for q = 1, . . . 4-fold electron removal (termed ‘loss’ in the figure) from
neon by He2+ impact as functions of collision energy. Theory: solid lines, ALDA [61], dashed lines,
BGM response [24]. Experiments: open symbols [48], crosses with open symbols [67]. Reprinted
from [61] with the permission of AIP Publishing.
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Figure 9 shows a similar plot for Li3+-Ne collisions, except that the cross-sections are
for pure ionization, i.e., processes in which the projectile does not change its charge state.
Again, the calculations are based on the target response model and the BGM; however, in
this case a determinantal analysis similar to that used in [61] for He2+ was used instead of
the products-of-binomials scheme.
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Figure 9. Total cross-sections for q = 1, . . . 4-fold pure ionization of neon by Li3+ impact as functions
of collision energy. Dashed lines, BGM response calculations [68]. Experiments: open circles [69].
Reproduced with permission from [70].

The agreement with the experimental data is excellent for q = 1 and satisfactory for
q = 2. For q = 3, similarly to the He2+ case, reasonable agreement can be claimed in shape
but not in magnitude. For q = 4, the calculated cross-sections are too high by at least a
factor of three in the region of the peak, and the agreement observed for the two data points
at the lowest energies appears fortuitous. It would be of interest to know how an ALDA
calculation would fare for this problem, but such results have not been reported.

In any case, it appears fair to summarize the situation by saying that the IEM analysis
of collision calculations works reasonably well as long as the final target charge state
q does not exceed the initial projectile charge state (or, in certain circumstances, by not
more than one). This has been confirmed in a number of works for various collision
systems (see, e.g., [71] and references therein) and seems to be true regardless of the
level of approximation employed for the TDKS potential. Thus, it can be concluded that
an extended correlation integral model for N > 2 electrons would be required to obtain
improved agreement with experiments at high charge states.

3.4. Collision Systems with Electrons on Both Centers

One of the simplest collision systems with active target and projectile electrons is
the three-electron He+-He system. It was studied in [26] in the exchange-only limit of a
time-dependent spin–density formalism. This level of theory ensures that each of the three
electrons experiences the correct asymptotic potential at large distances, a feature which is
important in collision problems and hard to achieve in simplified response or no-response
models if electrons on both centers are present in the initial state. A few compromises
needed to be accepted in [26] to make this work: (i) the KLI approximation was used instead
of the full OPM to generate the exchange potential; and (ii) the potential was calculated
with a cylindrical symmetry constraint, which in reality it does not possess for finite impact
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parameter collisions. The final-state analysis was carried out at the level of the IEM with
Slater determinantal wave functions for the three-electron system.

All charge-changing outcome channels were reported in [26]. Here, we focus on those
that involve electron loss from the projectile, and only include the most sophisticated KLI
calculation, labeled as pETF in [26], which takes into account a partial electron translation
factor in the orbitals that feed into the effective potential.

Figure 10 displays the cross-section for single electron loss from the projectile with
no simultaneous electron removal from the target. While the overall agreement with the
measurements is quite good, an overestimation of the data can be noted at impact energies
of 200 keV/amu and higher, in which region an independent event model calculation [72]
matches the data very well. That calculation takes electron correlation effects into account
explicitly. It is also included for comparison in Figures 11 and 12, which show projectile
electron loss in coincidence with single and double target ionization, respectively.
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Figure 10. Total cross-section for projectile electron loss in He+-He collisions as a function of collision
energy. Theory: solid line, KLI-IEM [26], dashed line, independent event model [72]. Experiments:
diamonds [73]. Adapted from [26].

In the case of single target ionization (Figure 11), the situation appears reversed in
that the results of the KLI-IEM calculation are below those of the independent event model
and the experimental data at high impact energies. This is explained by a process that is
sometimes referred to as antiscreening, which involves a direct interaction between a target
and a projectile electron, resulting in their simultaneous ionization. The independent event
calculation takes antiscreening into account, whereas the KLI-IEM calculation does not.
It has been argued that the antiscreening process has an effective threshold determined
by the condition that the kinetic energy of a (free) electron travelling with the relative
projectile-target speed must be larger than the sum of the ionization potentials of both
electrons. For He+-He collisions, this threshold would correspond to a collision energy of
about 146 keV/amu, which is consistent with the observation that the KLI-IEM calculation
tends to grow closer to the experimental data of Figure 11 towards lower energies.

For double target ionization in coincidence with projectile electron loss (Figure 12), the
fact that the KLI-IEM results are below the experimental data at the highest energies can be
attributed to the same type of electron–electron correlation effect, which the independent
event model calculation of [72] appears to overestimate in this channel. In the region of the
cross-section peak, the KLI-IEM results are above the measurements, confirming the usual
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trend that an IEM final-state analysis overestimates the charge-changing cross-sections for
channels with high electron multiplicities.
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Figure 11. Total cross-section for projectile electron loss with single target ionization in He+-He
collisions as a function of collision energy. Theory: solid line, KLI-IEM [26], dashed line, independent
event model [72]. Experiments: diamonds [73], crosses [74]. Adapted from [26].
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Figure 12. Total cross-section for projectile electron loss with double target ionization in He+-He
collisions as a function of collision energy. Theory: solid line, KLI-IEM [26], dashed line, independent
event model [72]. Experiments: diamonds [73], crosses [74]. Adapted from [26].

When taken together, it can be concluded that the three projectile electron loss channels
are described quite well by the KLI-IEM calculation. An interesting question is whether a
correlation integral model for this three-electron problem would be able to improve the
description by way of reshuffling flux between the three channels, whether an improved
TDKS potential would be required, or perhaps both. A viable ansatz for one or the other
would be needed to shed light on this question.

We round this section off with a comment on a truly many-electron problem: the
Ar+-Ne system, which was studied in a TDDFT framework in [75]. The level of theory
used in that work is similar to that in [61] and other recent works for collision problems
with target and projectile electrons [76,77]. In particular, the calculations were carried out
at the ALDA level, with self-interaction corrections included and analyzed at the final
time on the basis of Slater determinantal wave functions. A total of fifteen electrons were
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considered active, with the electrons in the 2s22p6 configuration on the neon target atom
and the 3s23p5 electrons on the Ar+ ion, while the inner shell electrons were frozen and
accounted for via pseudopotentials.

Single-electron capture and m = 1, . . . , 5-fold electron loss cross-sections were reported
in [75]. The level of agreement with experiment was found to be quite good, in particular at
impact energies in the 25–45 keV/amu range. This is remarkable for electron loss at higher
multiplicities m, given the IEM nature of the final-state analysis and the somewhat contra-
dictory evidence gathered from other seemingly simpler collision systems (cf. Section 3.3).
While the theoretical model may decrease in validity towards lower energies, as suggested
by the authors of [75], conflicting capture measurements and a sparsity of electron loss
data make it difficult to draw definitive conclusions in this region. Notwithstanding these
uncertainties, the results can be deemed encouraging regarding the applicability of TDDFT
to complex collision problems.

4. Conclusions and Outlook

Since its formal birth in 1984, TDDFT has found practical application in many areas,
atomic collisions in the semiclassical framework being one of them. The appeal of TDDFT is
that it is built on a provable theorem, the Runge–Gross theorem, on the basis of which it can
be argued that the many-body TDSE can be replaced by a seemingly simpler effective single-
particle description, the TDKS scheme. Practical calculations are, however, necessarily of
an approximate nature, as (i) the exact form of the TDKS potential is unknown and (ii) the
exact density dependence of many observables of interest is unknown as well. Although
progress has been made on both fronts, there are outstanding questions that need answers
if TDDFT calculations are to significantly transcend the IEM level.

Regarding the TDKS potential, ‘exact’ exchange-only calculations, i.e., attempts at nu-
merically solving the equations one encounters when neglecting correlation but including
exchange exactly, have been reported for only the simplest (true or effective two-electron)
collision systems. For more general situations, the OPM provides a framework for formu-
lating the problem; however, a complicated integral equation needs to be solved in order
to generate the exact exchange potential. To the best of our knowledge, this has not been
attempted yet for atomic collision problems. Even applications of the simpler KLI scheme
are scarce, and subject to further approximations in practice. The bulk of the numerical
results generated thus far are either based on local density type approximations or even
simpler global response (and no-response) models. This is to say that not much is known
about the role of the correlation contribution to the TDKS potential. Static correlation,
i.e., a no-response type inclusion of atomic ground-state contributions, was found to be
unimportant for collisions involving helium atoms, but it should not be concluded from
this that time-dependent effects will be small as well. Some time ago, the application of a
simple time-dependent correlation potential model originally developed for laser–atom
interactions [78] showed effects in the antiproton–helium system; however, this did not
lead to improvements compared to the IEM, and was dismissed as unsuitable for the
collision problem [79]. Progress has been made regarding understanding the properties of
the exact TDKS potential, and, as a consequence, of time-dependent correlation effects on a
formal level and for model problems (see, e.g., [80,81] and references therein). One lesson
learned from these studies concerns the memory dependence of the exact TDKS potential,
i.e., a dependence of the potential at time t on the density at times t′ < t (and the initial
state). While this dependence appears to be important in general, it is usually neglected
in practice. It remains to be seen whether workable models for approximate inclusion of
memory effects can be developed and applied to collision problems.

The problem of correlation in the final-state analysis has been discussed in some detail
in this article. Existing models for a correlation integral to describe (single- and) double-
capture and ionization events in two-electron systems have led to encouraging results, but
require further improvements in order to make TDDFT-based approaches competitive with
explicit two-electron calculations. For problems with N > 2 electrons, for which explicit
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calculations become prohibitively costly with increasing N, viable correlation integral
models do not currently exist. It might be useful to direct effort into their development in
order to shed light on the issue of high electron multiplicities in ionizing collisions (see the
discussion in Section 3.3). Such progress would also benefit neighboring research areas,
such as the study of laser–atom interactions, in which high degrees of ionization can be
reached in intense fields and where TDDFT methods play at least as important a role as in
the collision field.

This article has focused on collisions with atomic targets and discussed the accomplish-
ments and limitations of TDDFT-based calculations on the basis of total cross-section results;
however, there is also considerable interest in collisions involving molecules as well as in
differential cross-section studies, making a few comments from the TDDFT perspective
in order here.

Differential studies again raise the question of how to express the observables of
interest in terms of the density. In the apparent absence of a known direct approach, an
analysis based on the individual orbitals, i.e., at the level of the IEM, seems to be the only
available option at present. There is a case to be made that some attention should be
devoted to this problem.

More can be said about the study of collisions involving molecules. A number of
TDDFT calculations, many of them using the Octopus code [66] and combining the TDKS
equations with the Ehrenfest dynamics method to account for the motion of the nuclei,
have been carried out to date [42,82–93]. The difficulty of addressing the complicated
ion–molecule problem with explicit many-body methods, coupled with the many successes
of stationary density functional theory in the quantum chemistry realm, makes this area a
natural field for TDDFT and simplified TDDFT-inspired approaches. Further progress in
the description of ion–atom collisions along the lines indicated above will benefit the study
of molecular systems as well. In light of the applied interest in this area, it seems safe to
predict increased TDDFT activity in the coming years.
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Abbreviations
The following abbreviations are used in this manuscript:

ALDA Adiabatic Local Density Approximation
BGM Basis Generator Method
CCC Convergent Close Coupling
DFT Density Functional Theory
IEM Independent Electron Model
KLI Krieger–Li–Iafrate
OPM Optimized Potential Method
pETF partial Electron Translation Factor
SC-CCC Semiclassical Convergent Close Coupling
TDDFT Time-Dependent Density Functional Theory
TDHF Time-Dependent Hartree–Fock
TDKS Time-Dependent Kohn–Sham
TDSE Time-Dependent Schrödinger Equation
WB Wilken–Bauer

Notes
1 One actually needs the so-called van Leeuwen theorem to ensure that it is possible to replace the interacting system with a

fictitious noninteracting system that reproduces the exact density [18].
2 The energy loss contributions from projectile–nucleus target–nucleus scattering are known to be relatively small at sufficiently

high collision energies; see the discussion in [27].
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3 State-of-the-art correlated two-electron calculations yield a different energy dependence compared to the WB model and appear
to be in better agreement with the experimental data; see, e.g., [32,49] and references cited therein.

4 Pj ≤ 1 turn out to be weaker conditions in this representation, i.e., they do not play a role in determining the allowed Ic area.
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