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Abstract: In this article, we propose several ideas and tools in order to check the reliability of
radiative opacity and atomic physics databases. We first emphasize that it can be useful to verify that
mathematical inequalities, which impose lower and upper bounds on the Rosseland and/or Planck
mean opacities, are satisfied, either for pure elements or mixtures. In the second part, we discuss
the intriguing law of anomalous numbers, also named Benford’s law, which enables one to detect
errors in line-strength collections, required in order to perform fine-structure calculations. Finally,
we point out and illustrate the importance of quantifying the uncertainties due to interpolations in
the density-temperature opacity (or more generally atomic-data) tables and performing convergence
checks, which are crucial in the accuracy-completeness compromise inherent in opacity computations.

Keywords: radiative opacity; databases; error detection; opacity bounds; mathematical inequalities;
Thomas–Reiche–Kuhn sum rule; convergence criteria; interpolation accuracy

1. Introduction

The radiative opacity (absorption coefficient per mass unit) is a key ingredient of
stellar models [1–7] and radiation–hydrodynamics simulations of inertial confinement
fusion experiments [8]. Therefore, it is important to check the reliability of opacity tables.
Over the course of the Orion project [9], Dyson noticed that quantum mechanics enables
one to obtain bounds on opacities. This led to Dyson and Bernstein writing a report [10],
which was only published in the open literature in 2003 [11]. The results, which were
obtained using the Schwarz inequality and the Thomas–Reiche–Kuhn oscillator strength
sum rule [12,13], were cited by Armstrong [14,15], who proposed an inequality involving
both the Planck and Rosseland mean opacities [16]. In the first part of the present article,
using mathematical inequalities (such as the Schwarz, Hölder, or Milne ones), we first
discuss existing and new opacity bounds, either for pure elements or mixtures.

In the second step, we recall that the intriguing law of anomalous numbers, also
named Benford’s law, is of great interest for detecting errors in line-strength collections
that are required in order to perform fine-structure calculations. In the era of big data,
quality control has become a key factor. It is important to establish a scientific data quality
detection method. Benford’s law has become an effective tool for the detection of data
quality and identification of anomaly data in various fields. The first digit described by
Benford’s law satisfies a uniform logarithmic distribution. Testing data quality and mining
anomalies can be achieved by comparing the latter distribution with the actual distribution
of the first digit in the data. It can also be combined with various theoretical techniques to
solve other practical application problems. It has been widely used in the fields of natural
and social sciences.

In the same vein, we emphasize the fact that testing regularities such as the Learner
rule can reveal hidden (in this instance, fractal) properties. Finally, we insist on the im-
portance of quantifying the uncertainties due to interpolations in density-temperature
opacity (or, more generally, atomic data) tables and illustrate the unavoidable character
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of convergence studies. This concerns, for instance, the number of levels, configurations,
and/or superconfigurations included in the calculation.

The paper is organized as follows. Inequalities involving mean opacities are studied
in Section 2. The validity of Benford’s law for line-strength collections is discussed in
Section 3. The observation made by Learner a long time ago and recently explained, that
is, the number of lines of neutral iron is distributed in a specific way revealing a possible
underlying fractal structure of atomic spectra, is explained in Section 4. The importance
of quantifying the precision of interpolations is discussed in Section 5, and convergence
with respect to the number of atomic physics objects—in the present case, the number of
superconfigurations since we are dealing with the Super Transition Arrays (STA) method—
is outlined in Section 6. Some perspectives are provided in Section 7.

2. Opacity Bounds
2.1. The Rosseland Mean Opacity

The Rosseland mean opacity is defined as [17]:

1
κR

=

∫ ∞
0

1
κ(ν)

dB(ν)
dT

dν

∫ ∞
0

dB(ν)
dT

dν

, (1)

where κ represents the spectral radiative opacity, T is the temperature, and ν is the photon
frequency. h denotes the Planck constant and B(ν) is the Planckian distribution

B(ν) =
2hν3

c2

[
exp

(
− hν

kBT

)
− 1
]−1

, (2)

where c is the speed of light in a vacuum and kB is the Boltzmann constant. Setting
u = hν/(kBT), Equation (1) becomes

1
κR

=
∫ ∞

0

WR(u)
κ(u)

du with WR(u) =
15

4π4
u4eu

(eu − 1)2 (3)

or, more explicitly,

κR =

(
15

4π4

∫ ∞

0

u4e−u

(1− e−u)2
1

κ(u)
du

)−1

. (4)

Figures 1 and 2 represent the opacity of an iron plasma at ρ = 0.025, 0.25, and 2.5 g·cm−3

and T = 100, 200 (Figure 1), and 500 eV (Figure 2), which were computed by code relying
on the Super Transition Arrays formalism [18–21]. The detailed structure of the spectrum
becomes more visible when the density decreases because the line widths become smaller,
which reduces the overlap between line shapes. Throughout this paper, when anything
other than “opacity” is mentioned, it refers to “spectral opacity”, i.e., opacity as a function
of photon energy. When it is an average opacity (Planck or Rosseland, for instance), it is
specified.



Atoms 2023, 11, 27 3 of 27

10
1

10
2

10
3

10
4

Energy (eV)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

O
p
ac

it
y
 (

cm
2
/g

)

ρ=0.025 g/cm
3

ρ=0.25 g/cm
3

ρ=2.5 g/cm
3

Fe, T=100 eV
STA calculation

10
2

10
3

10
4

Energy (eV)

10
1

10
2

10
3

10
4

10
5

10
6

O
p
ac

it
y
 (

cm
2
/g

)

ρ=0.025 g/cm
3

ρ=0.25 g/cm
3

ρ=2.5 g/cm
3

Fe, T=200 eV
STA calculation

Figure 1. Opacity of an iron plasma at T = 100 eV (left) and T = 200 eV (right) and ρ = 0.025, 0.25,
and 2.5 g·cm−3.
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Figure 2. Opacity of an iron plasma at T = 500 eV and ρ = 0.025, 0.25, and 2.5 g·cm−3.

In order to take into account the plasma dispersion effect and multiple collisions,
Equation (4) should read

κR =

(
15

4π4

∫ ∞

0

n2(u) u4e−u

(1− e−u)2
1

κ(u)
du

)−1

, (5)

where n(ω) represents the refractive index, whose square can be approximated as [22,23]:

n2(ω) =
ω
(

ω2 −ω2
p + ω2

c

)
+

√
(ω2 + ω2

c )
[
(ω2 −ω2

p)
2 + ω2ω2

c

]

2ω(ω2 + ω2
c )

, (6)

where ωc denotes the collision pulsation and ωp is the plasma pulsation (h̄ω = hν, where
h̄ = h/(2π) is the reduced Planck constant).

2.2. From the Schwarz Inequality to the Bernstein and Dyson Bound

Using the Schwarz inequality (a and b being functions of u) [24],

(∫
ab du

)2
≤
(∫

a2 du
)(∫

b2 du
)

(7)
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with a =
√

WR(u)/κ(u) and b =
√

κ(u), one obtains

s2 =

(∫ ∞

0

√
WR(u) du

)2
≤ S

1
κR

(8)

with

S =
∫ ∞

0
κ(u) du =

πe2hZNA
4πε0mcAkBT

. (9)

The latter expression comes from the well-known Thomas–Reiche–Kuhn oscillator
strength sum rule [25–29]. Z is the atomic number, NA is the Avogadro number, m is the
electron mass, and A is the molar atomic mass. This leads to [30]:

κR ≤
S

s2 =
πe2hZNA

4πε0mcAkBTs2 ≈
Z
A

Ryd
kBT
× 4.43× 105cm2/g, (10)

where we have used the fact that s = 7
√

15 ζ(3)/π2 ≈ 3.30194, with ζ(3) being the Apéry
constant (and ζ the Riemann zeta function).

2.3. Relation between Planck and Rosseland Means

The Planck mean opacity reads

κP =
∫ ∞

0
WP(u)κ(u) du with WP(u) =

15
π4

u3e−u

1− e−u . (11)

We have
κP
κR

=

(∫ ∞

0
WP(u)κ(u) du

)(∫ ∞

0

WR(u)
κ(u)

du
)

(12)

Setting this time a =
√

WP(u)κ(u) and b =
√

WR(u)/κ(u), one obtains

κP
κR
≥
(∫ ∞

0

√
WP(u)WR(u) du

)2
≈ 0.949229 (13)

leading to
κR ≤ 1.05349 κP, (14)

which was obtained by Armstrong [15]. However, since the Planck mean is often signifi-
cantly larger than the Rosseland mean, this relation is not really constraining.

2.4. Hölder Inequality

The Hölder inequality reads [31]

(∫
ab du

)
≤
(∫

ap du
)1/p(∫

bq du
)1/q

(15)

with 1/p + 1/q = 1. Setting a = κ(u)1/p and b = WR(u)1/p/κ(u)1/p, one obtains

Kp =
∫ ∞

0

WR(u)
1

p−1

κ(u)
1

p−1
du ≥ 1

S

(∫ ∞

0
WR(u)1/p du

)p
. (16)

For p = 2, the Schwarz inequality is recovered. Table 1 provides values of the lower
bound for S deduced from Equation (16) in the case of an iron plasma at T = 200 eV,
ρ = 0.25 g·cm−3. We can see that the bound is stronger than the one predicted by the
Schwarz inequality (i.e., p = 2) only for p = 5.
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Table 1. Values of integral
(∫ ∞

0 [WR(u)]1/p du
)p

for p = 2, 3, 4, and 5. Values of Kp and the lower

bound for S in the case of an iron plasma at T = 200 eV and ρ = 0.25 g·cm−3. The required values of(∫ ∞
0 [WR(u)]p du

)1/p are provided.

p
(∫ ∞

0 [WR(u)]1/p du
)p S ≥{∫ ∞

0 [WR(u)]p du
}1/p/Kp

2 735
π4 [ζ(3)]

2 S ≥ 8513.39
3 158.959 S ≥ 1598.14

4 15π2
[
Γ
(

1
4

)]4

4
[
Γ
(

3
4

)]4 ≈ 2836.09
S ≥ 5412.19

5 59327.7 S ≥ 45931.40

2.5. Introduction of an Alternative Mean Opacity

Setting a =
√

WR(u)/κ(u) and b =
√

WR(u)κ(u) in the Schwarz inequality, one
obtains (∫ ∞

0
WR(u) du

)2
≤
(∫ ∞

0

WR(u)
κ(u)

du
)(∫ ∞

0
WR(u)κ(u) du

)
(17)

i.e.,
κM ≥ κR (18)

where we define the “Milne opacity”:

κM =
∫ ∞

0
WR(u)κ(u) du =

15
4π4

∫ ∞

0

u4e−u

(1− e−u)2 κ(u) du. (19)

2.6. Milne Inequalities for Mixtures

In Ref. [32], Milne published two inequalities. The first one reads

(∫
ab du

)2
≤
(∫ [

a2 + b2
]

du
)(∫ a2b2

a2 + b2 du
)

(20)

and the second
(∫ [

a2 + b2
]

du
)(∫ a2b2

a2 + b2 du
)
≤
(∫

a2 du
)(∫

b2 du
)

. (21)

Starting from the second Milne inequality (see Equation (21)), in the case of a mixture
of two components, setting a2 = x1WR(u)/κ1(u) and b2 = x2WR(u)/κ2(u), one has

κR ≥ x1κR,1 + x2κR,2. (22)

Applying the Schwarz inequality with a2 = WR(u)(x1κ1(u) + x2κ2(u)) = WR(u)κ(u)
and b2 = WR(u)/κ(u), we obtain

κM = x1κM,1 + x2κM,2 ≥ κR. (23)

This result can be generalized to the case of n constituents and one has

κM =
n

∑
i=1

xiκM,i ≥ κR ≥
n

∑
i=1

xiκR,i. (24)

Table 2 contains the Rosseland, Planck, and “Milne” (see Equation (19)) mean opacities
for an iron-magnesium plasma at different temperatures (100, 200, and 500 eV) and densities
(0.025, 0.25, and 2.5 g·cm−3). The value of Armstrong’s bound (1.05349 κP) is also specified.
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We can see that the Milne opacity is smaller than Armstrong’s bound for the two highest
densities at T = 100 eV, the highest density at T = 200 eV, and the three densities at
T = 500 eV.

Table 2. Rosseland, Planck, and “Milne” (see Equation (19)) mean opacities for an iron-magnesium
mixture plasma (number fractions of Fe and Mg are both equal to 0.5) at different temperatures (100,
200, and 500 eV) and densities (0.025, 0.25, and 2.5 g·cm−3). The value of Armstrong’s bound (1.05349
κP) is also specified. All the values in columns 3 to 6 are in cm2·g−1.

T (eV) ρ (g·cm−3) κR κP 1.05349 κP κM

100 0.025 527.061 2019.74 2127.78 2429.02
100 0.250 2002.09 5483.03 5776.32 4416.30
100 2.500 3592.02 9046.83 9530.74 7030.24
200 0.025 175.315 1585.92 1670.75 2066.34
200 0.250 720.411 2802.98 2952.91 3286.03
200 2.500 1963.08 4291.18 4520.72 4369.74
500 0.025 2.79900 17.3435 18.2710 14.9021
500 0.250 25.1619 131.022 138.030 98.9192
500 2.500 139.576 627.261 660.813 460.387

Table 3 contains the partial densities of iron and magnesium for a mixture plasma
(number fractions of Fe and Mg are both equal to 0.5) at different temperatures (100, 200,
and 500 eV) and densities (0.025, 0.25, and 2.5 g·cm−3). These partial densities are obtained
by applying the same electronic pressure to all ions in the plasma [33,34]. Tables 4 and 5
present the partial Rosseland and Planck means of iron and magnesium, respectively (i.e.,
the opacities of the latter constituents at the partial densities obtained from the above-
mentioned mixture model).

Table 3. Partial densities of iron and magnesium for a mixture plasma (number fractions of Fe and
Mg are both equal to 0.5) at different temperatures (100, 200, and 500 eV) and densities (0.025, 0.25,
and 2.5 g·cm−3). The partial densities are obtained by applying the same electronic pressure to all
ions in the plasma [33,34].

T (eV) ρ (g·cm−3) ρ[Fe] (g·cm−3) ρ[Mg] (g·cm−3)

100 0.025 2.875 ×10−2 1.923 × 10−2

100 0.250 0.290 0.190
100 2.500 2.905 1.893
200 0.025 2.716 × 10−2 2.114 × 10−2

200 0.250 0.276 0.205
200 2.500 2.802 2.004
500 0.025 2.587 × 10−2 2.320 × 10−2

500 0.250 0.262 0.226
500 2.500 2.662 2.193



Atoms 2023, 11, 27 7 of 27

Table 4. Partial Rosseland mean opacities of iron and magnesium for a mixture plasma (number
fractions of Fe and Mg are both equal to 0.5) at different temperatures (100, 200, and 500 eV) and
densities (0.025, 0.25, and 2.5 g·cm−3). These partial densities are obtained by applying the same
electronic pressure to all ions in the plasma [33,34].

T (eV) ρ (g·cm−3) κR[Fe] (cm2·g/−1) κR[Mg] (cm2·g/−1)

100 0.025 628.2 153
100 0.250 2002 742.9
100 2.500 3746 1767
200 0.025 230.8 7.696
200 0.250 902.6 45.03
200 2.500 2262 247.6
500 0.025 3.073 1.407
500 0.250 26.92 11.54
500 2.500 137.4 97.38

Table 5. Partial Planck mean opacities of iron and magnesium for a mixture plasma (number fractions
of Fe and Mg are both equal to 0.5) at different temperatures (100, 200, and 500 eV) and densities
(0.025, 0.25, and 2.5 g·cm−3). These partial densities are obtained by applying the same electronic
pressure to all ions in the plasma [33,34].

T (eV) ρ (g·cm−3) κP[Fe] (cm2·g/) κP[Mg] (cm2·g/)

100 0.025 2520 869
100 0.250 5483 3978
100 2.500 8857 9490
200 0.025 2076 458.8
200 0.250 3663 823.6
200 2.500 5412 1715
500 0.025 20.74 9.007
500 0.250 154.7 76.11
500 2.500 712.1 432.4

Table 6 shows the values of the partial “Milne opacity” for iron and magnesium in the
mixture. Table 7 displays a comparison of the Rosseland mean opacity and lower bound
from Equation (24). We can see that in each set of thermodynamic conditions, the two
values are rather close, which means that this lower bound may be constraining and useful.

Table 6. Partial Milne mean opacities (see Equation (19)) of iron and magnesium for a mixture plasma
(number fractions of Fe and Mg are both equal to 0.5) at different temperatures (100, 200, and 500 eV)
and densities (0.025, 0.25, and 2.5 g·cm−3). These partial densities are obtained by applying the same
electronic pressure to all ions in the plasma [33,34].

T (eV) ρ (g·cm−3) κM [Fe] (cm2·g/) κM [Mg] (cm2·g/)

100 0.025 3216.72 617.054
100 0.250 5165.67 2692.51
100 2.500 7356.89 6278.83
200 0.025 2623.45 785.185
200 0.250 4195.74 1193.88
200 2.500 5532.09 1696.46
500 0.025 17.881 8.06600
500 0.250 113.319 65.9050
500 2.500 500.596 368.511
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Table 7. Rosseland mean opacity and lower bound (see Equation (24)) for a mixture plasma (number
fractions of Fe and Mg are both equal to 0.5) at different temperatures (100, 200, and 500 eV) and
densities (0.025, 0.25, and 2.5 g·cm−3). These partial densities are obtained by applying the same
electronic pressure to all ions in the plasma [33,34].

T (eV) ρ (g·cm−3) κR (cm2·g/)
Lower Bound

(cm2·g/)

100 0.025 527.061 484.214
100 0.250 2002.09 1620.49
100 2.500 3592.02 3146.36
200 0.025 175.315 163.199
200 0.250 720.411 642.756
200 2.500 1963.08 1651.64
500 0.025 2.79900 2.56820
500 0.250 25.1619 22.2599
500 2.500 139.576 125.274

Figure 3 presents a comparison of the exact Rosseland mean, the two bounds provided
by Equation (24), and Armstrong’s bound in the case of an iron-magnesium mixture plasma
at three different temperatures, 100, 200, and 500 eV, and three different densities, 0.025,
0.25, and 2.5 g·cm−3. As in the pure iron case, the Armstrong bound is significantly higher
than the exact value. The Milne opacity bound is sometimes more constraining but is still
much higher than the exact value.
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Figure 3. Comparison of the exact Rosseland mean, the two bounds provided by Equation (24), and
Armstrong’s bound in the case of an iron-magnesium mixture plasma at three different temperatures,
100, 200, and 500 eV, and three different densities, 0.025, 0.25, and 2.5 g·cm−3. Each rectangle
represents a temperature—green rectangle: T = 100 eV; orange rectangle: T = 200 eV; and blue
rectangle: T = 500 eV. Inside each rectangle, each set of four points aligned vertically corresponds to a
fixed temperature; from left to right: ρ = 0.025, 0.25, and 2.5 g·cm3, respectively.

We have chosen the iron-magnesium opacity as an example since it is relevant to
the pioneering Z-pinch experiments performed at Sandia [35], showing an important
discrepancy between experiment and theory. The mathematical inequalities presented
here can be useful for assessing the relevance of the experimental spectrum. However, it
is important to remain cautious; indeed, the experiment concerns only a narrow photon-
energy range and the inequalities considered in the present work involve integrals over the
whole photon-energy range (from 0 to “infinity”). The purely mathematical inequalities
(Schwarz, Hölder, etc.) can be applied over a limited energy band but the Thomas–Reiche–
Kuhn oscillator strength sum rule can be applied only over the entire range. Iglesias
pointed out that the measurements appear to violate the sum rule but his analysis relies
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on a comparison with the “cold opacity”, leading him to conclude that since the main
absorption features from the L shell are in the experimental range, the number of electrons
in that shell would be inconsistent with the mean ionization (and even potentially larger
than the degeneracy!) [36]. This may be true but it is questionable because the Thomas–
Kuhn–Reiche rule is valid for isolated-atom oscillator strengths and does not account for
plasma effects and line shapes.

2.7. A New Bound: Compton Scattering and Inverse Bremsstrahlung

It is possible to derive new bounds without resorting to mathematical inequalities
and oscillator strength sum rules, but rather by considering the fact that the spectral
(monochromatic) opacity is a sum of several positive partial contributions. Two of them,
the inverse Bremsstrahlung and the scattering contributions, can be approximated by
analytical formulas. We have

∫ ∞

0

WR(u)
κ(u)

du ≤
∫ ∞

0

WR(u)
κscatt(u) + κIB(u)

du (25)

and ∫ ∞

0

WR(u)
κscatt(u) + κIB(u)

du ≤ min
{

1
κR,scatt

,
1

κR,IB

}
(26)

where κscatt represents the scattering opacity (equal to its Rosseland mean κR,scatt) in cm2/g.
We have seen that the Thomson opacity reads

κscatt = κR,scatt =
8π

3

(
e2

4πε0mc2

)2 104 Z∗

A[g]
NA ≈ 0.665 · 10−24 Z∗NA

A[g]
. (27)

The contribution of scattering can be refined by considering the Klein–Nishina cross-
section instead of the Thomson one (see Appendix A).

The Thomson and Klein–Nishina cross-sections mentioned above refer to the pho-
ton scattering by free electrons. Additional bounds can also be obtained using the low-
energy Rayleigh scattering cross-section for neutral atoms, which can be derived from the
static dipole polarizability of the neutral atom [37]. More detailed treatments are based
on the dynamic (or frequency-dependent) dipole polarizability [38]. For instance, for
oxygen, following the prescription of Ref. [39], one can take the following cross-section
(σTh=6.65246·10−25 cm2 is the total Thomson scattering cross-section):

σR(ω) = 36.63 σTh ×
(

h̄ω

4 Ryd

)4
(

1 + 4.803
(

h̄ω

4 Ryd

)2
+ 23.44

(
h̄ω

4 Ryd

)4
)

, (28)

where Ryd represents the Rydberg constant. The latter formula was rescaled so that the first
term agrees with more accurate static dipole polarizability factors from Schwerdtfeger [40].
Assuming u � 1, the inverse of the cross-section (or opacity) can be expanded in series
and it is possible to derive subsequent opacity bounds using the following integral

∫ ∞

0
uk(1− e−u)WR(u)du =

15
4π4 (k + 4)! ζ(k + 5). (29)

In Equations (25) and (26), κIB represents the inverse bremsstrahlung contribution.
Within the Kramers semi-classical approximation [41], κIB reads

κIB(u) =
16π2

3
√

3

(
e2

4πε0

)3 h2

(2πm)3/2c
Z∗3

(kBT[eV])7/2u3

N 2
A

(A[g])2

(
10−3

e

)7/2

ρ[g/cm3]

= 87.9 · 109 Z∗3ρ[g/cm3]

(A[g])2(hν[eV])3(T[eV])1/2 . (30)
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yielding, using

15
4π4

∫ ∞

0

u7eu

(eu − 1)2(1− e−u)
du =

10
[
π6 + 945 ζ(7)

]

π4 (31)

the inverse bremsstrahlung Rosseland mean

κR,IB[cm2/g] = 4.47283 · 108 Z∗3ρ[g/cm3]

(A[g])2(hν[eV])3(T[eV])1/2 . (32)

3. Detection of Errors: Benford and the Law of Anomalous Numbers
3.1. Generation and Development

In 1881, Newcomb, an American astronomer and mathematician, first discovered the
law of the first digit. Through statistical analysis of the data, he pointed out that many
numbers characteristic of nature can be expressed in an exponential form and that the
logarithm of the index mantissa is uniformly distributed [42]. Benford discovered the
same phenomenon and conducted deep research on 20,229 digits in more than 20 data sets
appearing randomly in physical and chemical constants, prime numbers and Fibonacci
numbers, and river lengths and lake areas. He arrived at the same conclusions as Newcomb
and proposed the formal “first digit law” [43], arousing the interest of many scientists.
This law was later named after him [44]. In the following forty years, the development
of basic research was very slow. Although the related research explained some of the
properties of Benford’s law, it was not proved from a mathematical point of view. Hill
proved that the first digit obeys Benford’s law [45] and is consistent with the central limit
theorem. In addition, he generalized the theory, obtained the distribution function law of
higher-order digits, and derived the joint distribution function between the first digit and
the higher-order digits.

Thus, Benford’s law means that the significant digits of many sets of naturally oc-
curring data are not equi-probably distributed, but rather in a way that favors smaller
significant digits through a uniform logarithmic distribution. For instance, the first signifi-
cant digit, i.e., the first digit that is non-zero, will be 5 more frequently than 6, and the first
three significant digits will be 548 more often than 576.

The verification of the usability (applicability verification) of Benford’s law has been
checked in different fields [46]. For instance, relevant research has been carried out in the
fields of economics, sociology, physics, computer science, and biology. Among them, the
most influential research is the systematic applicability of Benford’s law to the detection
of tax fraud [47]. It was found through statistics that computer file size [48], biological
protein domain length, popular survival distribution [49], spectrum line strength [50,51] in
complex atomic spectroscopy, hadron lifetime, or the energy loss rate of pulsar self-rotation
slowing [52] all accurately verified the law. Even the distributions of distances of galaxies
and stars conform to Benford’s law [53]. In number theory, it was shown that Jacobsthal,
Jacobsthal–Lucas, and Bernoulli numbers follow the law [53]. This is the case for other
families of numbers such as Mersenne numbers [54]. However, many data sets have not
passed the applicability verification such as the resident identity number or the height of
an adult. Yunxia studied the important economic data of the national development zones
in China and found that some numbers were inconsistent with the predictions of Benford’s
law [55].

However, it is not always the case that Benford’s law is obeyed by data distributions
and some data sets violate the law. These data sets can be roughly classified into two
categories, one in which the data do not satisfy the objective condition for applying the law
and the other containing anomalous data that break the law. For the former, the current
theoretical basis cannot determine a reasonable data set a priori and it still needs to be
judged by rigorous statistical analysis, which is its limitation. For the latter, scientists
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skillfully use this feature to develop Benford’s law as an effective tool for assessing data
quality and mining anomalous data.

Benford proposed a probability distribution function for significant digits, which states
that the probability that the first significant digit d1 is equal to k is given by [43]:

P(d1 = k) = log10

(
1 +

1
k

)
. (33)

As mentioned above, it was noticed (see Ref. [50]) that the distribution of lines in a
given transition array follows Benford’s logarithmic law of significant digits very closely
(see Figures 4 and 5 for the transition array 2p44 f 1 − 2p33d14 f 1 of Fe VI (Fe5+) computed
with Cowan’s code [56]). This indicates that the distribution of digits reflects the symmetry
due to the selection rules. If transitions were governed by uncorrelated random processes,
each digit would be equi-probable. An interesting point is that the lines of a non-relativistic
transition array seem to follow Benford’s law even when the spin–orbit interaction is
important. The values from Figure 5 are provided in Table 8.
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Figure 4. Transition array 2p44 f 1 − 2p33d14 f 1 of Fe VI (Fe5+) computed with Cowan’s code as a
function of the wavenumber expressed in kiloKayser (kK): 1 kK = 1000 cm−1.
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array Fe VI 2p44 f 1 − 2p33d14 f 1.
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Table 8. First significant digit of several line strengths of the transition array Fe VI 2p44 f 1− 2p33d14 f 1.
The error is defined as ∆ = 100 (Benford (column 2)− Exact (column 3))/Exact (column 2).

First Significant
Number of Lines Benford’s Law

Error ∆

Digit in the Strength (See Equation (34))
(%)

1 20850 20919.80 −0.33
2 12197 12232.18 −0.29
3 8792 8687.625 1.19
4 6844 6741.597 1.50
5 5436 5490.579 −1.00
6 4663 4656.567 0.14
7 3969 4031.058 −1.56
8 3456 3544.551 −2.56
9 3294 3197.046 2.94

In the latter table, the error is defined as

∆ = 100
Benford (column 2)− Exact (column 3)

Exact (column 2)
. (34)

We can see that the error is always very small (below 3%) and that there is no systematic
rule in the sense that the distribution of digits in the data can be either lower or higher than
the prediction of Benford’s law.

3.2. Explanations
3.2.1. Multiplicative Stochastic Processes

Benford’s law is still not fully understood mathematically. However, it can be applied
if the system is governed by random multiplicative processes [57], i.e., processes that
are additive in a logarithmic space. In Wigner’s Random Matrix Theory (RMT) [58], the
Hamiltonian is defined in the Gaussian Orthogonal Ensemble (GOE) by an ensemble of
real symmetric matrices whose probability distribution is a product of the distributions
for the individual matrix elements, considered stochastic variables, and the variance of
the distribution for the diagonal elements is twice that of the off-diagonal elements. The
matrix elements of the Hamiltonian are correlated stochastic variables and the product of
these variables, arising through the diagonalization process, leads to Benford’s logarithmic
distribution of digits. Since Benford’s law can be explained in terms of dynamics governed
by multiplicative stochastic processes (additive in logarithmic space), RMT is a relevant
and well-suited tool for the calculation of large E1 transition arrays [59] and Benford’s law
can help to clarify the existence of different classes of stochastic Gaussian variables.

3.2.2. Scale Invariance

Although the previous explanations show the kind of data that would conform to
Benford’s law, scale invariance explains how the formula can be derived. If the first digits
of some large data sets conform to a particular distribution, the latter distribution must be
independent of the data’s units of measurement. Let us consider that variable x follows a
scale-invariant distribution and assume that 1 ≤ x ≤ 10. Then, multiplying x by a constant,
i.e., adding a constant to log10(x), does not change the distribution. The only distribution
invariant when a constant is added is the uniform distribution U. This means that in the
interval [1–10]:

log10(x) ≈ U
[
log10(1), log10(10)

]
, (35)
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and, therefore, P(log10(x)) = 1. Then, we have

P(d = k) = P(k ≤ x < k + 1)

= P
(
log10(k) ≤ log10(x) < log10(k + 1)

)

=
∫ log10(k+1)

log10(k)
dy = log10

(
1 +

1
k

)
. (36)

It is important to mention that Hill also showed that base invariance implies Benford’s
law [60].

It is interesting to take a look at different transition arrays and different charge
states. Figures 6 and 7 show the results for transition arrays 3d3 − 3d24p and 3d3 − 3d24 f ,
Figures 8 and 9 focus on transition arrays 3d4 − 3d34p and 3d4 − 3d34 f , and
Figures 10 and 11 focus on transition arrays 3d5 − 3d44p and 3d5 − 3d44 f . We can see
that although the transition arrays have very different shapes, Benford’s law always applies
with great accuracy. Some small discrepancies can be observed, for instance, in the case
of digit 8 for 3d3 − 3d24p (Figure 7, right) or for digits 2 and 4 in the case of 3d5 − 3d44 f
(Figure 11, right). It is expected that the higher the statistics, the higher the likelihood
that the law will be verified, but it seems that even for transition arrays with the smallest
numbers of lines, the results are very convincing.
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Figure 6. Transition array 3d3 − 3d24p (line strength as a function of energy) computed with Cowan’s
code [56] and number of lines as a function of the first significant digit in the value of the strength.
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Figure 7. Transition array 3d3 − 3d24 f (line strength as a function of energy) computed with Cowan’s
code [56] and number of lines as a function of the first significant digit in the value of the strength.
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Figure 8. Transition array 3d4 − 3d34p (line strength as a function of energy) computed with Cowan’s
code [56] and number of lines as a function of the first significant digit in the value of the strength.
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Figure 9. Transition array 3d4 − 3d34 f (line strength as a function of energy) computed with Cowan’s
code [56] and number of lines as a function of the first significant digit in the value of the strength.
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Figure 10. Transition array 3d5− 3d44p (line strength as a function of energy) computed with Cowan’s
code [56] and number of lines as a function of the first significant digit in the value of the strength.

The fact that the line strengths follow Benford’s law, which is a consequence of scale
invariance, is consistent with the fact that the distribution of the lines presents a fractal
nature, as we have seen in Section 3.

It is interesting to see how the energies are distributed with respect to the first signifi-
cant digit of their strength (see Figures 12–16). We can see that the energies of the weak or
intermediate-strength lines are widespread over the energy range of the transition array
and that the strongest lines are gathered into a very limited number of bunches, which are
located close to the center of the transition array. This is a consequence of the propensity
rule and strength–energy correlation. The former means that the arrays are much narrower
than the configurations (in the absence of a correlation, the energy variance of an array
would be equal to the sum of the variances of the configurations). The propensity rule is
the trend of a line to connect preferentially a low (respectively, high)-energy level of the
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initial configuration to a low (respectively, high)-energy level of the final configuration.
The strength–energy correlation implies that the strongest lines are close to the center of
the array. The energy–amplitude correlation is such that, when the spin–orbit interaction
is weak, the general trend of an array is to gather the strongest lines close to its center
and disperse the weakest lines to its edges. Due to these two effects, a transition array is
expected to be sharp [61,62].
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Figure 11. Transition array 3d5− 3d44 f (line strength as a function of energy) computed with Cowan’s
code [56] and number of lines as a function of the first significant digit in the value of the strength.
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Figure 12. Number of lines with a first significant digit of 1 (left) and 2 (right) in their strength, as a
function of their energy, for transition array 3d4 − 3d34 f .
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Figure 13. Number of lines with a first significant digit of 3 (left) and 4 (right) in their strength, as a
function of their energy, for transition array 3d4 − 3d34 f .
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Figure 14. Number of lines with a first significant digit of 5 (left) and 6 (right) in their strength, as a
function of their energy, for transition array 3d4 − 3d34 f .
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Figure 15. Number of lines with a first significant digit of 7 (left) and 8 (right) in their strength, as a
function of their energy, for transition array 3d4 − 3d34 f .

350 400 450 500

Wavenumber (kK)

0

0.2

0.4

0.6

0.8

1

L
in

e 
st

re
n

g
th

 (
ar

b
it

ra
ry

 u
n

it
s) digit 9

Figure 16. Number of lines with a first significant digit of 9 in their strength, as a function of their
energy, for transition array 3d4 − 3d34 f .

3.3. Improvement Methods

The test accuracy in the application of Benford’s law can be improved in three aspects:
expanding the scope of the test, combining it with other models, and strengthening the
analysis of the test results.

In order to improve the efficiency of the data verification process, it is important not to
limit the analysis to the first digit and to extend the analysis to the next digits. For instance,
Benford’s law states that the first digit will be 2 more often than 5, but also that the first
two digits will be 54 more often than 55, 546 more often than 548, etc.
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• In general, the quality of the data set with the first digit obeying Benford’s law is good,
but when the distribution probabilities of different digit combinations (such as the
first-second, second-third, first-third digits, etc.) conform to the law, the test results
are even more accurate.

• “Multi-dimensional” detection data. If the conclusions of several tests (concerning
different relevant quantities of the system) are consistent, the data can be considered
reliable.

If the law is violated in a line-strength database, it means that there is something wrong
but it does not give any insight into the precise nature of the problem. It does not indicate
which line strengths are wrong or why. It may be a writing format issue, a bug in the code
occurring only for specific orders of magnitude, a numerical problem affecting only very
small or very large values, etc. Most codes combine different approximations, some of
which may be inappropriate and concern only values in a narrow range of a given decade,
having the same first significant digit. If one were to conduct line-strength calculations
with a variety of structure codes, one could assess the consistency and/or correctness of
these codes through the application of Benford’s law. In this sense, Benford’s law is not a
diagnostic tool stricto sensu, but rather an indicator of the reliability of a database.

4. The Learner Rule

Learner measured a large number of line intensities in the atomic spectrum of neutral
iron and in 1982, demonstrated the existence of a remarkable power law for the density of
lines versus their intensity [63]: the logarithm of the number of lines Nn, whose intensities
lie between 2n I0 and 2n+1 I0 (n is an integer), is a decreasing linear function of n:

log10

(
Nn

L

)
≈ a0 − p× n, (37)

where L is the total number of lines, a0 is a constant, and −p is the slope (p being positive).
The value of I0 is chosen in such a way that this law holds for 1 ≤ n ≤ 9 (9 octaves)

when about 1500 lines within 290 nm ≤ λ ≤ 550 nm are considered. One has

Nn = N0.10−np, (38)

where N0 = 10a0 L : the number of lines is multiplied/divided by 10p when the size of the
interval is multiplied by two.

Learner observed that if F(k) is the number of lines with intensity in octave k,

F(k) ≈
√

2 F(k + 1). (39)

F(k) is computed through [61]

F(k) =
∫ 2k+1 I0

2k I0

P(I)dI, (40)

where P(I) represents the intensity distribution. Equation (39) is consistent with a distribu-
tion P(I) = αI−3/2. For fractal objects [64], the measured length may depend on the length
of the measure:

L(`) = `

(
K
`

)D
, (41)

where L is the length of the object, ` is the measure, K is a constant, and D is the fractal
dimension. In the present case, we choose for L(`) the number of lines whose intensity is
larger than `:

L(`) =
∫ Imax

`
α I−3/2dI = 2α

[
`−1/2 − I−1/2

max

]
≈ 2α`−1/2, (42)
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and neglecting I−1/2
max , one finds D = 3/2.

Recently, Fujii and Berengut reported that the combination of two statistical models—
an exponential increase in the level density of many-electron atoms [65] and
local thermodynamic equilibrium excited-state populations—produces a surprisingly sim-
ple analytical explanation for this power law dependence [66].

They found that the exponent of the power law is proportional to the electron temper-
ature. This dependence may provide a useful diagnostic tool to extract the temperatures of
plasmas of complex atoms without the need to assign lines.

5. Quantifying the Precision of Interpolations

We compare two grids covering wide ranges of temperatures and densities; the first
one contains 2350 points and the second one contains 21,000 points (see Figure 17).

Figure 18 shows a comparison of the iron Rosseland mean opacity calculated on the
dense grid (140 densities and 150 temperatures), and interpolated on it from a smaller grid,
respectively, for two different densities, ρ = 0.08 g·cm−3 and ρ = 1330 g·cm−3, and two
different temperatures, T = 16 eV and T = 6.33 keV, which were chosen because they were
responsible for the most important discrepancies. Except for the latter cases, the differences
rarely exceeded a few %.

Figure 17. First grid containing 47 densities and 50 temperatures, i.e., 2350 points. Second grid
containing 140 densities and 150 temperatures, i.e., 21,000 points.
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Figure 18. Left: comparison between the iron Rosseland mean opacity calculated on the dense grid
(140 densities and 150 temperatures), and interpolated on it from a smaller grid for two different
densities: ρ=0.08 g.cm−3 and ρ=1330 g.cm−3 (left) and two different temperatures: T=16 eV and
T=6.33 keV (right). The latter isochores and isotherms were chosen because they yield the highest
discrepancies.

the possibilities to distribute 5 electrons in (3s) and (3p), i.e. the number of pairs (a, b) such
that a + b = 5 and 0 ≤ a ≤ 2 and 0 ≤ b ≤ 6. The superconfiguration S represents actually

(
8
4

)
×
(

8
5

)
×
(

18
3

)
×
(

26
2

)
= 1, 039, 584, 000 (44)

ordinary configurations, such as

(1s)2(2s)2(2p)2(3s)1(3p)4(3d)1(4s)1(4p)1(4d)2. (45)

We compare the cases with 1000 and 10000 superconfigurations. Figure 19 shows the 275

maximum value of the relative difference (in absolute values) between the iron Planck and 276

Rosseland mean opacities of a calculation with a maximum number of 1000 superconfigu- 277

rations and a maximum number of 10000 superconfigurations as a function of temperature. 278

Figure 20 represents the iron Planck mean opacities resulting from a calculation with a 279

maximum number of 1000 superconfigurations and a maximum number of 10000 super- 280

configurations as a function of temperature and density. Figure 21 displays the maximum 281

value of the relative difference (in absolute values) between the iron Planck mean opacities 282

of a calculation with a maximum number of 1000 superconfigurations and a maximum 283

number of 10000 superconfigurations as a function of temperature and density. Figure 22 284

shows iron Rosseland mean opacities of a calculation with a maximum number of 1000 285

superconfigurations and a maximum number of 10000 superconfigurations as a function 286

of temperature and density and figure 23 represents the maximum value of the relative 287

difference (in absolute values) between the iron Rosseland mean opacities of a calculation 288

with a maximum number of 1000 superconfigurations and a maximum number of 10000 289

superconfigurations as a function of temperature and density. We can see that the relative 290

differences can reach 30 % for the Rosseland mean, which is very important. For the Planck 291

mean, the maximum relative difference is smaller than the one of the Rosseland mean, and 292

smaller than 10 % (except for one value) in the temperature range considered in figure 19. 293

It is worth noting that the global variations are the same for both opacity means. The most 294

important differences occur at high temperature and moderate density, when the number of 295

excited states is important. A low density means a large Wigner-Seitz radius, and therefore 296

more allowed subshells of high principal n (and subsequently orbital `) quantum numbers, 297

and a high temperature implies that high-lying states can be populated by electrons. How- 298

ever, as can be seen on the three aforementioned figures, things are a bit more complicated; 299

this is just a general trend. It is important also to be careful with the interpretation of the 300

figure 19, since only the maximum relative difference (over all densities) is represented for 301
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Figure 18. Left: comparison between the iron Rosseland mean opacity calculated on the dense grid
(140 densities and 150 temperatures), and interpolated on it from a smaller grid for two different
densities: ρ=0.08 g.cm−3 and ρ=1330 g.cm−3 (left) and two different temperatures: T=16 eV and
T=6.33 keV (right). The latter isochores and isotherms were chosen because they yield the highest
discrepancies.
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Figure 18. Left: comparison of the iron Rosseland mean opacity calculated on the dense grid
(140 densities and 150 temperatures) and interpolated on it from a smaller grid for two different
densities, ρ = 0.08 g·cm−3 and ρ = 1330 g·cm−3 (left), and two different temperatures, T = 16 eV and
T = 6.33 keV (right). The latter isochores and isotherms were chosen because they yielded the highest
discrepancies.
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6. Convergence with Respect to the Number of Superconfigurations

The STA model relies on the concept of superconfigurations. A superconfiguration is
an ensemble of configurations close in energy. For instance,

S = (1s)2(2s2p)4(3s3p)5(3d4s4p)3(4d4 f 5s)2 (43)

is a superconfiguration made up of five supershells, (1s), (2s2p), (3s3p), (3d4s4p), and
(4d4 f 5s), populated, respectively, with 2, 4, 5, 3, and 2 electrons. For instance, (3s3p)5

represents all the possibilities of distributing 5 electrons in (3s) and (3p), i.e., the number
of pairs (a, b) such that a + b = 5 and 0 ≤ a ≤ 2 and 0 ≤ b ≤ 6. The superconfiguration S
represents (

8
4

)
×
(

8
5

)
×
(

18
3

)
×
(

26
2

)
= 1, 039, 584, 000 (44)

ordinary configurations, such as

(1s)2(2s)2(2p)2(3s)1(3p)4(3d)1(4s)1(4p)1(4d)2. (45)

We compare the cases with 1000 and 10,000 superconfigurations. Figure 19 shows
the maximum value of the relative difference (in absolute values) between the iron Planck
and Rosseland mean opacities of a calculation with a maximum number of 1000 super-
configurations and a maximum number of 10,000 superconfigurations as a function of
temperature. Figure 20 represents the iron Planck mean opacities resulting from a calcu-
lation with a maximum number of 1000 superconfigurations and a maximum number of
10,000 superconfigurations as a function of temperature and density. Figure 21 displays
the maximum value of the relative difference (in absolute values) between the iron Planck
mean opacities of a calculation with a maximum number of 1000 superconfigurations and a
maximum number of 10,000 superconfigurations as a function of temperature and density.
Figure 22 shows the iron Rosseland mean opacities of a calculation with a maximum num-
ber of 1000 superconfigurations and a maximum number of 10,000 superconfigurations
as a function of temperature and density and Figure 23 represents the maximum value of
the relative difference (in absolute values) between the iron Rosseland mean opacities of a
calculation with a maximum number of 1000 superconfigurations and a maximum number
of 10,000 superconfigurations as a function of temperature and density. We can see that the
relative differences can reach 30 % for the Rosseland mean, which is very important. For
the Planck mean, the maximum relative difference is smaller than that of the Rosseland
mean and smaller than 10 % (except for one value) of the temperature range considered
in Figure 19. It is worth noting that the global variations are the same for both opacity
means. The most important differences occur at a high temperature and moderate density,
where the number of excited states is important. A low density means a large Wigner–Seitz
radius and therefore more allowed subshells of high principal n (and subsequently orbital `)
quantum numbers, and a high temperature implies that high-lying states can be populated
by electrons. However, as can be seen in the three aforementioned figures, things are a
bit more complicated; this is a general trend. It is also important to be careful with the
interpretation of Figure 19 since only the maximum relative difference (over all densities)
is represented for a given temperature. The fact that the maximum relative difference for
a temperature T1 is larger than that for a temperature T2 does not mean that the average
difference at T1 (over all densities) is more important than the average difference at T2.
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Figure 19. Maximum value of the relative difference (in absolute values) between the iron Rosseland
(blue circles) and Planck (green diamonds) mean opacities of a calculation with a maximum number
of 1000 superconfigurations and a maximum number of 10,000 superconfigurations as a function of
temperature.

Figure 20. Iron Planck mean opacities of a calculation with a maximum number of 1000 superconfig-
urations and a maximum number of 10,000 superconfigurations as a function of temperature and
density.



Atoms 2023, 11, 27 21 of 27

Figure 21. Maximum value of the relative difference (in absolute values) between the iron Planck
mean opacities of a calculation with a maximum number of 1000 superconfigurations and a maximum
number of 10,000 superconfigurations as a function of temperature and density.

Figure 22. Iron Rosseland mean opacities of a calculation with a maximum number of 1000 supercon-
figurations and a maximum number of 10,000 superconfigurations as a function of temperature and
density.
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Figure 23. Maximum value of the relative difference (in absolute values) between the iron Rosseland
mean opacities of a calculation with a maximum number of 1000 superconfigurations and a maximum
number of 10,000 superconfigurations as a function of temperature and density.

7. Perspectives

Starting from an oscillator strength sum rule, Imshennik et al. derived an integral
relation that must be satisfied by the bound-electron radiation absorption coefficient when
the distribution of ions with respect to the degree of ionization and excitation state is
arbitrary. Making use of this relation, the authors formulated and solved a variational
problem that, under the conditions of local thermodynamic equilibrium (LTE), yielded the
smallest possible value of the Rosseland mean free path, i.e., the largest possible value of
the Rosseland opacity [67].

In a similar vein, Molodtsov et al. constructed a complete set of estimates for the
maximal Rosseland mean opacity for an LTE plasma with an arbitrary ion distribution in
terms of the degree of ionization and state of excitation on the basis of quantum-mechanical
sum rules of the kind ∫ ∞

0
κ(u) uk du. (46)

The case k = 0 is a direct consequence of the Thomas–Reiche–Kuhn sum rule and is
equal to the number of electrons in the atomic system. The case k = −1 can be expressed
through the mean square radius of the atom in the ground state, the sumk = +1 can be
expressed through the mean square momentum of the electron in the ground state, and the
sum k = +2 can be expressed in terms of the density of the electrons at the nucleus [68].

8. Conclusions

We have investigated a few aspects of atomic physics (and more specifically opacity)
databases. We have seen that mathematical inequalities combined with oscillator strength
sum rule(s) can be helpful for checking the relevance of compiled data or experimental
results. Additional mathematical inequalities likely to provide new bounds are provided
in Appendix B. In a different framework, Benford’s law is known to be an efficient tool
for testing data quality in different fields of nature, social sciences, etc. It sheds light on
the strategic role of big data in the modern era and supports governments and industry
leaders in making scientific decisions. The purpose is not only to judge the quality of data
but also to mine anomalies and extract effective information. It was shown a few years
ago that Benford’s law was verified by line strengths in atomic spectra. The understanding
of its theoretical grounds should be deepened and its applicability conditions clarified.
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Moreover, the joint application of Benford’s law and other data processing techniques
should be strengthened according to the common data quality problems in atomic physics
computations. This could be performed by adopting data mining techniques (classifica-
tion, clustering, outlier detection), traditional data detection models, and other targeted
optimization test methods. There are inevitable or accidental errors in the data verification
process. An important method for improving the accuracy of the test results is to adopt
appropriate methods for avoiding, eliminating, or correcting the errors. The development
of Benford’s law in the future will require specialists from all fields to further study its
essence, strengthen its integration with other data processing technologies, and then ex-
pand its applications. All the ideas presented here may also be of great interest for checking
molecular-opacity databases [69]. These constraints can also be useful for assessing the
reliability of an experimental measurement [70,71].
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Appendix A. Klein–Nishina Scattering Rosseland Mean

Introducing the reduced parameter γ = hν/(mc2), the Klein–Nishina relativistic
cross-section reads

κKN = κTh ×
{

1 + γ

γ2

[
2(1 + γ)

2γ + 1
− 1

γ
ln(2γ + 1)

]
+

1
2γ

ln(2γ + 1)− 3γ + 1
(2γ + 1)2

}
. (A1)

If γ� 1, one has

κKN = κTh ×
(

1− 2γ +
26
5

γ2 + · · ·
)

(A2)

and if γ� 1

κKN ≈ κTh ×
3

8γ

(
ln(2γ) +

1
2

)
. (A3)
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Let us assume that the relativistic effects are negligible. We can then take Equation (A2),
yielding

1
κKN

≈ 1
κTh
×
(

1 + 2γ− 6
5

γ2
)

. (A4)

Using the reduced variable u = hν/(kBT), one has for the Rosseland mean, in the case
of the Klein–Nishina expression of the scattering cross-section,

κR,KN =
4π4

15
κTh

[∫ ∞

0

u4e−u

(1− e−u)2

(
1 +

2kBT
mc2 u− 6

5

(
kBT
mc2

)2
u2

)
du

]−1

, (A5)

i.e.,

κR,KN =
4π4

15
κTh

[∫ ∞

0

u4e−u

(1− e−u)2 du + 2
kBT
mc2

∫ ∞

0

u5e−u

(1− e−u)2 du

−6
5

(
kBT
mc2

)2 ∫ ∞

0

u6e−u

(1− e−u)2 du

]−1

. (A6)

Using
∫ ∞

0

u4e−u

(1− e−u)2 du =
4π4

15
(A7)

as well as ∫ ∞

0

u5e−u

(1− e−u)2 du = 120 ζ(5) (A8)

and ∫ ∞

0

u6e−u

(1− e−u)2 du =
16π6

21
, (A9)

we get

κR,KN = κTh

[
1 +

900 ζ(5)
π4

(
kBT
mc2

)
− 24π2

7

(
kBT
mc2

)2
]

(A10)

i.e.,

κR,KN ≈ κTh

[
1 + 9.58057

(
kBT
mc2

)
− 33.8386

(
kBT
mc2

)2
]

. (A11)

Appendix B. Additional Mathematical Inequality Likely to Provide New Bounds

Other mathematical inequalities may also be of interest [72] such as the Minkowski in-
equality [73,74] or the Jensen convexity inequality [75]. The Pólya–Szegö inequality [76–78],
which states that if 0 ≤ m1 ≤ a(u) ≤ M1 and 0 ≤ m2 ≤ b(u) ≤ M2, then

(∫ ∞

0
a2 du

)(∫ ∞

0
b2 du

)

≤ 1
4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2(∫ ∞

0
ab du

)2
,

(A12)

could lead to new constraints, as well as the following ones published by Karamata [79]:
(∫ ∞

0
a du

)(∫ ∞

0
b du

)
≤ K2

(∫ ∞

0
ab du

)
(A13)
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and
1

K2

(∫ ∞

0
ab du

)
≤
(∫ ∞

0
a du

)(∫ ∞

0
b du

)
(A14)

with

K =

√
m1m2 +

√
M1M2√

m1M2 +
√

M1m2
, (A15)

or the Young inequality [80]:

∫ ∞

0
ab du ≤ 1

p

∫ ∞

0
ap du +

1
q

∫ ∞

0
bq du, (A16)

with, as in the Hölder inequality,
p + q = pq. (A17)
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