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Abstract: It has been shown that quantum fluctuations in dipolar Bose–Einstein condensates (BECs)
lead to a stabilisation against collapse, thereby providing access to a range of states with different
symmetries. In this paper, we discuss variational approaches to approximately determine the
phase diagrams for dipolar BECs that are trapped along the dipolar orientation and otherwise
infinite in the perpendicular direction (thermodynamic limit). The two-dimensional symmetry
breaking occurs in the plane perpendicular to the polarisation axis. We show in detail how to derive
approximate expressions that are valid in a region where modulations to an otherwise unmodulated
perfect superfluid emerge gradually with a small modulation amplitude and compare the results to
rigorous numerics.
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1. Introduction

The formation of self-organised structures is captivating to natural scientists from a
broad range of subjects [1–3]. A curious phenomenon was conceived roughly fifty years [4–6]
ago related to patterned solid-like distributions of the quantum wave function: It was
conjectured that—despite displaying a regular spatial discrete translational symmetry akin
to a solid with which we intuitively associate rigidity or resistance to shear—the superfluid
fraction can remain significant. Therefore, this idea was coined as a superfluid crystal or
“supersolid”.

A range of interesting physical phenomena are possible in Bose–Einstein conden-
sates (BECs) exhibiting long-range interactions, including the formation of self-trapped
droplets [7–12] or collective excitations [13–17] akin to superfluid helium [18]. In particular,
BECs with strong dipolar interactions turned out to be a remarkable setting, thus permitting
the realisation of a range of experimental breakthroughs [19–32]. Amongst the reasons as
to why the experiments on dipolar BECs carry such significance is the fact that, instead
of exhibiting a collapsing wave function [33,34] as expected from the mean-field theory,
there is a significant stabilisation mechanism [35–40] at play that is due to (beyond mean-
field) quantum-fluctuations [41,42]. Hence, the macroscopically visible mere existence of
non-collapsing density distributions reveals information about the underlying microscopic
beyond-mean field behaviour that is otherwise hard to access.

Due to the suppression of collapse, the characteristic roton softening of the dipolar in-
teraction [13] becomes accessible, thereby providing a platform that permits the exploration
of a range of features of the earlier-mentioned supersolid. These include the measurement
of the superfluid–supersolid phase transition [26–28], supersolid excitation spectra [29,30],
and transient behaviour [24,25], as well as the probing of nonclassical rotational inertia [31]
and their temperature dependence [32,43].
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Beyond its stabilising effect against collapse, quantum fluctuations have been predicted
to also alter the phase diagram of BECs with two-dimensionally symmetry-broken states.
Furthermore, it has been shown that the latter gives rise to new phases of matter [44–47],
which display different supersolid properties [48] and a point in the phase diagram where
the superfluid–supersolid phase transition becomes of second-order, rather than the first-
order phase transition otherwise expected for such states [44]. Whereas they are experi-
mentally challenging to create, there are already efforts towards realising two-dimensional
supersolids [49–52].

The numerical simulation of these systems is computationally expensive; therefore, it
is desirable to employ approximate variational techniques to identify interesting parameter
regions, as well as to obtain a qualitative understanding of the underlying physics. Such
variational techniques have been employed in [44,45]; however, a detailed derivation, as
well as a discussion of its suitability, have not yet been provided thus far. In this paper, we
would like to present the latter. In particular, we present a small amplitude expansion that
permits a qualitative understanding of the phase diagram and, furthermore, yields some
quantitatively reasonably correct results such as the location of the second-order point.

In Section 2, we provide the model employed to describe the dipolar Bose–Einstein
condensate that displays appreciable quantum fluctuations. Section 3 presents a derivation
of the expansion of the energy shift to fourth order in modulation amplitude and a sub-
sequent single-mode approximation. After that, a comparison between infinite order and
fourth order in amplitude, as well as full numerical results, are provided. In Section 5, we
conclude.

2. Theoretical Model

We consider a zero-temperature quantum gas of N dipolar Bosonic atoms with mass
m that are harmonically trapped along the dipolar polarization axis z. In order to be able
to use variational approaches and to simplify the discussion, it is useful to consider a
system that is unconfined in the (x, y) plane perpendicular to the polarization axis. The
particles composing the BEC interact via s-wave scattering with scattering length as and
via an anisotropic long-range interaction between the atomic dipoles characterised by an
associated length scale add [53].

We use the convention that the wave function ψ(r, t) of the atoms is normalised to
the total particle number N, i.e.,

∫
|ψ|2d3r = N, and ρ = |ψ|2 corresponds to the atomic

density. We use scaled variables to simplify the discussion and express spatial coordinates
in units of ` = 12πadd and time in units of τ = m`2/h̄. With that, we can write the total
energy E of the Bose–Einstein condensate as follows:

E =
∫ ( |∇ψ(r)|2

2
+ U(z)|ψ(r)|2 + as

6add
|ψ(r)|4 + 2

5
γ|ψ(r)|5

)
d3r

+
∫ |ψ(r)|2

8π

∫
V(r− r′)|ψ(r′)|2d3r′d3r. (1)

The first and second term describe the single-particle contributions corresponding to
the kinetic energy of the atoms and the energy due to the trapping potential U(z) = 1

2 ω2
z z2,

respectively. The third term describes the zero-range scattering interaction between the
atoms, and the fourth contribution is the so-called Lee–Huang–Yang [54,55] correction
describing quantum fluctuations to leading order in the strength of the atomic interactions.
Here, we have introduced γ = 4

3π2 (
as

3add
)5/2[1+ 3

2 (
add
as
)2] [35,36,41,42] to denote the strength

of the quantum fluctuations. The fifth term is due to long-ranged dipolar interatomic
interactions. We assume that the magnetic dipoles are aligned along the trapping direction z.

3. Variational Ansatz

It has already been shown that there is a special point [44] in the phase diagram in
this system. Sufficiently close to this point, states with broken continuous translational
symmetry with near-perfect superfluidity emerge gradually with arbitrarily small ampli-
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tudes on an otherwise unmodulated background, which is characteristic for a second-order
phase-transition. In the following, we will simply refer to this point as a second-order
point.

When sufficiently close to that point, it is reasonable to employ a small-amplitude
approximation. This will be presented in Section 3.1. After that, we will use different single-
mode approximations to describe the following symmetries: triangular or honeycomb
lattices, stripe, and square lattices.

3.1. Small-Amplitude Expansion

In this subsection, we present a small-amplitude expansion that is valid close to the
second-order point. This details and complements the results presented in [44,45]. More
specifically, we consider a small-amplitude expansion of the energy-shift to the fourth order.
This is the lowest possible order of expansion that permits understanding the essential
physics of symmetry breaking: We will find that large amplitudes are suppressed (or
rendered energetically unfavorably) by the fourth-order contribution, the second-order
contribution in amplitude drives the transition for suitable parameters, and the third-order
term leads to different symmetry-breaking scenarios, in that it determines whether the
phase transition is of the first- or second-order and it leads to the formation of different
lattice types. It is convenient to employ the Madelung transform and express the wave
function as ψ(r) =

√
ρ(r)eiφ. That permits rewriting the energy Equation (1) as follows:

E =
∫ [
− 1

2
ψ∗∇2ψ +

1
2

ω2
z z2|ψ|2 + as

6add
|ψ|4 + 2

5
γ|ψ|5

+
1

8π

∫
Udd(r− r′)|ψ(r′)|2|ψ(r)|2d3r′

]
d3r

=
∫ [

(∇ρ)2

8ρ
− ∇

2ρ

4
+

1
2

ω2
z z2ρ +

as

6add
ρ2 +

2
5

γρ5/2

+
1

8π

∫
Udd(r− r′)ρ(r′)ρ(r)d3r′

]
d3r. (2)

Let ρ0 denote the density of the ground state. In the following, we want to explore
how small perturbations δρ to this state manifest as a shift δE to the energy. The latter can
be expressed as follows:

δE =E(ρ0 + δρ)− E(ρ0)

=
∫ [

(∇ρ0 +∇δρ)2

8(ρ0 + δρ)
− ρ0 + δρ

8ρ2
0

(∇ρ0)
2 +

δρ∇2ρ0 − ρ0∇2δρ

4ρ0

]
d3r +

∫
µ0δρd3r

+
∫ [ as

6add
δρ2 +

2
5

γ

(
15
8
√

ρ0δρ2 +
5

16
δρ3
√

ρ0
− 5

128
δρ4

ρ3/2
0

+ · · ·
)

+
1

8π
δρ(r)

∫
Udd(r− r′)δρ(r′)d3r′

]
d3r.

Here, we introduce the chemical potential of the non-perturbed state as follows:

µ0 =− ∂φ

∂t
=

(∇ρ0)
2

8ρ2
0
− ∇

2ρ0

4ρ0
+

1
2

ω2
z z2 +

as

3add
ρ0 + γρ3/2

0 +
1

4π

∫
Udd(r− r′)ρ0(r′)d3r′.

We restrict our considerations to situations where the total particle number is con-
served. Therefore, the possible perturbations are constrained by

∫
δρd3r = 0. This con-

straint gives rise to the following:
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δE =
∫ [

(∇ρ0)
2

8ρ0

(
−2δρ

ρ0
+

(
δρ

ρ0

)2
−
(

δρ

ρ0

)3
+

(
δρ

ρ0

)4
+ · · ·

)

+
2∇ρ0 · ∇δρ + (∇δρ)2

8ρ0

(
1− δρ

ρ0
+

(
δρ

ρ0

)2
−
(

δρ

ρ0

)3
+

(
δρ

ρ0

)4
+ · · ·

)
+

δρ∇2ρ0 − ρ0∇2δρ

4ρ0

]
d3r +

∫ [ as

6add
δρ2 +

2
5

γ

(
15
8
√

ρ0δρ2 +
5

16
δρ3
√

ρ0
− 5

128
δρ4

ρ3/2
0

+ · · ·
)

+
1

8π
δρ(r)

∫
Udd(r− r′)δρ(r′)d3r′

]
d3r.

As there is only confinement in the polarization direction z, the unmodulated state
ρ0 only depends on z; therefore, ρ0(r) = ρ0(z). Since the dipole–dipole interaction is
anisotropic (i.e., attractive along the polarization direction z and repulsive in the transverse
direction), the roton instability (crystallization) of the dipolar BEC can occur in the trans-
verse plane only. As ansatz for the full density ρ = ρ0 + δρ, including the perturbation δρ
occurring in the transverse unconfined plane, it is reasonable to assume the form

δρ = ρ0(z)P(x, y) (3)

if the amplitude of P is sufficiently small and the error of the factorisation remains small. In
other words, we assume that P is a periodic function containing two variational parameters,
the periodicity in the transverse plane k⊥ = 2π/λ, and its amplitude A. Given that the
equation of motion is nonlinear and even contains a three-dimensional convolution, it is
not at all evident that such a factorisation holds for a certain parameter region. However,
if the amplitude of P remains sufficiently small, such that the main spatial variation is
already captured by ρ0, the error of the factorisation remains small, since we can undertake
an expansion in the small amplitude of P. In that sense, P has both the character of a
variational and a perturbative function.

With this ansatz, we can find the following expression for δE:

δE =
1
8

∫ +∞

−∞
ρ0(z)dz

∫ Lx

0

∫ Ly

0

[(
∂P
∂x

)2
+

(
∂P
∂y

)2
](

1− P + P2 − P3 + P4 + · · ·
)

dxdy

+
as

6add

∫ +∞

−∞
ρ2

0(z)dz
∫ Lx

0

∫ Ly

0
P2dxdy

+ γ
∫ +∞

−∞
ρ5/2

0 (z)dz
∫ Lx

0

∫ Ly

0

(
3
4

P2 +
1
8

P3 − 1
64

P4 + · · ·
)

dxdy

+
1
2

∫
ρ0(z)P(x, y)

1
(2π)3/2

∫ ( k2
z

k2
z + k2

⊥
− 1

3

)
ρ0(kz)P(k⊥)eik·rd3kd3r.

(4)

Here, we use the analytical expression for the Fourier transform of the dipolar interaction.
The convention for the Fourier transform we employ is as follows:

f (k) =
1

(2π)3/2

∫
f (r)e−ik·rd3r. (5)

Therefore, ρ0(kz) =
1√
2π

∫
ρ0(z)e−ikzzdz, and P(k⊥) = 1

2π

∫
P(x, y)e−ik⊥ ·r⊥d2r⊥. Here, we

introduced the transverse coordinates r⊥ = (x, y) and k⊥ = (kx, ky), respectively.
As an approximation for ρ0(z), we assume a Thomas–Fermi profile:

ρ0(z) =
3n2D

4σz

(
1− z2

σ2
z

)
. (6)
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Here, we introduce the auxiliary two-dimensional density n2D = N/A as the ratio between
total particle number N and the transverse area A. Both N and A diverge in the thermody-
namic limit, but n2D remains finite and well-defined. The amplitude of ρ0(z) is chosen in
such a way that

∫ σz
−σz

ρ0(z)dz = n2D.
With the Thomas–Fermi profile for ρ0(z), we are now in a position to evaluate the

chemical potential µ0 of the unmodulated state. As for the derivation of the Thomas–
Fermi profile it is generally assumed that the kinetic energy is zero, we neglect the kinetic
contribution to µ0 as well. Furthermore, we assume that one can neglect the Lee–Huang–
Yang correction for this consideration. With that, we find the following:

µ0 =
1
2

ω2
z z2 +

as

3add
ρ0 +

1
4π

∫
Udd(r− r′)ρ0(r′)d3r′

=
1
2

ω2
z z2 +

as

3add
ρ0(z) +

1
2π

∫ 2
3

∫
ρ0(z′)eikzz′dz′e−ikzzdkz

=
1
2

ω2
z z2 +

as

3add
ρ0(z) +

∫ 2
3

ρ0(z′)δ(z− z′)dz′

=
1
2

ω2
z z2 +

as

3add
ρ0(z) +

2
3

ρ0(z).

The last equation can be solved for ρ0(z), which allows us to identify an approximate width
σz via

ρ0(z) =
µ0

as
3add

+ 2
3

(
1−

1
2 ω2

z
µ0

z2

)
. (7)

By comparing the amplitude and width of Equation (7) with (6), one can readily obtain
the chemical potential µ0 and the width σz of the Thomas–Fermi profile as

µ0 =
n2D

4σz

(
as

add
+ 2
)

(8)

σz =

(
n2D(as/add + 2)

2ω2
z

)1/3

. (9)

We are now in a position where we can evaluate the energy shift due to the periodic
perturbation P(x, y). In the following two subsections, we will evaluate the respective
expressions for different symmetries.

3.2. Hexagonal and Honeycomb Lattices

Thus far, we did not yet specify the symmetry for the periodic perturbation P(x, y).
Let us assume that P(x, y) features a triangular symmetry and that further Fourier peaks
can be neglected. In that situation, a reasonable ansatz for P is given by

P(x, y) = A
3

∑
j=1

cos (kj · r⊥ + θj),
3

∑
j=1

kj = 0, (10)

which gives rise to two distinct density distributions depending on the sign of the modula-
tion amplitude A. As shown in Figure 1, the normalized total density 1 + P(x, y) features a
triangular and a honeycomb profile for positive and negative A, respectively.

The most complicated contribution to calculate is the shift in energy due to the dipolar
long-range interaction. The other contributions are quite straightforward. Therefore, we
will only present the calculation for the dipolar term in detail and state the other cases for
the sake of completeness.
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Figure 1. Sketch of the modulated density profiles 1 + P(x, y) with the modulation P(x, y) featuring
either a triangular symmetry [see Equation (10)] or a stripe symmetry (c). The triangular state in
(a) and the honeycomb state in (b) correspond to positive and negative modulation amplitude A,
respectively. Here, the blue (white) color represents the high (low) density.

∆Eddi =
1
2

∫
ρ0(z)P(x, y)

1
(2π)3/2

∫ ( k2
z

k2
z + k2

⊥
− 1

3

)
ρ0(kz)P(k⊥)eik·rd3kd3r

=
1
2

∫ 3n2D

4σz

(
1− z2

σ2
z

)
A

3

∑
j=1

cos (kj · r⊥ + θj)
1

(2π)3/2

∫ ( k2
z

k2
z + k2

⊥
− 1

3

)

· 3n2D(−kzσz cos (kzσz) + sin (kzσz))√
2πk3

zσ2
z

πA
3

∑
j′=1

(δ(k⊥ − kj′)e
iθj′ + δ(k⊥ + kj′)e

−iθj′ )eik·rd3kd3r

=
3A2

4

(
3n2D

4σz

)2
LxLy

∫ σz

−σz

(
1− z2

σ2
z

)(
2− (e−k⊥(z+σz) + ek⊥(z−σz))(1 + k⊥σz)

k2
⊥σ2

z
− 1

3

(
1− z2

σ2
z

))
dz

=

(
3n2D

4σz

)2
A2LxLy

(
3− 3k2

⊥σ2
z + 2k3

⊥σ3
z − 3(1 + k⊥σz)2e−2k⊥σz

k5
⊥σ4

z
− 4σz

15

)
.

We find the following for the other contributions to the energy:

∆Eloc =
as

6add

3n2
2D

5σz

∫ Lx

0

∫ Ly

0

(
A

3

∑
j=1

cos (kj · r⊥ + θj)

)2

dxdy =
3asn2

2D
20σzadd

A2LxLy

∆Ekin =
n2D

8
A2k2

⊥

(
3
2
− 3

4
A cos (θ1 + θ2 + θ3) +

15
8

A2 + · · ·
)

LxLy

∆ELHY =
45πγn2D

128

(
3n2D

4σz

)3/2[3
4

A2 +
1
8

A3 cos (θ1 + θ2 + θ3)−
15

256
A4 + · · ·

]
LxLy.

In summary, the total shift in energy per atom is given by the sum of all contributions
and yields

∆E
N

=
∆Ekin + ∆Eloc + ∆ELHY + ∆Eddi

n2DLxLy

= A2
[

3k2
⊥

16
+

3asn2D

20addσz
+

135πγ

512

(
3n2D

4σz

)3/2

+
9n2D

16σz

(
3− 3k2

⊥σ2
z + 2k3

⊥σ3
z − 3(1 + k⊥σz)2e−2k⊥σz

k5
⊥σ5

z
− 4

15

)]

+ A3

[
−

3k2
⊥

32
+

45πγ

1024

(
3n2D

4σz

)3/2
]

cos (θ1 + θ2 + θ3)

+ A4

[
15k2
⊥

64
− 675πγ

32768

(
3n2D

4σz

)3/2
]

+O(A5). (11)
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Without loss of generality, let us assume that θ1 + θ2 + θ3 = 2pπ, p ∈ N. The same
discussion with a relative minus sign applies for the case θ1 + θ2 + θ3 = (2p + 1)π.

The expression of Equation (11) permits a qualitative discussion. It has already been
discussed [44,45] that the contribution of O(A3) is responsible for the fact that there is
a point where the superfluid–supersolid phase transition is of the second order. This
point is associated with a vanishing prefactor of A3, which resembles the second-order
insulator–superfluid phase transition of a Bose–Hubbard model [56]:[

−
3k2
⊥

32
+

45πγ

1024

(
3n2D

4σz

)3/2
]
= 0. (12)

It is clear that [44,45], without contributions due to quantum fluctuations γ = 0,

the first term − 3k2
⊥

32 stemming from kinetic contributions cannot be cancelled. We notice,
furthermore, that, due to quantum fluctuations, the sign of the prefactor of A3 can also
change its sign, thus giving rise to density distributions with honeycomb symmetry for
large densities n2D.

As the expansion presented is particularly well-suited for small modulation ampli-
tudes, it can be expected that its estimate for the second-order point is reasonably accurate.
Apart from that, note that the fourth-order contribution O(A4) can also change its sign for
a sufficiently large n2D. Such a change in sign means that patterns would cease to exist.
However, in practice, the necessary density n2D is tremendously large such that it has
no relevance in practice. To give an idea of the order of magnitude, it requires roughly
three times the density of the second-order point; therefore, it is entirely precluded due to
three-body losses.

3.3. Square and Stripe Lattices

We can perform the same analysis for a square, i.e., P(x, y) = A ∑2
j=1 cos (kj · r⊥ + θj)

with |k1| = |k2| and k1,2 being orthogonal to each other and the stripe lattice, i.e., P(x, y) =
A cos (k · r⊥ + θ), which leads to

∆Esquare

N
=A2

[
k2

8
+

3gn2D

10σz
+

45πγ

256

(
3n2D

4σz

)3/2
+

3gddn2D

8σz

(
f (kσz)−

4
15

)]

+ A4

[
3k2

32
− 135πγ

16384

(
3n2D

4σz

)3/2
]

. (13)

∆Estripe

N
=A2

[
k2

16
+

3gn2D

20σz
+

45πγ

512

(
3n2D

4σz

)3/2
+

3gddn2D

16σz

(
f (kσz)−

4
15

)]

+ A4

[
k2

64
− 45πγ

32768

(
3n2D

4σz

)3/2
]

(14)

We note that the cubic contribution in this case vanishes. Therefore, the variational
prediction in this case is that the phase transition from the unmodulated superfluid state to
the modulated square or stripe state is always of the second order. Such a second-order
phase transition occurs when the coefficient of A2 changes its sign. Note that the kinetic
energy no longer gives rise to a cubic term in the small amplitudeO(A3). Of course, this is a
direct consequence of the specific ansatz we chose, and there is a systematic overestimation
of the region of continuous transitions. One has to be cautious that its validity is only given
close to the second-order point.
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4. Discussion

In this section, we discuss the validity of our variational approach by comparing
the results of the full-order ansatz, the small-amplitude expansion, and the numerical
simulation.

In order to identify regions where the small-amplitude expansion is appropriate,
we performed a variational analysis using the energy functional Equation (1), simply
minimized using an expansion to the infinite order, and compared its result to the small-
amplitude expansion presented in the last subsection. The full numerical results have
already been published elsewhere [44,45], and we only add them in this work to benchmark
our variational results.

The situation is sketched in Figure 2. The phase diagram obtained from the small
amplitude approximation, i.e., the fourth-order perturbation energy from Equation (11),
is displayed in Figure 2a. One can note that such a fourth-order theory predicts three
modulated ground states (i.e., triangle, stripe, and honeycomb states) in addition to the
trivial unmodulated state. The phase boundaries associated with these different symmetry-
broken states are depicted with black lines. It is worth emphasizing that the triangle, stripe,
and honeycomb states coexist at a common critical point (i.e., n2D = 140.5, as/add = 0.789),
which is identical to the second-order point mentioned before. The characteristic behaviour
associated with a second-order phase transition is the gradual continuous change of the
modulation amplitude across the critical point, as shown in Figure 3. Before proceeding,
we would like to point out that the triangle and honeycomb states remained stable in the
stripe ground state regime with higher energy as well, and their energies crossed at the
black dashed line.
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Figure 2. Phase diagram as function of as/add and n2D. We illustrate the error of the different
methods by comparing the variational approach to the small-amplitude prediction [lines in (a)],
infinite order [lines in (b)] and the full numerics [dots in (b)]. Here, the solid lines represent the
boundaries between different ground states, while the dashed line indicates the location where the
energy crosses between the metastable triangle and honeycomb states; the black triangles, hexagons,
circles and crosses represent the numerically obtained respective phase boundaries.
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Figure 3. Dependence of the variational modulus of the amplitudes of the triangle, honeycomb, and
stripe pattern on as/add at fixed 2D density n2D = 140.5. The phase transition is of second order.
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To check the validity of the simple fourth-order perturbation theory, we calculated
the total shift to the energy due to amplitude modulation to infinite order as well. The
corresponding regime of each ground state is shown in Figure 2b. By comparing panels
(a) and (b), one can readily notice the large difference between the fourth-order prediction
and the calculation containing all orders in modulation amplitude. Although they yield the
same second-order point, as well as the same phase boundary between the unmodulated
flat state and the respective modulated states, the stripe phase moved towards a higher
density region, thus giving space to a largely expanded triangular lattice. In addition to that,
we also computed the border of each state numerically via imaginary time propagation,
the results of which are shown by the dots in Figure 2b. The triangle, hexagon, and circle
markers stand for the transition points between different ground states, while the crosses
represent the critical point where the triangle and honeycomb states have the same energy
as the metastable states. One can notice that, apart from a small shift in the second-order
point, the full (or infinite-order) variational analysis agrees with the numerical result quite
well, whereas the fourth-order perturbation ansatz can qualitatively predict the existence
of various ground states. However, a quantitative comparison illustrates its deficiency.

Evidently, the reason as to why the fourth-order perturbation theory deviated sub-
stantially is due to the fact that it is valid only around the second-order point where
the modulation amplitude is sufficiently small, as emphasized before. Hence, when the
modulation amplitude increases as the interaction strength or density moves away from
the second-order point (e.g., see Figure 3), the contributions of higher orders in ampli-
tude A in Equations (11) and (14) can no longer be neglected. This becomes clear when
comparing Figure 2a,b.

5. Conclusions

We have derived a perturbative variational ansatz (or small amplitude approximation)
in detail to complement works that have already been published. This small amplitude
approximation permits a qualitative understanding of the curious behaviour displayed by
dipolar BECs in the thermodynamic limit: One can reveal why quantum fluctuations give
rise to a second-order point, stabilise new phases such as stripes or honeycombs, and can
determine which phases one can expect. However, as expected, the fourth order failed to
deliver quantitatively satisfactory results, in particular when the modulation amplitude
was not small compared to the background.

We established that by comparing the results of an expansion to the fourth order in
amplitude (small-amplitude expansion) with a full variational analysis (to infinite order), as
well as by employing rigorous numerical results. We demonstrated that the full variational
perturbative result agrees with the numerical result reasonably well. Furthermore, such
a perturbative approach also reveals the underlying role of quantum fluctuations in the
emergence of novel states, i.e., the Lee–Huang–Yang correction can alter the energies of
triangle and honeycomb states.

In summary, in this setting, the combination of a small-amplitude expansion and a full
variational analysis to the infinite order proved to be a simple and extremely useful tool to
analyze and understand the physics of dipolar BECs without the need to employ compu-
tationally expensive numerical simulations. Similar tools might be useful to the study of
emergent phenomena in similar systems, such as multi-component dipolar BECs [57,58]
or other long-range interacting quantum gases [59,60], as well as in phase–field crystal
models [61].
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