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Abstract: Here, we present evidence that the D2h M2C5
0/2+ (M = Li-K, Be-Ca, Al-In, and Zn) species

comprises planar hexacoordinate carbon (phC) structures that exhibit four covalent and two electro-
static interactions. These findings have been made possible using evolutionary methods for exploring
the potential energy surface (AUTOMATON program) and the Interacting Quantum Atoms (IQA)
methodology, which support the observed bonding interactions. It is worth noting, however, that
these structures are not the global minimum. Nonetheless, incorporating two cyclopentadienyl anion
ligands (Cp) into the CaC5

2+ system has enhanced the relative stability of the phC isomer. Moreover,
cycloparaphenylene ([8]CPP) provides system protection and kinetic stability. These results indi-
cate that using appropriate ligands presents a promising approach for expanding the chemistry of
phC species.

Keywords: planar hexacoordinate carbon; global minima; kinetic stability; DFT computations;
chemical bonding analysis

1. Introduction

Chemists are fascinated by new chemical entities with exotic, non-classical structures,
so they seek to rationalize these new systems based on known rules (concepts) or propose
exceptions, and new methods, to achieve this goal. Molecules with planar hypercoordinate
carbon atoms, which violate the well-established rule of Van ’t Hoff and Le Bel (regarding
tetrahedral four-coordinate carbon), are particularly puzzling. Although these species, in
the beginning, were considered experimentally inaccessible, in 1968, Monkhorst evaluated
in silicon methane stereomutation through a planar tetracoordinate carbon (ptC) transition
state [1]. Subsequently, in 1970, Hoffmann and co-workers proposed different approaches
to stabilize a ptC to achieve a thermally accessible transition state for a racemization
process [2]. These studies inspired other chemists who finally allowed the identification of
viable ptC compounds [3–7].

In the last 50 years many ptC compounds have been reported, some synthesized or
identified in the gas phase, and others designed in silicon [3–5,8–11]. In more recent years,
the chemistry of the family has been extended to species in which the carbon coordination
number is greater than four (penta [12–21] and hexacoordinated [22–25]). The examples
for each group decrease according to the coordination, with only 15 structures reported as
global minima with a hexacoordinated carbon in the plane.
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In 2004, Merino et al. reported that their exploration of the potential energy surface of
C5

2− revealed the existence of a local minimum with a planar tetracoordinate carbon for this
dianionic cluster [26,27]. However, the ptC C4

2− isomer is 48.4 kcal·mol−1 above the global
minimum (GM), which is an angular C2v structure (at the B3LYP/6-311++G(2d) level). In
addition, these authors also found that adding metal cations (Mn+) to the C5

2− structure
generates species with the targeted planar tetracoordinate carbon, which is stabilized
exclusively by electronic factors. They tested cations from groups 1, 2, 11, and 13 of the
periodic table. They concluded that the lithium salt C5Li2 is the most plausible candidate
for experimental detection based on its energetic profile of the isomerization reaction. To
our knowledge, none of these species have been detected experimentally. However, this
study has inspired the identification of other viable gas-phase ptC systems (global minima).

In this work, we have raised some questions regarding the systems mentioned in the
previous paragraph (results and discussion, Section 3). The first question is related to the
proper coordination of the putative ptC (Section 3.1); since the natural population analysis
(NPA) charge on the ptC is negative and that of the counterions is positive, and the ptC-M
distance is smaller than the sum of the Van der Waals radii, an attractive ptC-M electrostatic
interaction is to be expected. Therefore, this would genuinely be a planar hexacoordinated
carbon (phC). The second question is related to the viability of any of these species. For
this, we have explored the PES of some candidates (Section 3.2), showing that they do not
correspond to global minima. In addition, we have explored the alternative of using ligands
(cyclopentadienyl anion and 8-ring cycloparaphenylene) to provide thermodynamic and
kinetic stability to the phC system (Section 3.3). Our results reveal that these systems are
indeed phCs, with four covalent and two ionic interactions. Additionally, ligands provide
relative energetic and kinetic stability to some systems, especially Ca2C5

2+. Therefore, we
expect this study to open a pathway in the design of phCs with synthetic feasibility.

2. Computational Details

The PES of the Li2C5 system was explored using the AUTOMATON program [28,29];
in the search process, optimizations were performed at the PBE0 [30] /SDDAll [31–35] level.
Then, the lowest energy minima were reoptimized at the ωb97XD [36] /def2-TZVP [37]
level (both in singlet and triplet states). For the other systems C5M2 (M = Na, K, Al-
In) and C5M2

+2 (Be-Ca, Zn), the lowest energy minima obtained for C5Li2, were used
as starting structures, then optimized at the PBE0/SDDAll level and reoptimized at the
ωb97XD/def2-TZVP level, the latter being the level considered for the discussion of
relative energies. The lowest energy isomers confined between aromatic ligands, benzene
(C6H6) and cyclopentadienyl anion (C5H5

−) were also optimized for the neutral and
dicationic cases, respectively. Finally, the phC isomer of Ca2C5

2+ was optimized inside
an 8-ring cycloparaphenylene, where two C5H5

− have substituted two benzenes. The
vibrational frequencies were checked to verify the structures as true minima on the PES.
DFT computations were performed with Gaussian 16 software (Rev. B.01) [38]. The
dynamic behavior of [(C5H5

−)]2[Ca2C5]2+ and [8-CPP]2−[Ca2C5]2+ were assessed through
Born Oppenheimer molecular dynamics (BOMD) simulations [39] on Gaussian 16 software
at the PBE0-D3/SDDAll level. The BOMD simulations involve 20 ps at 500 K and within
the NVT ensemble.

To gain insights about chemical bonding, we used different methods: Wiberg bond
indices (WBI) [40], natural population analysis (NPA) [41], and the adaptive natural density
partitioning (AdNDP) method [42,43]. These approaches are based on the natural bonding
orbital (NBO) method and were performed at theωb97XD/Def2-TZVP level. The WBI and
NPA were computed with the NBO 6.0 code [44], and the AdNDP analysis was performed
using Multiwfn 3.8 [45]. The molecular structure and AdNDP results were visualized using
CYLview 2.0 [46] and VMD 1.9.3 [47], respectively.
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3. Results and Discussion
3.1. Defining Whether the Systems Are ptC or phC

Table 1 shows the NPA charges, WBI values, and bond distances for the D2h structure
for the combinations considered in this study. The charges are negative in carbons ranging
from −0.35 to −0.23 |e| for the hypercoordinate one. The WBI values indicate a strong
covalent connection between the C atoms and no or very weak C m covalent interaction,
especially of the peripheral Cs, in agreement with its smaller C-C and larger M-C distances.
Given that the charges on the hypercoordinate C and the metals have an opposite sign,
one may inquire about a meaningful attractive electrostatic interaction between them that
would contribute to the stability of this structure. Moreover, if attractive, these interactions
would qualify them as phC species. The M-C distances are slightly greater than those of a
single bond, according to the Pyykkö covalent radii [48]. However, they are much shorter
than the sum of their van der Waals radii [49] (see Table 1). Therefore, it seems that, in these
structures, the C is hexacoordinate.

Table 1. Bond lengths (r, Å), natural charges (q, |e|) and Wiberg bond indices (WBI) of the M2C5
0/2+

(M = Li-K, Be-Ca, Al-In and Zn) computed at theωb97XD/Def2-TZVP level [a].
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𝐼𝑛2𝐶5 –0.23 –0.32 0.75 1.48 2.82 2.53 1.33 0.98 0.01 0.22 1.68 
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System q(C1) q(C) q(M) rC1−C rC1−M rC−M rC−C WBIC1−C WBIC1−M WBIC−M WBIC−C

Li2C5 –0.27 –0.36 0.87 1.49 2.20 2.04 1.32 0.98 0.01 0.10 1.70
Na2C5 –0.25 –0.38 0.88 1.49 2.61 2.36 1.32 0.99 0.01 0.09 1.71
K2C5 –0.24 –0.39 0.91 1.50 2.98 2.68 1.32 0.99 0.01 0.07 1.71

Be2C2+
5 –0.35 –0.25 1.67 1.41 1.98 1.81 1.32 0.97 0.01 0.26 1.65

Mg2C2+
5 –0.29 –0.32 1.79 1.46 2.37 2.15 1.32 0.98 0.01 0.17 1.69

Ca2C2+
5 –0.27 –0.35 1.84 1.49 2.64 2.39 1.32 0.98 0.02 0.12 1.70

Zn2C2+
5 –0.28 –0.20 1.55 1.42 2.35 2.11 1.32 0.97 0.02 0.34 1.69

Al2C5 –0.25 –0.30 0.74 1.48 2.52 2.28 1.33 0.97 0.02 0.23 1.67
Ga2C5 –0.23 –0.30 0.73 1.48 2.61 2.35 1.33 0.98 0.02 0.24 1.67
In2C5 –0.23 –0.32 0.75 1.48 2.82 2.53 1.33 0.98 0.01 0.22 1.68

[a] The sums of Pyykkö’s single-bond radii for the C–Li, C–Na, C–K, C–Be, C–Mg, C–Ca, C–Zn, C–Al, C–Ga, and
C–In bonds are 2.08, 2.30, 2.71, 1.77, 2.14, 2.46, 1.93, 2.01, 1.99, and 2.17 Å, respectively. The sums of van der Waals
radii for the C–Li, C–Na, C–K, C–Be, C–Mg, C–Ca, C–Zn, C–Al, C–Ga, and C–In bonds are 3.89, 4.27, 4.50, 3.75,
4.28, 4.39, 4.16, 4.02, 4.09, and 4.20 Å, respectively.

All the above background points to the central carbon’s ionic bonding interactions
with the M counterions. Hence, using an appropriate methodology to describe ionic
interactions is mandatory. The IQA methodology is an accurate and chemically intuitive
energy partitioning scheme that allows the analysis of chemical bonding in terms of covalent
or ionic interactions [50–53]. This methodology has been used recently to gain insights
into the bonding of the NaBH3

− system [54], a system that has been a challenge for
the theoretical community dedicated to the analysis of chemical bonding [55–60]. IQA
was fundamental to introducing collective interactions in organometallic systems [61]. It
also supports the hexacoordination of C in the global minima M3CE3

+ (M = Li-Cs and
E = S-Te) [24], with three covalent C-E and three ionic M-C interactions, becoming an
indispensable method to rationalize coordination where there is a mixture of ionic and
covalent interactions [21,62].

What is the interpretation of the chemical bond, according to IQA, of D2h M2C5
0/2+

(M = Li-K, Be-Ca, Al-In, and Zn) species? As shown in Table 2, the most important stabiliz-
ing interactions are between C-C bonds, mainly covalent (Vint

IQA: −283.2 to −301.0 kcal·mol–1)
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with a relatively weaker electrostatic destabilizing C-C interaction (Vint
C : 50.0 to

54.2 kcal·mol−1). Additionally, the delocalization index (δ) predicts C-C bond orders
like those indicated by the WBI values. Therefore, IQA supports the coordination of the
peripheral carbons with the central carbon by significant covalent C-C interactions. How
about the interaction between the metallic counterions and the central C? IQA reveals that
there is a stabilizing interaction (bonding), primarily electrostatic, and the Vint

IQA ranges from
−36.3 (M = K) to −175.4 kcal·mol–1 (M = Be). Therefore, IQA supports the hexacoordination
of C in all these structures, four C-phC (covalent) and two M-phC (ionic).

Table 2. Energy components (in kcal·mol−1) of IQA for the M2C5
0/2+ (M = Li-K, Be-Ca, Al-In, and

Zn) computed at theωb97XD/Def2-TZVP level. Vint
IQA, Vint

C , and Vint
XC are interatomic IQA interaction

energy and their coulombic and exchange-correlation energy components, respectively. ∆EIQA is the
total integration error in IQA energies, and the delocalization indices are represented by δ.
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𝑉𝐼𝑄𝐴
𝑖𝑛𝑡(𝐶1 − 𝐶) –160.9 –161.4 –160.3 –186.4 –169.7 –163.4 –183.7 –162.4 –166.8 –166.9 
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𝑖𝑛𝑡(𝐶1 − 𝐶) –185.2 –184.4 –182.9 –207.4 –192.4 –184.0 –193.7 –188.6 –186.0 –186.0 

𝑉𝐼𝑄𝐴
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δ(𝐶 − 𝑀) 0.1 0.1 0.2 0.2 0.2 0.3 0.5 0.3 0.4 0.4 
δ(𝐶 − 𝐶) 1.7 1.7 1.7 1.6 1.7 1.7 1.6 1.6 1.6 1.6 

We have also analyzed the bonding with the AdNDP method (see Figures 1, S1–S3). 

It predicts that the covalent bonds are distributed on the C5 fragment, with four lone pairs 

(one on each peripheral C), six single C-C bonds, two linking the peripheral Cs in pairs, 

and four linking these with the central C. Finally, AdNDP also recovers a delocalized  π-

bond throughout the C5 fragment, confirming that these systems consist of the C52– dianion 

System Li2C5 Na2C5 K2C5 Be2C2+
5 Mg2C2+

5 Ca2C2+
5 Zn2C2+

5 Al2C5 Ga2C5 In2C5

∆EIQA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vint

IQA(C1 − M) –58.2 –42.7 –36.3 –175.4 –115.1 –90.6 –87.3 –79.3 –58.1 –50.0
Vint

C (C1 − M) –54.6 –39.8 –33.0 –169.7 –110.3 –82.5 –73.6 –73.3 –49.1 –42.8
Vint

XC(C1 − M) –3.7 –2.9 –3.3 –5.7 –4.8 –8.2 –13.7 –6.0 –9.0 –7.2
Vint

IQA(C1 − C) –160.9 –161.4 –160.3 –186.4 –169.7 –163.4 –183.7 –162.4 –166.8 –166.9
Vint

C (C1 − C) 24.3 23.0 22.7 21.0 22.7 20.7 10.0 26.2 19.3 19.1
Vint

XC(C1 − C) –185.2 –184.4 –182.9 –207.4 –192.4 –184.0 –193.7 –188.6 –186.0 –186.0
Vint

IQA(C − M) –82.0 –73.5 –70.4 –205.6 –157.4 –130.3 –112.5 –137.1 –94.2 –86.8
Vint

C (C − M) –71.1 –59.5 –52.7 –181.3 –133.6 –98.2 –43.9 –102.3 –50.9 –46.5
Vint

XC(C − M) –10.9 –14.0 –17.6 –24.3 –23.8 –32.1 –68.5 –34.7 –43.4 –40.3
Vint

IQA(C − C) –247.1 –246.6 –246.8 –230.1 –242.8 –246.6 –236.1 –237.4 –237.6 –239.1
Vint

C (C − C) 53.4 54.0 54.2 53.1 51.0 50.1 53.4 51.6 50.0 50.7
Vint

XC(C − C) –300.5 –300.7 –301.0 –283.2 –293.7 –296.7 –289.6 –289.0 –287.6 –289.8
δ(C1 − M) 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1
δ(C1 − C) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
δ(C − M) 0.1 0.1 0.2 0.2 0.2 0.3 0.5 0.3 0.4 0.4
δ(C − C) 1.7 1.7 1.7 1.6 1.7 1.7 1.6 1.6 1.6 1.6

We have also analyzed the bonding with the AdNDP method (see Figures 1 and S1–S3).
It predicts that the covalent bonds are distributed on the C5 fragment, with four lone pairs
(one on each peripheral C), six single C-C bonds, two linking the peripheral Cs in pairs, and
four linking these with the central C. Finally, AdNDP also recovers a delocalized π-bond
throughout the C5 fragment, confirming that these systems consist of the C5

2− dianion
interacting with the metal counterions. AdNDP also retrieves the non-bonding electron
pairs on the Al, Ga, In, and Zn counterions (Figures S1–S3).

3.2. Are phC Systems Global Minima Structures?

To answer this question, we have explored the potential energy surface of the combi-
nations of interest using the constraints specified in the computational details. The putative
global minima and other relevant minima are shown in Figure 2. It should be noted that
the lowest energy structure for neutral systems is in a singlet state, not for ionic systems
where the D∞h triplet is more stable. However, the phC is only minimal in the singlet state.
As can be seen, the phC structure does not correspond to the putative global minimum in
any of the cases, being the closest isomer to the putative global minimum in the M2C5 com-
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binations (M = Li-K; Al-In). The Li2C5 and Na2C5 phC structures have the closest energy
to their corresponding putative global minimum, located above 9.0 and 11.4 kcal·mol–1,
respectively. This agrees with previous claims that the D2h Li2C5 cluster would be the most
viable for experimental identification [63].
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3.3. Exploring Strategies to Stabilize phC Systems

Using ligands to protect is a common technique to provide stability and viability
to atomic clusters [19,64,65]. Thus, computational studies on clusters that include pro-
tection models have also been increasing, including some clusters with hypercoordinate
atoms [66–68]. However, these studies do not analyze the relative stability of the different
lower-energy isomers confined within these protective ligands. Here, we have evaluated
how the relative stability of the sandwich complexes of the more stable isomers changes.
We have employed as ligands the aromatic rings benzene (C6H6) and cyclopentadienyl
anion (C5H5

−). The former forms a sandwich with the neutral species, and the latter with
the dicationic species, to have neutral complexes in all cases. The results are reported in
Figures S4–S14. The use of ligands affects the relative energies; however, in no case is
the phC structure preferred. The most striking case is the [(C5H5

−)]2[Ca2C5]2+ system,
where the complex containing the phC (Figure 3) is now within 8.0 kcal·mol–1 of the one
that includes the putative global minimum. The barrier is reduced by half (relative to
the isolated clusters, Figure 2) because of the C5H5

− effect. This indicates that ligands
should be explored in their protective role and in providing thermodynamic stability to the
systems, as well.

Finally, we have studied the kinetic stability of the [(C5H5
−)]2[Ca2C5]2+ complex

(Figure 3A) to explore viable phC species, knowing that the isolated phC cluster is a
high-energy isomer on the PES but the [(C5H5

−)]2[Ca2C5]2+ is the closest energy isomer.
Additionally, to provide more rigidity to the host ligand, we have placed the C5H5

− rings
inside a nanobelt (the 8-ring cycloparaphenylene, [8]CPP) to evaluate the dynamics of
the [8-CPP]2−[Ca2C5]2+ complex (Figure 3B). Figure 4 shows results from ab initio BOMD
simulations at 500 K for 20 ps. The structural fluctuations are plotted by the root mean
square deviations curve (RMSD, in Å) versus simulation time. As Figure 4 shows, the RMSD
has sharp changes, but the phC structure persists throughout the simulation. Additionally,
two short movies extracted from the BOMD simulations are presented in the Supporting
Information. Interestingly, structural fluctuations are approximately halved when using
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the [8-CPP]2− ligand (median RMSD ≈ 0.8 Å) relative to free C5H5
− ligands (median

RMSD ≈ 1.5 Å).
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Figure 2. Putative global minimum and low-lying isomers of M2C5
0/2+ (M = Li-K, Be-Ca, Al-In, and

Zn) clusters with their point group symmetries. Relative energies, including zero-point energy (ZPE)
corrections in kcal·mol−1 (in bold) and their lowest harmonic vibrational frequency in cm−1 (below)
atωb97XD/Def2-TZVP level, are also shown. Cartesian coordinates of phC structures are depicted in
Table S1. * The 2c structure for M = Mg is slightly bent in the center; therefore, it has a C2v symmetry.
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4. Conclusions

It is shown that the D2h M2C5
0/2+ (M = Li-K, Be-Ca, Al-In, and Zn) clusters are planar

hexacoordinate carbon species with four covalent and two electrostatic interactions. These
assignments are supported by charges and chemical bonding analysis, where the interacting
quantum atoms (IQA) method plays a fundamental role, identifying that central carbon
sustains stabilizing interactions with the six surrounding atoms. However, our exploration
of the potential energy surface reveals that these are not the global minimum structures.
Nevertheless, the complexation of the Ca2C5

2+ system with two cyclopentadienyl anion
ligands enhances the relative stability of the phC isomer. Moreover, when we harbor this
structure within the cyclopentadienylene ([8]CPP) nano-ring, it provides protection and
kinetic stability to the phC species. These results demonstrate that using suitable ligands
is a promising strategy that deserves more systematic study in the search for new viable
phC systems.
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