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Abstract: The shake-off processes and charge-state fractions of 6Li+, 6Li++, and 6Li3+ were studied
following the beta decay of 6He in the 1s2 1S0, 1s2s 1S0, and 1s2s 3S1 initial states. The sudden
approximation was used, together with fully correlated Hylleraas wave functions and pseudostates.
A projection operator method was introduced to separate the charge-state fractions in the positive
energy region of overlapping continua. The results show that 6Li++ (single-ionisation) remains
dominant, even in the energy range E > 0, where the formation of 6Li3+ (double-ionisation) is
energetically allowed. The results reduce disagreements with the experiment for the fraction of 6Li3+

by nearly an order of magnitude, but substantial disagreements remain that are inconsistent with the
sudden approximation widely used in other similar work.

Keywords: beta decay; double-ionisation; two-electron calculations; Hylleraas wave functions;
Sturmian projectors

1. Introduction

There has been a long-standing interest in the beta decay of the halo nucleus 6He to
form 6Li+ according to the Gamow–Teller process [1–3]:

6He→ 6Li+ + e− + ν̄ , (1)

especially in connection with searches for new physics beyond the Standard Model [4–7].
In this context, all single beta decay processes are thought to be either of the Fermi V-type,
where the beta particle (e−) and the antineutrino (ν̄) are coupled to form a total spin of 0
or the Gamow–Teller A-type, where e− and ν̄ are coupled to form a total spin of 1. The
6He decay process is thought to be an example of the latter. In the former case, the angular
correlation coefficient between the e− and the ν̄ is 1, and in the latter case, it is −1/3 [8].
Any deviation from these angular correlations could therefore be interpreted as a signal for
new physics.

The classic experiment by Carlson et al. [1] measured the angular correlation coefficient
in 6He decay with helium atoms prepared in the ground 1s2 1S0 state. In addition, there
has been an ongoing experiment [9] involving metastable 1s2s 3S1 helium atoms held in
an MOT trap. Müller et al. recently demonstrated [10] the first precise determination of
the angular correlation coefficient using 6He decay with a neutral trap and found results
consistent with the Standard Model. The challenge in both experiments is that the ν̄ cannot
be detected directly, and so, its momentum vector must be deduced from the overall
kinematics of the decay process, including both the β particle and the recoiling 6Li nucleus,
together with its two atomic electrons. Any additional momentum carried away by the
atomic electrons must, therefore, be included in the kinematics if one or both of them
are emitted in subsequent ionisation events (shake-off). Otherwise, deviations due to the
electronic momentum might masquerade as a signal for new physics.

With shake-off processes included, the possible final states are, thus, 6Li+, 6Li++, and
6Li3+. Although there is reasonably good agreement between the theory and experiments
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for the 6Li+ and 6Li++ charge-state fractions, as shown in Table 1, there is a large disagree-
ment for the small amount of 6Li3+ corresponding to double-ionisation, with the theory
predicting one or two orders of magnitude more than what is observed in experiments.
The disagreement is equally evident for both 6He(1s2 1S0) [1] and 6He(1s2s 3S1) [9] as the
initial states. The table shows comparisons with both our own previous calculations based
on fully correlated Hylleraas wave functions [11] and with earlier configuration interaction
(CI) calculations by Wauters and Vaeck [2]. In contrast, there is excellent agreement between
the theory and experiments for the charge-state fractions of 6Li++ and 6Li3+ following beta
decay in the one-electron case of 6He+(1s1/2) [3], indicating that the sudden approximation
(see Section 2) universally used in past work is evidently well justified.

This paper is organised as follows. In Section 2, we present a formulation of the
problem within the sudden approximation and, in Section 3, we develop a projection oper-
ator method based on products of hydrogenic wave functions to separate the charge-state
fractions in the energy region of overlapping continua for 6Li++ and 6Li3+. Perturbative
corrections to the projection operators due to the electron–electron interaction are calculated
and shown to be small. The results in Section 4 show that, while the projection operators
substantially reduce the disagreement with the experiment, the predicted amount of 6Li3+

is still larger by an order of magnitude. Possible further corrections and other applications
of the projection operator method are discussed in the final Discussion Section 4. The
abbreviated notations 1 1S0, 2 3S1, and 2 1S0 are used for the ground low-lying metastable
states 1s2 1S0, 1s2s 3S1, and 1s2s 1S0, respectively.

Table 1. Comparison of the previous theory with experiments for the probabilities p(6Lik+) of forming
the various charge states with k = 1, 2, 3 following the beta decay of 6He(1 1S0) or 6He(2 3S1) as the
initial states. All quantities are expressed in percent (%).

6He State Li-Ion Theory [11] Theory [2] Exp’t.

1 1S0
6Li+ 89.03(3) 89.09 89.9(2) a

6Li++ 9.7(1) 10.44 10.1(2)
6Li3+ 1.2(1) 0.32 0.018(15)
Total 99.9(1) 99.85 100.0(2)

2 3S1
6Li+ 88.711(3) 89.9(3)(1) b

6Li++ 9.42(7) 10.1(3)(1)
6Li3+ 1.86(7) <0.01
Total 99.99(7) 100.00

a Carlson et al. [1]. b Hong et al. [9].

2. Formulation of the Problem

The kinematics of the process is as follows. As discussed previously [9,11], the emitted
β particle has a maximum kinetic energy of Emax = 3.51 MeV with a broad energy distribu-
tion going down to nearly zero. However, in the experiment of Hong et al. [9], only those
events with E > 1 MeV were counted. At these energies, the β particle is relativistic. From
the relativistic energy–momentum equation (Emax + mec2)2 = c2P2 + m2

ec4, the maximum
recoil momentum is Prec = 1070 a.u. In contrast, since the recoiling 6He nucleus is much
more massive (M = 6.01523 u), its recoil velocity of vrec = 0.0925 a.u. is nonrelativistic.
In addition, the corresponding recoil momentum h̄K = mevrec transferred to the atomic
electrons is so small that it is unimportant for the purposes of the present discussion. In
particular, the probability for the formation of Li3+ can be written in the form [11]:

P(Li3+) = A + K2B + · · · (2)

with B ' 0.005 so that K2B ' 4× 10−5 relative to the previously calculated value A ' 0.012.
The present work, therefore, focused on the leading A term and neglected the recoil.
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Additional exchange effects between the β particle and the atomic electrons have also been
considered and found to be negligible at these energies [12,13].

With these approximations, the emitted β particle can be thought of as a spherical shell
of charge expanding with (nearly) the velocity of light. Past work [1–3,11] has always made
use of the sudden approximation in which the Coulomb pulse is taken to be instantaneous
and the initial helium wave function Ψ(6He) is expanded over the complete set of states
Ψi(6Li+) according to

eiK·(r1+r2)Ψ(He) = ∑
i

ciΨi(Li+) (3)

where h̄K is the recoil momentum of the 6Li+-ion and the sum over i includes an integration
over both the single- and double-electron ionisation continua to form 6Li++ and 6Li3+,
respectively. The factor eiK·(r1+r2) generates the transformation to the moving frame of
reference. Recoil corrections are important for the analysis of experiments [11], but for
the present study, we worked in the limit of zero recoil (K = 0) since the recoil effects
do not materially change the charge-state distributions, which are our main focus. The
absolute squares:

|ci|2 = |〈Ψi(Li+) | Ψ(He)〉|2 (4)

are then the transition probabilities into the various final states. Although there is rea-
sonably good agreement between the theory and experiments for the 6Li+ and 6Li++

charge-state fractions, there is a large disagreement for the small amount of 6Li3+ corre-
sponding to double-ionisation. The analysis is compounded by the fact that the 6Li++

continuum underlies the 6Li3+ continuum for positive energies above the E = 0 threshold
for the formation of 6Li3+ (see Figure 1). The two charge states must, therefore, be separated
in the calculations involving the positive energy range.

Li+ bound states
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Figure 1. Energy level diagram for 6Li+ following the beta decay. For the E > 0 region, the single-
ionisation continuum underlies the double-ionisation continuum, and so, both charge states con-
tribute to the total.
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Our previous calculations of the charge-state distribution [11] in fact partitioned the
possible final states by their energy range (bins), as in Figure 1, rather than the charge state,
according to

Bin 1 : Eg(Li+) ≤ E < Eg(Li++)

Bin 2 : Eg(Li++) ≤ E < Eg(Li3+) (5)

Bin 3 : Eg(Li3+) ≤ E < ∞

where Eg(Li+) = −7.2799134 . . . a.u. is the ground-state energy of 6Li+, Eg(Li++) = −4.5
a.u., and Eg(Li3+) = 0. Bins 1 and 2 by definition consist entirely of 6Li+ and 6Li++,
respectively, but Bin 3 contains contributions from both 6Li++ and 6Li3+. The principal
aim of the present work was to resolve Bin 3 into its charge-state components.

One can see from phase-space arguments that the fraction of 6Li3+ is strongly sup-
pressed near the threshold because the energy above the E = 0 threshold must be
equally shared between the two outgoing electrons. Otherwise, one electron will fall
back to a bound state of 6Li++, and the other will escape with all the excess energy. It
is, therefore, necessary to project out of the various pseudostates Ψi satisfying Ei > 0 the
6Li3+ component.

The problem of calculating the final-state fraction of 6Li3+ to 6Li++ is closely related to
the problem of calculating the ratio of photoionisation cross sections R = σ(Li3+)/σ(Li++),
on which there is a vast and rich literature for helium, ranging from many-body perturba-
tion theory (MBPT) [14–16], close-coupling (cc) [17], convergent close-coupling (ccc) [18],
R-matrix methods [19] with a discretisation of the continuum, and various distorted wave
(DW) approximations for the final-state wave function [20–23]. The older literature up to
1996 was reviewed by Sadeghpour [24]. More recent work has applied these same methods
to single- and double-photoionisation of 6Li+, including R-matrix calculations [25,26], time-
dependent close-coupling (TDCC) [27], ccc for the helium isoelectronic sequence [28], and
B-spline methods [26,29]. The use of the method presented in this paper for the problem of
double-photoionisation in helium is currently at a preliminary stage of investigation. This
method is complementary to those mentioned above in that it uses the behaviour of the
wave function as r → 0 as opposed to the more common asymptotic condition as r → ∞.

The present work starts with discrete variational representations of the initial and
final states in terms of fully correlated wave functions in Hylleraas coordinates of the
form [30,31]:

Ψ =
i+j+k≤Ω2

∑
ijk


c(A)

ijk ϕijk(αA, βA)
︸ ︷︷ ︸

A-sector

+ c(B)ijk ϕ(αB, βB)
︸ ︷︷ ︸

B-sector


 (6)

where the basis functions ϕijk(α, β) are defined by

ϕijk(α, β) = ri
1 rj

2 rk
12 e−αr1−βr2 YM

l1,l2,L(r̂1, r̂2)± exchange

The quantity YM
l1,l2,L(r̂1, r̂2) represents a vector-coupled product of spherical harmonics of

angular momenta l1 and l2 to form a state with total angular momentum L and component
M. The parameter Ω2 = (i + j + k)max controls the size N2 of the basis set. The basis set
is “doubled” in the sense that the same combination of powers (i, j, k) occurs twice for
different nonlinear parameters αA, βA and αB, βB, which characterise the asymptotic (A)
and short-range (B) sectors, respectively. Diagonalisation of the Hamiltonian matrix in an
orthogonalised basis set then determines a set of N2 eigenvectors that form a pseudospec-
tral presentation of the actual spectrum of bound and continuum states. The nonlinear
parameters are determined by calculating analytically the four derivatives ∂E/∂αX and
∂E/∂βX and finding the zeros by Newton’s method for a particular state of interest. For
the pseudostates, the parameter βA was adjusted to give a variational extremum for the



Atoms 2023, 11, 41 5 of 14

6Li+ charge-state fraction. The pseudostates represent a two-electron generalisation of a
Coulomb Sturmian basis set for hydrogen.

The basic premise of the present work was that these fully correlated pseudostates
Ψi(

6Li+) on the right-hand-side of Equation (3) contain complete information about all
possible two-electron states, including single- and double-continuum states, as well as
autoionising resonances, at least in the limit of large basis sets and in the region of space near
the nucleus. The reason for believing this to be true is that the same basis sets accurately
satisfy a range of oscillator strength sum rules such as the Thomas–Reiche–Kuhn (TRK)
sum rule [32,33]:

∑
i

f0,i = N (7)

where N = 2 for a two-electron atom, and other similar types of closure relations. Several
such sum rules were tested and found to be accurately satisfied in our previous work [11],
including a generalised TRK sum rule that includes the change in Coulomb potential accom-
panying beta decay. The use of a discrete variational representation in [11] supplemented by
Stieltjes imaging techniques (a methodology on which this work directly built) allowed for
accurate calculations by Goldman and Drake of the photoionisation cross section in hydro-
gen [34]. In fact, the same principle is contained in the assumption underlying Equation (3)
that a helium wave function Ψ(6He) can be expanded in terms of a complete set of pseu-
dostates Ψi(

6Li+) constructed from fully correlated Hylleraas-type wave functions. The
sum rules interconnect and tightly constrain the calculated charge-state fractions.

The central problem then is to construct a projection operator P and its orthogonal
complement Q such that P | Ψi(

6Li+)〉 corresponds to states where both electrons have
asymptotically outgoing boundary conditions and such that P | Ψi(

6Li+)〉 = 0 for states
lying below the double-ionisation threshold. Our strategy was to resolve each pseudostate
| Ψi(

6Li+)〉 lying above the double-ionisation threshold at E = 0 into its orthogonal component
parts |c3+

i |2 = 〈Ψi(
6Li+) | P | Ψi(

6Li+)〉 and |c++
i |2 = 〈Ψi(

6Li+) | Q | Ψi(
6Li+)〉, where

R3+
i = |c3+

i |2/|ci|2 (8)

R++
i = |c++

i |2/|ci|2 (9)

are the fractional probabilities for the formation of 6Li3+ and 6Li++, respectively. As usual,
the projection operators have the properties P + Q = 1 and PQ = 0.

3. Construction of Projection Operators

Our approach was to construct projection operators for the correlated two-electron
pseudostates Ψi(r1, r2) in terms of the sums of the products of one-electron pseudostates
φn(r). They were obtained by first orthogonalising and then diagonalising the unscreened
hydrogenic Hamiltonian:

H0 = −1
2
∇2 − Z/r (10)

in a basis set of functions χj,k(r) = rje−αλkr for a range of powers j and k such that a
particular φnl(r) for angular momentum l has the form (for example):

φnl(r) = [(a10 + a11r + a12r2 + a13r3)e−αλr

+ (a20 + a21r + a22r2)e−αλ2r

+ (a30 + a31r)e−αλ3r

+ (a40)e−αλ4r]rlYm
l (θ, φ)

(11)

for the case Ω1 = 4, where Ω1 = (j + k)max, and ast are linear variational parameters.
Because of their shape, we call these “triangular” basis sets, as used previously in the
calculation of the Bethe logarithms for hydrogen [35]. The total number of terms is
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N1 = Ω1(Ω1 + 1)/2 if all terms in Equation (11) are kept. The triangular basis sets
have two important features. First, the highest eigenvalue is pushed up by many orders
of magnitude beyond what is typically achieved with a single exponential term (i.e., a
“linear” basis set). For our typical values of α = 0.1Z and λ = 5.15, the highest eigenvalue
is approximately Ehigh = 100.715Ω1−3.61 a.u., or 2.5× 106 a.u. The basis set, therefore, spans
a huge range of (nonrelativistic) energy and distance scales. The ground state and first
several excited states are also well represented. Second, the basis set has a remarkable
degree of numerical stability, despite the huge range of distance scales covered. With
quadruple precision, Ω can be increased to around 17 or 18. As shown previously [35], the
positive eigenvalues are roughly evenly spaced on a logarithmic energy scale up to very
high energies. Quadruple precision was used throughout the calculations.

Assume for simplicity that Ψi(r1, r2) is an S-state. Neglecting the 1/r12 electron–electron
interaction, a zero-order approximation to the P projection operator can then be formed
from a doubly positive energy sum over all (anti)symmetrised products of one-electron
pseudostates:

P(0) = ∑
l

∑
n+

| n+, l〉〈n+, l | (12)

where the sum over l is a sum over two-electron partial waves coupled to form an S-state
and n+ stands for a pair of integers {n,n′} such that both φn,l(r) and φn′ ,l(r) lie in the
positive energy scattering continuum. | n+, l〉 is then correspondingly defined by

| n+, l〉 =
1√
2
[| φn+ ,l(r1)〉 | φn′+ ,l(r2)〉Y0

ll0(r̂1, r̂2)

± exchange] (13)

where YM
l1l2L(r̂1, r̂2) is a vector-coupled product of spherical harmonics with L = 0 and

M = 0. The generalisation to states of arbitrary L is straight-forward. The complementary
operator Q0 is then defined by

Q(0) = ∑
l

∑
n−
| n−, l〉〈n−, l | (14)

where, for brevity, n− stands for all three combinations {+,−}, {−,+}, and {−,−},
indicating that at least one of the two electrons is in a negative-energy-bound pseudostate.

This method of calculation is similar in spirit to that of Forrey et al. [36] for double-
photoionisation of helium, except that the true Coulomb waves are here replaced by
pseudostates at the same energy. As shown in Figure 2, the two agree very well out to quite
large distances.

The method is justified by the degree to which the final results converge with the basis
set size, and the sum over partial waves:

〈Ψi(r1, r2) | P(0) + Q(0) | Ψi(r1, r2)〉
= 〈Ψi(r1, r2) | Ψi(r1, r2)〉 (15)

is satisfied. Instead of analysing the asymptotic form of the scattering solution, as in
an R-matrix calculation, the method analyses the correlated positive energy pseudostate
in the region near the nucleus, where the Q operator projects out that part that has the
asymptotic form of a bound state for one of the two electrons. This is then identified as
the amplitude for single-ionisation and the orthogonal P component as the amplitude
for double-ionisation. The contrast between the two asymptotic forms is illustrated by
comparing the top and bottom panels in Figure 2.
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4

for the case ⌦1 = 4, where ⌦1 = (j + k)max, and the
ast are linear variational [paramenters. Because of their
shape, we call these “triangular" basis sets, as used previ-
ously in the calculation of Bethe logarithms for hydrogen
[31]. The total number of terms is N1 = ⌦1(⌦1 +1)/2�1
since the final “a40" term (or as0 in general) in the bottom
row of Eq. (11) is dropped. The triangular basis sets have
two important features. First, the highest eigenvalue is
pushed up by many orders of magnitude beyond what is
typically achieved with a single exponential term (i.e. a
“linear" basis set). For our typical values of ↵ = 0.1Z
and � = 5.15, the highest eigenvalue is approximately
Ehigh = 100.715⌦1�3.61 a.u., or 2.5 ⇥ 106 a.u. The ba-
sis set therefore spans a huge range of (nonrelativistic)
energy and distance scales. The ground state and first
several excited states are also well represented. Second,
the basis set has a remarkable degree of numerical sta-
bility, despite the huge range of distance scales covered.
With quadruple precision, ⌦ can be increased to around
17 or 18. As shown previously [31], the positive eigen-
values are roughly evenly spaced on a logarithmic energy
scale up to very high energies. Quadruple precision was
used throughout the calculations.

Assume for simplicity that  i(r1, r2) is an S-state.
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results converge with basis set size, and the sum over
partial waves

h i(r1, r2) | P (0) + Q(0) |  i(r1, r2)i
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is satisfied.
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sion of the electron-electron interaction in P (0) as a per-
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operator is

P = P (0) + P (1) + P (2) (16)
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Figure 2. Upper panel: Comparison of a one-electron pseudostate radial wave function with the
corresponding exact Coulomb wave function at the same energy (E = 0.06 a.u.) near the threshold.
For the case of double-ionisation, both electrons have wave functions of this form. This shows that
the pseudostate representation remains accurate out to reasonably large distances. Lower panel:
The two one-electron states (E1s = −4.5 a.u. and Ek = 4.56 a.u.) corresponding to a near-threshold
single-ionisation state, demonstrating that the region nearest the nucleus is that which contributes
when taking their product and forming projection operators as described in this paper.

The method must also converge with respect to inclusion of the electron–electron
interaction in P(0) as a perturbation. Up to second order, the perturbed projection operator
is

P = P(0) + P(1) + P(2) (16)

with
P(1) = ∑

n+

[
|n+〉(1)〈n+|+ |n+〉〈n+|(1)

]
(17)

and
P(2) = ∑

n+

[
|n+〉(2)〈n+|+ |n+〉〈n+|(2) + |n+〉(1)〈n+|(1)

]
(18)

where the sum over the zeroth-order two-electron states {n+} is understood to contain the
sum over l such that the total L = 0 states are formed. The perturbed wave functions are
(in the finite set of pseudostates |n+〉)

|n+〉(1) = ∑
m+ 6=n+

|m+〉αm+ ,n+ (19)
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and
αm,n =

Vm,n

Em − En
(20)

with Vm,n = 〈m|V|n〉. The (unnormalised) second-order solutions are

|n+〉(2) =
1

En+ − H
(V −Vn+ ,n+)|n+〉(1)

= |T+,+〉+ |T+,−〉+ |T−,+〉+ |T−,−〉 (21)

where, for the perturbed state |n+〉(2),

|Tp,q〉 = ∑
mp 6=n+
iq 6=n+

|mp〉〈mp|(V −Vn+ ,n+)|iq〉
En+ − Emp

αiq ,n+ (22)

and p and q each take on the values + or −. Only |T+,+〉 and |T+,−〉 contribute to the
positive energy projection operator P, with |T+,−〉 corresponding to virtual transitions to
negative energy states and back again. The transition probability into the projected final
state corresponding to 6Li3+ then corresponds to the diagonal matrix elements:

|c3+
i |2 = 〈Ψi(

6Li+)|P(0) + P(1) + P(2)|Ψi(
6Li+)〉

≡ |c(0)3+i |2 + |c(1)3+i |2 + |c(2)3+i |2 (23)

The first-order correction |c(1)3+i |2 given by

|c(1)3+i |2 = ∑
n+

m+ 6=n+

〈Ψi|m+〉〈n+|Ψi〉αm+ ,n+ (24)

vanishes identically since the matrix elements are real and αm+ ,n+ = −αn+ ,m+ . The second-
order correction consists of the diagonal matrix elements of the (0, 2) and the (1, 1) parts, as
shown in Equation (18). The (0, 2) part is

∑
n+

[
|n+〉〈n+|(2) + |n+〉(2)〈n+|

]

= ∑
n+

m+ 6=n+

|n+〉〈m+|
En+ − Em+

(Vm+ ,m+ −Vn+ ,n+)αm+ ,n+

+ ∑
n+

m+ 6=n+

|n+〉〈m+|
En+ − Em+

∑
i+ 6=m+ ,n+

Vm+ ,i+αi+n+

+ ∑
n+

m+ 6=n+

|n+〉〈m+|
En+ − Em+

∑
i−

Vm+ ,i−αi−n+ + (n+ ↔ m+) (25)

The first term vanishes because it is antisymmetric under the interchange (n+ ↔ m+). The
second and third terms can both be rewritten by the use of the identity:

Vm+ ,i±αi± ,n+ −Vn+ ,i±αi±,m+

En+ − Em+

= αm+ ,i±αi± ,n+ (26)
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to obtain the remaining diagonal part:

∑
n+

[
|n+〉〈n+|(2) + |n+〉(2)〈n+|

]

= ∑
n+

m+ 6=n+

|n+〉〈m+| ∑
i+ 6=m+ ,n+

αm+ ,i+αi+ ,n+

+ ∑
n+

m+ 6=n+

|n+〉〈m+|∑
i−

αm+ ,i−αi− ,n+ (27)

The remaining (1, 1) contribution from Equation (18) is

∑
n+

|n+〉(1)〈n+|(1) = ∑
n+

m+ 6=n+

|m+〉〈m+|α2
m+ ,n+

+ ∑
n+

m+ 6=n+

∑
i+ 6=m+ ,n+

|m+〉〈i+|αm+ ,n+αi+ ,n+ (28)

Interchanging the dummy indices n+ and i+ shows that the second term cancels the first
term of Equation (27), leaving just the terms:

P(2) = ∑
n+

m+ 6=n+

|m+〉〈m+|α2
m+ ,n+

+ ∑
n+

m+ 6=n+

|n+〉〈m+|∑
i−

αm+ ,i−αi− ,n+ (29)

However, this still must be corrected so that the total wave functions |n+〉+ |n+〉(1) + |n+〉(2)
are normalised to unity up to second order. The renormalisation can be accomplished by
subtracting a component of the unperturbed solution |n+〉 from |n+〉(2) to obtain

|ñ+〉(2) = |n+〉(2) −
1
2
|n+〉 (30)

which still satisfies the second-order perturbation equation. This contributes an additional amount:

∆P(2) = − ∑
n+ ,m+

|m+〉〈m+|α2
m+ ,n+

(31)

leaving just the renormalised projection operator:

P̃(2) = ∑
n+ ,m+

|n+〉〈m+|∑
i−

αm+ ,i−αi− ,n+ (32)

corresponding to the sum over virtual negative energy states.
It turns out that even this contribution is cancelled if one includes the counterbal-

ancing positive energy part coming from the second-order perturbation of negative en-
ergy states. Terms from |n−〉〈n−|(2) + |n−〉(2)〈n−| do not contribute, but the first-order
cross-terms contribute:

∑
n−
|n−〉(1)〈n−|(1) = ∑

n− ,m+n+

|m+〉〈n+|αn− ,m+αn− ,n+ (33)

With the change of notation n− = i−, it is clear that this term cancels the one remaining
term in Equation (32) for P̃(2). Thus, the leading perturbative correction to P due to the
electron–electron interaction is at most of third order. However, it is still of interest to
calculate the

∑
i
|c̃(2)3+i |2 = ∑

i
〈Ψi(

6Li+) | P̃(2) | Ψi(
6Li+)〉 (34)
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contribution (summed over positive energy pseudostates) that would still remain without
this final cancellation due to the positive energy part coming from perturbed negative
energy states, as discussed in the following section. The second-order contributions from
only positive energy states, prior to cancellation, serves as an upper bound on the order at
which third- or higher-order effects could contribute.

4. Results and Discussion

This section discusses the numerical results obtained for the transition probability
coefficients P(6Li3+) = ∑n |c3+

n |2 in Equation (23). The calculations are first presented
to test for the convergence of the leading coefficients ∑n |c(0)3+n |2 with respect to both
Ω1 controlling the projection operators and Ω2 controlling the pseudospectral Hylleraas
representation of the initial and final states. In addition, we examined the convergence
with respect to the sum over partial waves ` in Equation (12) and perturbation corrections
to the projection operators due to the electron–electron Coulomb interaction.

First, concerning the convergence with respect to partial waves, direct calculations
were performed up to ` = 7 (i.e., one-electron states with `1 = `2 = ` were coupled to form
an S-state with L = 0) and an extrapolation performed up to ` = ∞. The results were found
to converge relatively slowly in proportion to 1/

√
`+ 1). As a typical example, Figure 3

shows the convergence pattern for the 6He(2 3S1) case with Ω1 = Ω2 = 8. The extrapolated
value is shown by the intercept on the vertical axis.
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Figure 3. An example of convergence, following the beta decay of 6He(1s2s 3S1), with respect to the
number of partial waves ` (red dots) for the 6Li3+ probability for the case Ω1 = Ω2 = 8.

Next, concerning the convergence with respect to Ω1 and Ω2, the results are shown
(as a percentage) by the top number of each pair in Table 2 and for each of the three initial
atomic states. The entries along the main diagonal provide a measure of the degree of
convergence and their uncertainty. Since there does not appear to be a consistent trend
either up or down, we took the average of all the numbers in Table 2 with the rms statistical
spread as the uncertainty. The total double-ionisation probability, prior to being subject
to the projection operators of Equation (12), is the sum of overlap integrals between an
optimised initial state of 6He and a pseudospectrum representing all doubly ionised 6Li+

states. Although this quantity can be stated with a well-defined error, as demonstrated
in [11], it does not show monotonic convergence, but rather, oscillates around a value. The
reason for this is that the nonlinear parameters in Equation (6) that are used to variationally
diagonalise the Hamiltonian are (necessarily) not separately optimised for each state within
the pseudospectrum [37]. The actual numbers of terms in the basis sets for each Ω are listed
in Table 3.
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Table 2. Convergence table for the initial states 6He(1 1S0), 6He(2 3S1), and 6He(2 1S0). All entries
are 6Li3+ probabilities (taken in the limit of infinite partial waves, as shown in Figure 3) expressed
in % shown for different sizes of both the projection operator (Ω1) and Hylleraas-type pseudostate
(Ω2) basis sets used in Equation (23). Zeroth- and partial-second-order results from Equation (34)
are at the top and bottom of each cell, respectively. The top values in the table for each state will be
averaged to obtain the final 6Li3+ probability.

Ω2

6He State Ω1 8 10 12 14

1 1S0 8 0.3663 0.3564 0.3134 0.4483
−0.0017 −0.0011 −0.0014 −0.0009

10 0.3142 0.3326 0.3100 0.4314
−0.0068 −0.0057 −0.0091 −0.0011

12 0.3123 0.3145 0.3009 0.4357
−0.0045 −0.0027 −0.0019 −0.0066

14 0.3145 0.3128 0.3556 0.4121
−0.0006 −0.0001 −0.0011 −0.0008

2 3S1 8 0.5740 0.4161 0.4293 0.4028
−0.0013 −0.0004 −0.0003 −0.0003

10 0.5084 0.4947 0.5272 0.5405
−0.0031 −0.0010 −0.0032 −0.0031

12 0.5223 0.5281 0.5744 0.6209
−0.0052 −0.0017 −0.0025 −0.0022

14 0.5304 0.5314 0.6062 0.6400
−0.0002 −0.0006 −0.0002 −0.0002

2 1S0 8 0.5838 0.4645 0.4829 0.5470
−0.0041 −0.0036 −0.0027 −0.0030

10 0.4988 0.5522 0.5611 0.6193
−0.0284 −0.0083 −0.0196 −0.0467

12 0.4994 0.5697 0.6046 0.6636
−0.0023 −0.0089 −0.0012 −0.0052

14 0.5037 0.5836 0.6196 0.6610
−0.0027 −0.0001 −0.0034 −0.0010

Table 3. Number of terms N1(Ω1) and N2(Ω2) in the basis sets. The factor 8 for N1(Ω1) accounts for
the sum over partial waves up to ` = 7.

N2(Ω2)

Ω1 or 2 N1(Ω1) 1 1S0 2 3S1 2 1S0

8 81× 8 181 164 182
10 196× 8 295 218 301
12 400× 8 442 441 457
14 729× 8 624 650 652

Finally, concerning perturbation corrections due to the electron–electron interaction,
this mixes each of the simple one-electron product pseudostates |n+, `〉 with all the others,
but as shown in Equation (24), the first-order corrections cancel in pairs when summed
over the complete set of states that form the projection operator. A more lengthy calculation
in Section 3 shows that the second-order corrections also cancel, provided that one takes
into account both the renormalisation of the perturbed wave functions so that P2 = P
up to second order and the counterbalancing positive energy contribution coming from
the perturbed negative energy states. It is perhaps not surprising that these perturbation
corrections sum to zero because the only role of the P projection operator is to enforce
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doubly outgoing boundary conditions via positive energy for both electrons without
further energy resolution. However, it is still interesting to see the order of magnitude
of the partial-second-order contributions generated by P̃(2) in Equation (32). The results
are shown by the bottom number of each pair in Table 2. Although there is no clear
convergence pattern, the magnitudes are all 2% or less of the zero-order term. One can,
therefore, expect third- or higher-order contributions not included in the calculation to be
smaller still. The main source of uncertainty is thus the convergence uncertainty associated
with the zero-order term.

The final results are summarised in Table 4. The main conclusion is that most of
the lithium-ions in the energy bin with E > 0 are 6Li++-ions plus an energetic electron,
rather than 6Li3+ plus two low-energy electrons. For example, for the 6He(1 1S0) case, of
the calculated 1.2(1)% of the 6Li-ions with E > 0, 0.35(5)% are 6Li3+, and the remaining
0.85(10)% are 6Li++. The 6Li3+ fraction agrees with the 0.32% calculated by Wauters and
Vaeck [2], but their total only sums to 99.85%, with no uncertainty given. For the 6He(2 1S0)
case, the fractions are 0.53(7)% for 6Li3+ and 1.33(7)% for 6Li++.

The redistributed charge-state fractions are shown in Table 5. However, even these
reduced fractions of 6Li3+-ions are still an order of magnitude or more larger than the
experimental values of 0.018(15)% for the 6He(1 1S0) case and < 0.01% for the 6He(2 3S1)
case. The recalculated 6Li++ fraction is now also larger than the experiment, while the
6Li+ fraction remains lower than the experiment. The differences are much larger than the
statistical uncertainties. It seems that the theoretical values for both 6Li++ and 6Li3+ need
to be lowered by about the same amount and added to 6Li+ in order to bring the theory
and experiments into agreement.

Table 4. Previous [11] and corrected 6Li3+ charge-state fractions for each initial state following beta
decay. All quantities expressed in percent (%).

p(6Li3+)
6He State Previous [11] Present Exp’t

1 1S0 1.2(1) 0.35(5) 0.018(15) [1]
2 3S1 1.86(7) 0.53(7) <0.01 [9]
2 1S0 0.56(6)

Table 5. Corrected probabilities p(6Lik+) of forming the various charge states of 6Lik+, k = 1, 2, 3
following the beta decay of 6He(1 1S0) or 6He(2 3S1) as initial states. All quantities are expressed in
percent (%).

6He 6Li Theory

State Ion Present Ref. [2] Exp’t. Difference

1 1S0
6Li+ 89.03(3) 89.09 89.9(2) a −0.9(2)
6Li++ 10.55(10) 10.44 10.1(2) 0.45(20)
6Li3+ 0.35(5) 0.32 0.018(15) 0.34(5)
Total 99.9(1) 99.85 100.0(2) −0.1(2)

2 3S1
6Li+ 88.711(3) 89.9(3)(1) b −1.2(2)
6Li++ 10.75(7) 10.1(3)(1) 0.65(20)
6Li3+ 0.53(7) <0.01 0.53(5)
Total 99.99(7) 100.00 −0.02(20)

a Carlson et al. [1]. b Hong et al. [9].

A possible source of the discrepancy is the failure of the sudden approximation at
the ±1% level of accuracy. A more adiabatic time dependence than a step function would
increase the proportion of 6Li+ at the expense of both 6Li++ and 6Li3+ [38]. For this
reason, the results of the sudden approximation represent an upper bound on the amount
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of shake-up and shake-off. However, a failure of the sudden approximation at this level
would contradict the near-perfect agreement found by Couratin et al. [3] for the case of
6He+ as the initial state. Their calculation included a perturbation correction to the sudden
approximation of only −0.02% (−0.0002 relative to unity) to their calculated shake-off
fraction of 2.322%. The sudden approximation as currently implemented also ignored the
exchange effects between the beta particle and the atomic electrons [12,13]. However, the
effect of the exchange is likely to be small since the beta particle has a much higher energy
than the atomic electrons, and a significantly larger effect would again contradict the good
agreement for the case of 6He+.

In summary, the present work substantially reduced the disagreement between our
previous theory [11] and experiments for the 6Li3+ charge-state fraction following the beta
decay of both 6He(1 1S0) and 6He(2 1S0). It also brought our results into agreement with
the CI calculations of Couratin et al. [3] for the 6He+(1s 1S) case. However, there remains a
substantial disagreement between the theory and experiments for the charge-state fractions,
which stands in sharp contrast to the overall excellent agreement found by Couratin et al.
for the one-electron case of 6He+.
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