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Abstract: Using measured cross-sections and polarizability data, an empirical scaling law is extracted
for the electron collision single-ionization cross-section maxima of neutral atoms. We found that the
cross sections scale linearly with the target’s static polarizability. We confirm this observation using
our present three-body classical trajectory Monte Carlo simulations.
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1. Introduction

The electron impact ionization of atoms has been studied for decades to interpret
the underlying atomic processes [1–11]. Ionization by electrons has also been achieved,
both experimentally and theoretically, to provide parameters for use in plasma physics,
astrophysics, and gas discharge, to name a few. One can find large amounts of information
in the literature, but the various pieces of data cannot be explored to deduce any regime
and have been used only in limited systems.

A benchmark study on electron–atom interactions was conducted by Bethe (1930) [9],
who established the well-known ln v2/v2 expression of ionization cross-sections for high-
speed collisions. Here, v is the speed of the electron. After the pioneering work of Bethe,
considerable classical, empirical, and semi-empirical models have been suggested to inter-
pret the ionization of matter by electrons. For instance, Otvos and Stevenson [10] showed
that the maximum total ionization cross-sections for several neutral atoms and molecules
are equal to the weighted contributions from the valence shell electrons. The authors
observed that the weights were the mean square radii of each shell. More recently, Maiorov
and Golyatina [11] presented an analysis of elastic and inelastic cross-sections of electrons
with several atoms. Their formulas reproduce the values of the ionization cross-sections
for hydrogen, metal, and other elements in a wide range of energies, with accurate orders
of errors of the available theoretical and experimental data. In addition, these models are
only useful within a narrow range of electron speed and/or target species. Several ab initio
calculations have also been performed, although they are lengthy.

In the early 1960s, a new type of classical simulation was established. It is called the
classical trajectory Monte Carlo method (CTMC). It was quite surprising that the classical
description could accurately reproduce much experimental data. In general, the CTMC
method is a non-perturbative method through which many-body interactions, or reaction
channels, can be studied simultaneously, which is one of the advantages of the CTMC
model [12]. The model can also handle multielectron systems where, in addition to the
active target electron, it handles the effects of the other electrons.

The empirical scaling presented in this paper can be useful, for instance, for calibrating
ion gauges [13] or for guiding theoretical studies of the ionization of multielectron systems
via electron impact, by indicating what parameters are relevant. In addition, it can also be
useful for evaluating the reliability of experimental data.

In order to investigate the dependence of the electron impact single-ionization cross-
section maxima of neutral atomic species on the target properties, in the present work,
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we determine the linear dependence of the single-ionization cross-section on the target
polarizability. The experimental cross-sections and target polarizabilities for various atomic
systems were obtained from the literature. We justify our observation using our three-body
CTMC calculations.

2. Theory

To mimic experimental observation, we performed classical trajectory Monte Carlo
calculations. In recent decades, there has been a great revival of the classical trajectory
Monte Carlo (CTMC) calculations applied in atomic collisions involving three or more
particles [12]. This approximation seems to be useful in treating atomic collisions where
the quantum mechanical ones become very complicated or unfeasible. This is usually the
case when higher-order perturbations should be applied, or when many particles take part
in the processes.

One of the advantages of the CTMC method is that many-body interactions are
precisely considered during collisions on a classical level. In the present work, the CTMC
simulations were created using three-body approximation. In our CTMC model, the
particles are the projectile (P), one atomic active target electron (e), and the remaining target
ion (T), including the target nucleus and the remaining target electrons. Figure 1 shows the
relative position vectors of the three-body collision system.
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→
A =

→
r e−

→
r T ,

→
B =

→
r T −

→
r P, and

→
C =

→
r P −

→
r e,
→
r Te are the relative position vectors, O(

→
r Te ) is the center of mass

of the target system,
→
G is the distance between the projectile and the target system, and b is the

impact parameter.

The particles were characterized by their masses (mP, mT, and me) and charges (ZP, ZT,
and Ze). In the case under consideration, mP = me. We note that these models are classical
analogues of the effective quantum-mechanical single-electron treatment of collisions in
which the electrons are treated equivalently. In the CTMC model, the classical equations of
motions were solved numerically [14–18]. For the description of the interaction between
the active target electron and the target core, a central model potential developed by
Green [19,20], which is based on the Hartree–Fock calculations, was used. The potential
can be written as:

V(r) = q
Z− (N − 1)

(
1−Ω−1(r)

)
r

= q
Z(r)

r
(1)
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where Z is the nuclear charge, N is the total number of electrons in the atom or ion, r is the
distance between the nucleus and the test charge q, and

Ω(r) =
η

ξ
(erξ − 1) + 1 (2)

The potential parameters ξ and η can be obtained in such a way that they minimize
the energy for a given atom or ion. We note that this type of potential has further advan-
tages, because it has a correct asymptotic form for both small (Equation (3)) and large
(Equation (4)) values of r.

lim
r→0

Z(r) = Z (3)

lim
r→∞

Z(r) = Z− (N − 1) (4)

The Lagrange equation for the three particles can be written as:

L = LK − LV (5)

where

LK =
1
2

mP

.
→
r

2

P +
1
2

me

.
→
r

2

e +
1
2

mT

.
→
r

2

T (6)

and

LV =

ZP(

∣∣∣∣→C∣∣∣∣)Ze∣∣∣∣→C∣∣∣∣ +

ZP(

∣∣∣∣−→B ∣∣∣∣)ZT(

∣∣∣∣−→B ∣∣∣∣)∣∣∣∣−→B ∣∣∣∣ +

ZeZT(

∣∣∣∣⇀A∣∣∣∣)∣∣∣∣⇀AT

∣∣∣∣ (7)

→
A =

→
r e −

→
r T ,

→
B =

→
r T −

→
r P, and

→
C =

→
r P −

→
r e,
→
r Te are the relative position vectors,

and Z and m are the charge and the mass of the noted particle, respectively. Then, the
equations of motion can be calculated as:

d
dt

∂L
∂

.
qi

=
∂L
∂qi

, (i = P, e, T). (8)

The equations of motion were integrated with respect to the time as independent
variables using the standard Runge–Kutta method. For a given set of initial conditions the
three-body, three-dimensional CTMC calculation was performed as described by Tőkési and
Kövér [21]. After a large number of classical trajectory calculations, the total cross-section
was computed using the following formula:

σ =
2πbmax

TN
∑

j
b(i)j (9)

The statistical uncertainty of the cross-section is given as:

∆σ = σ

(
TN − T(i)

N

TNT(i)
N

)1/2

(10)

In Equations (9) and (10), TN is the total number of trajectories calculated for impact
parameters less than bmax, T(i)

N is the number of trajectories that satisfy the criteria for
ionization, and bj

(i) is the actual impact parameter for the trajectory corresponding to the
ionization process.
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3. Results and Discussion

A scaling rule for the electron impact cross-section maxima, σmax, for atomic systems
was deduced in the following way. Initially, using experimental information available in
the literature, a set of experimental cross-section maxima was tabulated for several atoms
ranging from H to high Z species. Then, the dependences of the cross-sections on target
polarizability, α, were methodically examined.

Upon categorizing the maximum cross-section data, we observed a noteworthy corre-
lationship of σmax with the target polarizability of the main group elements. This is shown
in Table 1 and Figure 2 for several atomic species. The cross-section and polarizability data
were obtained from several sources [2,5,22–36]. The electron impact and target polariz-
ability data in Table 1 agree (within 10–30%) with other sources. We preferentially chose
data from ref. [5] due to their accuracy (7%). The data clearly suggest that electron impact
single-ionization cross-sections of atoms are bigger for atoms with larger dipole polariz-
ability. Figure 2 shows linear dependence, with a fixed intercept, on the cross-sections
with polarizability (Pearson’s R = 0.98796). By using a least-square fitting procedure and
keeping the intercept fixed at zero, we found that the maximum cross-sections vary as
follows: σmax(Mb) = (132.9 ± 4.5)α(10−24 cm3). We also performed allometric fitting (see
Table 2). However, linear fitting gives a slightly better result (larger R2). Some systems do
not follow the scaling, for instance, Mg (group 2), Fe (group 8), and Cu (group 11). The
reasons are unknown at the moment.

Table 1. Polarizabilities [22–24] and electron impact single-ionization cross-section maxima [2,5,31,34,35]
for atomic species. The data from ref. [5] present 7% accuracy and±10% uncertainty.

Target Polarizability (10−24 cm3) Cross-Section Maxima (Mb) Reference

H 0.666
62.7 [2]

73.0 [35]

He 0.20
37.5 [31]

34.7 [36]

Ne 0.39
67.7 [36]

73.5 [31]

Ar 1.64
255 [36]

270 [31]

Kr 2.48
349 [36]

370 [31]

Xe 4.04
467 [36]

498 [31]

Al 6.8 978 [5]

Si 5.38 669 [5]

P 3.63 526 [5]

S 2.9 450 [5]

Ga 8.12
915 [5]

1100 [34]

Ge 6.07 746 [5]

As 4.31 612 [5]

Se 3.77 590 [5]

In 5.35 832 [5]
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Table 1. Cont.

Target Polarizability (10−24 cm3) Cross-Section Maxima (Mb) Reference

Sn 7.7 974 [5]

Sb 6.6 832 [5]

Te 5.5 826 [5]

Pb 6.8 832 [5]

Bi 7.4 876 [5]

O 0.802
136 [2]

135.1 [35]

N 1.1 161.4 [2]

C 1.76
232.3 [2]

227.3 [35]

Cl 2.14 349 [5]

B 3.05 400 [2]
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Figure 2. Electron impact single_ionization cross-section maxima of neutral atomic species as a
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Table 2. Fitting parameters for Figure 2.

Equation Parameter b Parameter a R2

Y = bx 132.9 ± 4.5 - 0.97606

Y = bxa 146.7 ± 6.9 0.933 ± 0.032 0.96302

This linear dependence suggests that the interaction potential between the projectile
electron and the target electrons depends on the static polarizability, which leads to cross-
section dependence that varies with static dipole polarizability. Langevin described the
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square root dependence of a total-ionization cross-section with polarizability [27]. Polariz-
ability is a measure of how promptly the target electronic charge distribution is disturbed
by an external electric field. Among all the target electrons, valence electrons are those that
contribute the most to the polarizability of atomic species. This suggests that the observed
trend of cross-section maxima is a consequence of the importance of the most loosely
bound valence electrons. For instance, some authors have calculated the maximum electron
impact ionization cross-sections, σmax, for several atoms [24–28] using additive rules. They
demonstrated that σmax is equal to contributions from the valence electrons weighted by
the mean square radii of each shell. Target polarizability plays an important role not only in
impact ionization, but also in polarization bremsstrahlung [27–30]. Dmitrieva and Plindov
demonstrated that target polarizability, α, varies as follows: α~IE

−3, where IE is the target
ionization energy, which indicates how tightly bound the least bound electron is [29]. Thus,
the electron impact cross-section σ should vary as follows: σ~IE

−3.
To confirm our prediction, we performed CTMC calculations for some elements to

obtain the electron impact ionization cross-sections. Figures 3 and 4 show our classical
simulations results.

While Figure 3 shows the electron impact ionization cross-sections for hydrogen (1H),
helium (4He), and neon (20Ne) targets, Figure 4 shows the corresponding ionization cross-
sections for argon (40Ar), krypton (84Kr), and xenon (131Xe) targets in comparison with
some previous representative experimental results. To reduce the statistical error of the
cross-section calculations, we followed 500,000 individual random trajectories for each
energy and each collision system.
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Figure 5 shows the experimental data, as well as the CTMC results of the electron
impact single-ionization cross-section maxima of H, He, Ne, Ar, Kr, and Xe as a function of
polarizability. We found good agreement between the theoretical data and the experimental
observations, especially in lower nuclear charge states.
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4. Summary

To summarize, the scaling behaviour of the electron impact single-ionization cross-
section maxima, resulting from collisions with neutral atomic species, was obtained using
experimental data obtained for an ample variety of targets. It was found that, in the case of
single ionization, cross-sections scale linearly with ground state target dipole polarizability.
We found that the maximum cross-sections vary as follows: σmax(Mb) = (132.9 ± 4.5)α
(10−24 cm3), which may be useful for obtaining a rough estimation of electron impact
single-ionization cross-sections for atomic species. Some elements do not follow the present
linear fit, so scaling probably depends on the group in the periodic table. Our findings
were verified using our CTMC calculations for noble gases.

Author Contributions: A.C.F.d.S.: collecting the data, writing the manuscript, and editing the results.
K.T.: performing the simulations and writing the manuscript. All authors have read and agreed to
the published version of the manuscript.
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authors upon reasonable request.
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