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Abstract: The present paper discusses a number of topics relevant to line broadening in the presence
of periodic oscillatory fields. Specifically, we discuss the applicablility of the expression usually
employed to compute the autocorrelation function, the dressing, accounting for random phases,
neglecting fine structure and numerical issues associated with stiffnes.
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1. Introduction

Apart from natural broadening, all line broadening of an atomic system requires a
stochastic, random medium [1]. Pressure broadening in particular involves the interactions
of the atomic system with the random medium. When, in addition to the random medium,
a non-random electric or magnetic field, either externally (e.g., lasers) or internally (e.g.,
plasma waves from various instabilities) generated, is applied, the line profile may be
modified in significant ways [2–15]. In the present work, we ignore the effect of such a field
on trajectories and distribution functions [16–18] and focus on the lineshape computation,
both with respect to the emergence of satellites [19,20] and width modifications [21–23].
An old and well-known result is that, in the absence of a plasma and for hydrogen-like
lines without fine structure, one obtains the Blokhintsev satellites. For a line with upper
state n and lower state n′ ,with no fine structure in the absence of a medium (plasma) and
in the presence of a linearly polarized field of magnitude E and frequency Ω, the profile as
a function of frequency ω is [20]

L(ω) = ∑
p

J2
p(

3Ea0

2h̄Ω
[n(n1 − n2)− n′(n′

1 − n′
2)])δ(ω − pΩ) (1)

with n1, n2 and n′
1, n′

2 as parabolic numbers of the upper and lower levels, respectively, Jp
denoting the p th Bessel function of the first kind, δ the Dirac δ-function and a0 the Bohr radius.

2. The Lineshape Formula

Typically, lineshape calculations employ the autocorrelation function C(t), i.e., the
Fourier transform of the line profile L(ω), defined as (neglecting the density matrix)

C(t) = dαβ·dβ′α′{Uαα′(t)U
†
β′β(t)} (2)

with {. . .} denoting the statistical average over plasma [1] and α, α′ and β, β′ denoting
the complete set of states of the upper and lower levels of the line profile in question,
respectively, and U(t) is the time evolution operator for time t. Throughout the present
work, the Einstein summation convention is followed, i.e., repeated indices are summed
over and states that start with α, e.g., α, α′, α0 . . . refer to a complete set of upper-level
states and, similarly, states that start with a β, e.g., β, β′, β0, . . . refer to a complete set of
lower-level states. There is also the power spectrum formula discussed below. In [24], the
two were compared and the power spectrum method was shown to provide better variance,
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although the two methods give the same results and the same speed of convergence. In
this work, we also show that in the case of external time-dependent (oscillatory) fields, the
power spectrum and dipole autocorrelation formulas give, in principle, di f f erent results.

Equation (2) is particularly attractive, since one often has a code that solves for the
atomic U -matrices evolution in the presence of the plasma fields, so it would be easy to
just add the oscillatory field to the plasma fields.

However, this form, which assumes stationary processes, is not applicable here. To
illustrate this, it is important to note that, for hydrogen-like species without fine structure
in an external, linearly polarized electric field in the z-direction without a plasma, one can
solve in the parabolic basis, so that the time evolution operator (U-matrix) is:

Uαα′(t) = δαα′ e
−ıQzαsinΩt (3)

with zα denoting the diagonal z-matrix element ⟨α|z|α⟩ in the parabolic basis and Q = eE
h̄Ω .

We get a similar expression for the lower level. Therefore,

{Uαα′(t)U
†
β′β(t)} = δαα′δββ′ e

−ıQ(zα−zβ)sinΩt (4)

with zβ denoting the diagonal z-matrix element for the lower level β.
Using the identity

e−ıasinΩt = ∑
p

Jp(a)eıΩt (5)

we obtain
L(ω) = |dαβ|2 ∑

p
Jp(Q(zα − zβ))δ(ω − pΩ) (6)

This disagrees with the Blokhintsev result, which involves J2
p and can produce negative

profiles, as Jp(x) is negative for certain ranges of x.
In contrast, the expression for the line profile in direction e without assuming sta-

tionarity (referred to as the power spectrum formula) is based on the radiation formula in
direction e:

Pe(ω) =
ω4

3πϵ0c3 limT→∞ ∑
αβ

ρα{|
∫ T/2

−T/2
dteıωt⟨α|de(t)|β⟩|2} (7)

where Pe is the power radiated in direction e, ρα is the population of the upper level α, d
the dipole moment, de the component of the dipole moment in the e direction and α, β
in principle complete sets of states. If we assume the density matrix ρ to be trivial (i.e.,
diagonal and time-independent [25]), the line profile reads as follows:

Le(ω) = {limT→∞
1

2πT

∫ T/2

−T/2
dt1e−iωt1 deα0β(t1)

∫ T/2

−T/2
dt2eiωt2 ·deβα0(t2)} (8)

and may then be written as (by using t = t2 − t1)

Le(ω) = limT→∞{
∫ T/2
−T/2

dt1
2πT deαβ(t1)

∫ T/2
−T/2 dteiωt·deβα(t + t1)} (9)

= limT→∞
1

2πT {
∫ T/2
−T/2 dt1deαβ(t1)

∫ ∞
−∞ dteiωt·deβα(t + t1)}

The line profile then is shown to be [6] a product of three factors:

Le(ω) = Dαββ′α′

∫ ∞

−∞
dteiωtSα0α1β1β0ββ′α′α(t){Uα1α0(t)U

†
β0β1

(t)} (10)

where the dipole term D is purely atomic,

Dαββ′α′ = deαβ·deβ′α′ (11)
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and the plasma-independent (but field-dependent) matrix S is

Sα0α1β1β0ββ′α′α(t) = limT→∞
1

2πT

∫ T/2

−T/2
dt1U0†

α0α(t1)U0
ββ0

(t1)U0†
β1β′(t + t1)U0

α′α1
(t + t1) (12)

U0 is the time evolution for the atomic system plus periodic field and U is deter-
mined by

dU(t)
dt

= − ı
h̄

V′(t)U(t) (13)

with
V′(t) = U†

0 (t)V(t)U0(t), (14)

and V(t) is the emitter–plasma interaction, i.e., the interaction of the electron involved
in the transition of the line in question with the plasma electrons and ions. Thus, the
emitter does not experience the perturbation V(t) by the plasma electrons and ions, but the
“dressed” perturbation V′(t), which generally oscillates faster than V(t).

S determines the satellite structure and intensity, D determines the total line intensity
and {. . .} determines the broadening of each satellite. In the case without a periodic field,
U0ij(t) = δijexp(−iωit), with h̄ωi denoting the energy of the ith state, and S reduces to

Sα0α1β1β0ββ′α′α(t) = e−ıt(ωα′−ωβ′ )δ(ωα0 − ωβ0 − ωα′ + ωβ′)δα0α′δββ0 δα′α1
δβ′β1

(15)

With this formalism that does not assume stationarity, and for a hydrogen-like line
without fine structure, we recover the Blokhintsev results; the U-matrices describing the
plasma interactions are simply the identity matrix and the line profile reduces to the product
of D and S:

Le(ω) = Dαββ′α′

∫ ∞

−∞
dteiωtSα0α0β0β0ββ′α′α(t) (16)

If we now substitute for U0 the expression from Equation (3) and make use of the
expansion (5), we obtain a sum of squares of Bessel functions Jp, as in the Blokhintsev
result [6]. Thus the lineshape formula (Equation (10)) is different from the one routinely
used for Stark-broadening calculations, i.e., the Fourier transform of Equation (2).

3. Approximations on the Electron and Ion Treatments

From Equation (13), we see that dressing of V(t) affects both electrons and ions. This
implies that one should apply dressing to both electrons and ions instead of applying
dressing to only electrons or only ions. Neglecting to dress in either electron or ions will
tend to overestimate the widths, since the change of sign of the interaction V′(t) effectively
decreases the rate of decay of the autocorrelation function [21–23]. This can be important.

4. Adding Randomness to the Oscillatory Field

Intuitively, additional randomness should enhance broadening. Broadening is in
general enhanced by the following [1]: (a) inhomogeneous mechanisms (the positions of
components change, akin to quasistatic broadening where the heavier ions are considered
static on the time scale of the inverse half-width (HWHM) of the line and (b) homogeneous
mechanisms, where loss of memory is due to random phases (and hence an average that
tends to 0) in the U-matrices for long times.

In real plasmas, different emitters may see the following:

• Different phases (e.g., plasma oscillations, such as Langmuir turbulence and, although
the electric field that two different emitters experience as a function of time may
have the same frequency and peak amplitude, their phases may be different, e.g., one
emitter experiences an oscillatory field E0cos(Ωt + ϕ1), the other E0cos(Ωt + ϕ2), etc.

• Different field peak magnitudes (e.g., damping, i.e., the maximum field at an emiiter
at point x2 may be smaller than the maximum at an emitter at point x1).

• Different frequencies (broadband frequency/dispersion).
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The last two are hard to treat, mainly because it is hard to come up with realistic and
tractable models, as models typically assume some sort of linearly polarized field with,
at most, random phases. They will clearly, especially in the case of different frequencies,
have at least an inhomogeneous contribution. However, the first scenario, i.e., emitters
seeing different phases, means that their lineshape contributions will have the same S and
will simply result in the calculated {Uαα′U†

ββ′} being added after multiplication with a
phase factor. The details are given in Appendix A. So the point is that different phases do
not affect the positions (or intensities) of the components (which are controlled by S), i.e.,
there is no inhomogeneous type broadening. This can be exploited numerically, because if
randomness is only in the phases of the different oscillatory field experienced by different
emitters, then U0 needs to be computed once and for all (for zero phase), and the positions
and intensities are determined once. Furthermore, U0(t) for a periodic field with a phase
can be simply obtained in terms of U0(t) in a periodic field with phase 0. Of course, we
still need to solve the Schrödinger equation to obtain {Uαα′U†

ββ′}.

5. Numerical Solution: Stiffness Issues

Typically, Stark-broadening calculations involve similar magnitudes of interaction and
thus do not exhibit stiffness. However, when we add a strong periodic external field, and
especially arbitrarily strong static fields, we have a complete renormalization of the atomic
system and, as a result, stiffness may appear. We illustrate this in Figure 1 with a calculation
of Ly − γ [26], which shows different time scales for the various components, although
stiffness is not yet extreme. This calculation refers to experimental results claiming to have
diagnosed Langmuir and ion-acousting turbulence with the stated parameters [27]. As
discussed in Ref. [6], solving the Schrödinger equation in an oscillatory field can be a stiff
problem. Hence, in the present approach, one solves for U0, i.e., the 0th order Hamiltonian
consisting of the atomic Hamiltonian plus the periodic field (oscillatory plus static) using a
stiff solver (actually a symplectic integrator that preserves unitarity [28]) and a non-stiff
integrator for the interaction Hamiltonian. Alternatively, one could include the periodic
field with the plasma particle fields, which should also be done using a stiff integrator.

For a periodic field (such as a laser), using the Floquet theory represents a way to
significantly optimize the calculation if stiffness is an issue. Compared to solving the
Schrödinger equation in the external plus plasma particle field, which may be dominated
by the external field for high field amplitudes, the alternative algorithm can be more
efficient.

Since the periodic (which may involve constant terms) field amplitude may well exceed
the plasma microfield, even by orders of magnitude, if we solve for the total (deterministic
laser plus stochastic plasma) field, the change over a given time step can de dominated by
the deterministic field. Thus, it is numerically convenient to use the interaction picture after
having solved the 0th order Hamiltonian with the periodic field; it also accurately identifies
the satellite positions. In other words, only U0, which will be solved once, requires a stiff
solver [28]; U(t) may be solved by non-stiff integrators. In addition, if a numerical solution
is necessary, it is important that we only need U0 for the laser (or turbulent field) period,
not the time of interest for C(t), which may be much larger.

On the other hand, the spectrum consists of features at the Floquet exponents, shifted
by the Blokhintsev structure, i.e., integer multiples of the laser frequency Ω. These Floquet
exponents, indexed by k, and Blokhintsev satellites couple and, in general, involve more
time evolutions than usual. For instance, for Lyman lines, it would normally suffice to
solve the systems for the upper level with the principal quantum number n:

⟨i|dU
dt

|np⟩ = − ı
h̄
⟨i|V′|k⟩⟨k|U|np⟩, (17)

i.e., we would only need to solve for the evolution of the np states (i, k is any state of
the upper level and np is any “p” state of the upper level, i.e., with angular momentum
quantum number 1). This is no longer the case, making calculations (in this respect) harder.
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Figure 1. Autocorrelation functions (solid) for the H-like Si Lyman−γ line components in a plasma
with electron density 3.6× 1022 e/cm3 and temperature 500 eV under the action of a linearly polarized
field of 0.6 GV/cm and frequency 1016 s−1 in the z-direction and a static field with components
parallel and perpendicular to the oscillatory field of 1 and 1.85 GV/cm, respectively. Also shown
are the autocorrelation functions without the static and oscillatory field (only particle fields) without
(dashed) and with (dotted) fine structure.

6. Role of Fine Structure

As shown in [6], the Floquet exponents arise from time-independent terms. For
hydrogen lines without fine structure, these are due to the zeroth (constant) component
of the oscillatory field and from other possible constant fields. With fine structure, there
is an additional contribution due to the time-independent fine structure terms in the 0th
order Hamiltonian. The importance of fine structure then depends not on the magnitude
of the oscillatory field, but on the magnitude of its constant component compared to
the fine structure. We illustrate by showing calculations for hydrogen Ly − α with and
without fine structure. Figures 2 and 3 both consider the joint action of two perpendicular
fields, one static field with magnitude 1 GV/cm and an oscillatory field E0cos(Ωt) with
E0 = 0.5 GV/cm and Ω = 1.78 × 1013 s−1 and 2.55 × 1016 s−1, respectively. These figures
display the positions (in units of Ω) and intensities for calculations with and without fine
structure and show important differences. For example, in Figure 3, the component at
about 0.1 Ω is the strongest one in the calculation without fine structure, but is hardly
noticeable in the calculation with fine structure. Thus, especially if one wants to use these
positions to infer information, accounting for fine structure can be quite important.
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Figure 2. Positions and intensities for the hydrogen Lyman−α line under the action of perpendicular
static and oscillatory fields, respectively, without (+) and with (*) fine structure.
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Figure 3. Positions and intensities for the hydrogen Lyman−α line under the action of perpendicular
static and oscillatory fields, respectively, without (+) and with (*) fine structure.

7. Conclusions

This article stressed a number of important aspects of the effects of oscillatory electric
fields on lineshapes in plasmas. Specifially, it was shown that the usual formula employed
in calculations without an external field, which assumes stationarity, does not recover the
correct Blokhintsev limit. For small fields, this does not make much of a difference [29],
but it can be important for larger fields. It was also shown that dressing either electrons
or ions alone is theoretically suspect, that random phases of the oscillatory electric fields
do not alter the satellite positions and intensities—something that is also numerically
convenient—but they do in principle affect the width and that stiffness may be an issue,
which may be handled by solving once and for all by computing the atomic plus oscillatory
field time evolution. In addition, we discussed the effect of neglecting fine structure on the
satellite positions and intensities and showed that the neglect of fine structure can result in
incorrect spectral positions and intensities.

Funding: This research received no external funding.

Data Availability Statement: Data are available upon request from the author.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Random Phases

Let U0(t) be the time evolution operator for a field V(t) with 0 phase and let U0ϕ(t)
be the time evolution for the same field with phase ϕ, i.e., Vϕ(t) = V(t + ϕ

Ω ). For example,
if V(t) is a linearly polarized field with time dependence cos(Ωt), then Vϕ(t) has the time
dependence cos(Ωt + ϕ). Then, it is simple to see that if U0ϕ(t = 0) = I, with being I the
unit matrix, then

U0ϕ(t) = U0(t +
ϕ

Ω
)U−1

0 (
ϕ

Ω
) (A1)

with U0(t) being the solution for ϕ = 0 and U0(0) the unit matrix.
Therefore, Sϕ, the S in a field with phase ϕ, can be written in terms of U0. Specifically,

we will contrast

Sα0α1β1β0 = De
αββ′α′Sα0α1β1β0ββ′α′α(t) (A2)

for zero phase to the corresponding expression Sϕα0α1β1β0 for phase ϕ:
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Sϕα0α1β1β0(t) = De
αββ′α′Sϕα0α1β1β0ββ′α′α(t) = limT→∞

1
2πT

∫ T/2
−T/2 dt1U0α0α2(

ϕ
Ω )U†

0α2α(t1 +
ϕ
Ω ) (A3)

de
αβU0ββ3(t1 +

ϕ
Ω )U†

0β3β0
( ϕ

Ω )U0β1β2(
ϕ
Ω )U†

0β2β′(t + t1 +
ϕ
Ω )·de

β′α′U0α′α3
(t + t1 +

ϕ
Ω )U†

0α3α1
( ϕ

Ω )

= Sα2α3β2β3 Fα0α2β3β0β1β2α3α1(ϕ),

where we switched to the integration variable y = t1 +
ϕ
Ω with

Fα0α2β3β0β1β2α3α1(ϕ) = U0α0α2(
ϕ

Ω
)U0β1β2(

ϕ

Ω
)U†

0β3β0
(

ϕ

Ω
)U†

0α3α1
(

ϕ

Ω
) (A4)

Thus, whereas the zero phase result was

Le(ω) =
∫ ∞

−∞
dtSα0α1β1β0(t){Uα1α0(t)U

†
β0β1

(t)}eıωt, (A5)

the profile with nonzero random phases is

Le(ω) =
∫ ∞

−∞
dtSα2α3β2β3(t){Uα1α0(t)U

†
β0β1

(t)Fα0α2β3β0β1β2α3α1(ϕ)}eıωt (A6)

This means that S and, hence, the positions and intensities remain unchanged in
the presence of a random phase in the interaction, and the part that is responsible for
broadening, {UaU†

b} is weighted by a random phase factor, F(ϕ). If the phases are not
uniformly random, a probability density for ϕ should multiply this expression.
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