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Abstract: An extension of the variational approach for the study of atomic properties of ions and
atoms containing up to 10 electrons is presented. The study includes exact analytical calculations
of all the interaction terms, including direct Coulomb interactions and exchange interactions. Two
alternative formulations are considered, with one and with two variational parameters. The exact
and numerical values of these parameters are obtained and tabulated. The results of this study
are compared with Hartree–Fock calculations. Sample applications to electron-atom scattering and
energy losses of ions in Tokamak plasmas are presented.
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1. Introduction

Throughout the years, great advances in the knowledge of the atomic structure and
atomic processes involving ionized matter have been made. Today, the question of atomic
modeling is a well-developed area where a large number of relevant works has been
published. Detailed accounts of early and more recent advances may be found in [1–7].
Current theories include statistical descriptions, numerical studies based on Hartree–Fock
theory, and density-functional methods. On one side, the structure of one- and two-electron
atoms has been studied in great depth [8]. On the other, statistical theories have been able
to describe the general properties of many-electron atoms [9]. In particular, the Thomas–
Fermi and related statistical models provide useful approaches to describe extreme cases,
ranging from atomic systems [10] to astrophysical environments [11]. Between these
extremes, the case of few-electron atoms remains a more elusive area, where no simple
analytical solutions are readily available, and most studies refer to numerical methods such
as Hartree–Fock calculations [4,12].

In this context, there is a need for analytical methods that could provide more straight-
forward access to problems related to few-electron atoms or ions in matter. This includes,
in particular, the areas of ions in plasmas. A large number of atomic processes in dense
and dilute plasmas bear great interest for nuclear fusion studies, such as those related
to Tokamak or ICF-type plasmas [13–21], ion acceleration in plasmas by ultra-short laser
pulses [22], astrophysical media such as stellar interiors [23], where highly ionized matter
is created [24,25], as well as in space science [26]. Other areas of great relevance are those
of radiation therapy and other applications using energetic ion beams [27–30].

As mentioned before, there is always the Hartree–Fock (HF) method, but HF calcula-
tions are expensive in terms of computer time. Therefore, if alternative methods that could
provide fast and reliable results were available, they would become useful tools in quite
different areas of knowledge.

One well-known and simple approach is the variational method of Ritz [5,31], but
applications to atomic systems have been, so far, mostly limited to the normal or the excited
states of He and to hydrogen-like atoms. A more recent and interesting development was
made by Kaneko [32], who extended the variational calculation to atoms of Li and Be.
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The purpose of this work is to make a further advance in the line of variational
calculations, extending the study to ions and atoms containing up to 10 electrons. The aim
is not to compete with the more elaborate and precise computer calculations but to develop
a simplified analytical approach that could allow straightforward applications to many
problems of atomic interactions in matter.

This includes, for instance, problems of electron scattering by ions or neutral atoms,
X-ray scattering in matter, the penetration of ions in solids, and some relevant problems of
ions in fusion plasmas such as those already mentioned, the behavior of impurity ions in
the laboratory or astrophysical plasmas, or the use of ion beams for medical or technological
applications.

This work is organized as follows: in the next section, a brief summary of the vari-
ational method is made. The following sections describe the extension of the method to
include 1s, 2s, and 2p electrons, obtaining exact analytical expressions for all the electron-
interaction energies, including direct and exchange terms. Using the exact expressions for
the energy terms, the variational parameters are determined, and their values are tabulated,
covering a total number of 45 cases of ions and atoms. The results of this approach will
be compared with those obtained from the HF theory, considering the calculations of total
energies, densities, and form factors and ending with two sample applications: elastic
scattering of electrons by atoms and stopping of ions in Tokamak-like plasmas.

Two appendices condense further information: Appendix A describes the method
used for the analytical calculation of electron interaction integrals, and Appendix B contains
all the values of interaction-energy terms obtained from the exact analytical integrations.

2. Variational Method

The energy of an atom or ion of atomic number Z with an N-bound electron may be
represented in the form

E = 〈Ψ|H|Ψ〉 (1)

where H is the Hamiltonian and |Ψ〉 is a determinantal wave function.
The Hamiltonian consists of one- and two-electron operators, F̂ and Ĝ, respectively, of

the form [5]:

F̂ =
N

∑
i=1

f̂i (2)

Ĝ = ∑
i<j

ĝij (3)

being in this case:

f̂i = −
h̄2

2m
∇2

i −
Ze2

ri
(4)

ĝij =
e2

rij
(5)

An important property to be used here is that the expectation value of the whole
Hamiltonian with the determinantal wave function |Ψ〉may be decomposed in a sum of
simple one-orbital and two-orbital elements as

〈
Ψ
∣∣∣F̂∣∣∣Ψ〉 =

N

∑
i=1
〈i| fi|i〉 (6)

〈
Ψ
∣∣∣Ĝ∣∣∣Ψ〉 = ∑

i<j

[〈
ij

∣∣∣∣∣ e2

rij

∣∣∣∣∣ij
〉
−
〈

ij

∣∣∣∣∣ e2

rij

∣∣∣∣∣ji
〉]

(7)

where |i〉 denotes the individual wave functions of electrons. The first term in
〈

Ψ
∣∣∣Ĝ∣∣∣Ψ〉
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represents the usual Coulomb interaction between electrons, while the second term corre-
sponds to the exchange interactions between electrons with equal spin projections.

Using the properties of one- and two-electron operators, the energy may be separated
in the following way

E = T + Ven + Vee −Wee (8)

where T = ∑N
i=1 Ti = ∑N

i=1

〈
i
∣∣∣− h̄2

2m∇2
∣∣∣i〉 is the kinetic energy of all electrons, Ven =

∑i V(en)
i = ∑i

〈
i
∣∣∣− Ze2

r

∣∣∣i〉 is the sum of the electron–nucleus interactions, and Vee and Wee

represent the direct and exchange electron interactions, Vee=∑i<j

〈
ij
∣∣∣ e2

r12

∣∣∣ij〉 and Wee =

∑i<j

〈
ij
∣∣∣ e2

r12

∣∣∣ji〉.
In order to apply the variational method, the electron wave functions must contain one

or more parameters whose values are determined by minimizing the energy. Moreover, to
obtain the expressions for the variational energy, according to Equation (1), the expectation
values were calculated by applying Hund’s rules and considering the Slater determinant
with maximum MS and ML compatible with those rules, as described in Section 4.

2.1. Wave Functions and Densities

The wave functions used in this formulation are parameterized hydrogenic wave
functions of the form

ψ1s(r) =
α3/2
√

π
e−αr (9)

ψ2s(r) =
γ3/2
√

π
(1− γr)e−γr (10)

ψ2p0(r, θ) =
λ5/2
√

π
r e−λr cos(θ) (11)

ψ2p±1(r, θ, ϕ) =
λ5/2
√

2π
r e−λr sin(θ)e±iϕ (12)

with the corresponding densities

n1s(r) =
α3

π
e−2αr (13)

n2s(r) =
γ3

π
(1− γr)2e−2γr (14)

n2p0(r, θ) =
λ5

π
r2e−2λr cos2(θ) = f2p(r) cos2 θ (15)

n2p±1(r, θ) =
λ5

2π
r2e−2λr sin2(θ) =

1
2

f2p(r) sin2 θ (16)

where

f2p(r) =
λ3

π
(λr)2e−2λr (17)

I have assumed here two variational parameters α (for 1s and 2s wave functions) and
β (for 2p wave functions), using for simplicity related parameters γ = α/2, λ = β/2.

It should be noted that in order to obtain meaningful results from the variational
method, the trial wave functions must be orthogonal. For this reason, the 1s and 2s orbitals
must have the same variational parameter. However, this restriction does not apply to the
2p orbitals since the orthogonality with s states is guaranteed by the corresponding angular
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integrals. This degree of freedom is quite useful for obtaining a better variational solution,
as will be shown here.

3. Calculation of Energy Terms

The first question that we face here is the calculation of kinetic and interaction-energy
terms in Equation (8). The first two terms (T and Ven) are straightforward; the problem lies
in the other two terms (Vee and Wee) corresponding to electron–electron interactions. These
are the nontrivial terms to be calculated in this work.

I will write down now the values of the first two terms (T and Ven). The calculation of
the electron–electron interaction terms will be described in Appendix A.

3.1. Kinetic Energy Terms

The kinetic energy terms are those already known for hydrogenic wave functions,
namely (energy values here are expressed in atomic units)

T1s =
1
2

α2 (18)

T2s =
1
8

α2 (19)

T2p =
1
8

β2 (20)

The latter expression for T2p corresponds to the formulation in terms of two parameters,
α and β; in the case of restricting the formulation to only one parameter α, the values of T2p

and T2s are equal: T2p = T2s =
1
8 α2.

3.2. Electron–Nucleus Interaction

The calculation of these terms is also straightforward, with the results

V(en)
1s ≡ −U1s = −Zα (21)

V(en)
2s ≡ −U2s = −

1
4

Zα (22)

V(en)
2p ≡ −U2p = −1

4
Zβ (23)

Here, for easier identification of the various energy terms, I have introduced the letter
U to represent the electron–nucleus interactions (with positive values); the upper-script (en)
will no longer be necessary. Therefore, in the following, the letters U, V and W will identify
the energy terms corresponding to electron–nucleus, electron–electron (direct terms) and
electron–electron (exchange terms), respectively.

Again, in the case of using only one parameter (α), the expression for V(en)
2p coincides

with V(en)
2s , i.e., V(en)

2p = − 1
4 Zα.

3.3. Electron–Electron Interactions

Due to the identity of electrons, we have to consider two types of interaction terms.
On the one side, we have direct Coulomb interactions; the calculation of these terms is
made using the expression

Vij =

〈
ij
∣∣∣∣ e2

r12

∣∣∣∣ij〉 =
∫

d3r1

∫
d3r2ni(

−→r 1)
e2

r12
nj(
−→r 2) (24)
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On the other hand, the exchange interaction between orbitals i and j is calculated as

Wij =

〈
ij
∣∣∣∣ e2

r12

∣∣∣∣ji〉 =
∫

d3r1

∫
d3r2 ψ∗i (

−→r 1)ψ
∗
j (
−→r 2)

e2

r12
ψj(
−→r 1)ψi(

−→r 2) (25)

To evaluate these integrals, I will use the representation of 1/r12 in terms of spherical
harmonics Ylm(θ, ϕ), namely [33],

e2

r12
= 4πe2

∞

∑
l=0

l

∑
m=−l

1
2l + 1

(
rl
<

rl+1
>

)
Y∗lm(θ1, ϕ1)Ylm(θ2, ϕ2) (26)

and using the property (with dΩ = sin(θ)dθdϕ):∫
dΩ Y∗lm(θ, ϕ)Yl′m′(θ, ϕ) = δl,l′δm,m′ (27)

Considering all the possible occupied orbitals involved in this study, a number of
different integrals related to electron interactions must be calculated. The analysis becomes,
in practice, complicated by the growing number of interactions that appear when the
number of electrons increases. The handling of the corresponding integrals becomes rather
cumbersome; however, an important aspect of the variational method using hydrogenic
wave functions is that all those integrals can be calculated analytically and yield exact
algebraic values. The details of these calculations are described in Appendix A, and the
complete set of results is given in Appendix B.

4. Expressions for the Energies

The energy of an atomic system is formally given by Equation (8), but the number of
terms that must be included depends strongly on the number of electrons attached to the
atom or ion. The results for all the individual energy terms are given in Appendix B. These
results must be combined in a way that depends on the distribution of electrons to obtain
appropriate expressions for the variational energy of each atom or ion.

To start with a simple case, I will first consider the Be atom. The electronic structure of
the neutral atom is of form 1s22s2. Hence, in this case, one must take into account all the
electron–electron interactions that take place between the 1s and 2s orbitals. This yields the
expression for the total energy of this atom:

E[Be0] = 2T1s + 2T2s − 2U1s − 2U2s + V1s,1s + 4V1s,2s + V2s,2s − 2W1s,2s (28)

which contains a total of 16 terms. Here, I introduce the notation [Be0] to indicate the
electronic structure of the Be0 atom.

Similarly, I will use the compact notation [Be+], [Be2+], [Be3+], [Be4+] to denote the
electronic structure of the various Be ions (notice that [Be4+] stands simply for a point
nuclear charge 4e). This notation will extend to all the ions covered by this study.

It may be noticed that insofar as the electronic structure is concerned, all ions be-
longing to the same isoelectronic series contain the same terms in the expression for
the corresponding energies. We may state this property by writing relations such as
[Be0] = [B+] = [C2+] = [N3+] . . . = [Ne6+], [Be+] = [B2+] = [C3+] = [N4+] . . . = [Ne7+],
and so on with other isoelectronic series.

For heavier elements, where the 2p orbitals are progressively occupied, the number of
terms in the expression for the total energy increases steeply. The energy of these heavier
ions may be expressed in compact form using the [Be0] configuration as a basis, namely

E[. . .] = E[Be0] + ∆Ep (29)

where ∆Ep contains all the energy terms associated with occupied 2p orbitals, including the
interactions of 2p states with 1s and 2s. The occupation of these orbitals is made according
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to Hund’s rule. In addition to maximum S and maximum L (compatible with the first
rule), the occupation of the orbitals is considered here with the additional criterion of
maximum MS and maximum ML. This guarantees that one can work with only one Slater
determinant [4,5], which eases very much the calculations. In all cases, the calculations
apply to the ground state.

To illustrate this point, in Table 1, I collate several examples. The numbers in the
columns indicate the number of terms of each type that should be added to the sum to
obtain the total energy of particular atoms or ions. Thus, in the case of Ne0, taking the
structure of Be0 (Equation (28)) as a starting reference, the total energy becomes:

E[Ne0] = E[Be0] + 6T2p − 6U2p + 12V1s,2p + 12V2s,2p + V2p0,2p0 + 8V2p0,2p1 + 6V2p1,2p1

−6W1s,2p − 6W2s,2p − 4W2p0,2p1 − 2W2p1,2p−1 (30)

which contains a total of 85 terms (including the 16 terms of Be0). It may be shown, however,
that only 19 of these terms are different.

One may also notice in this table that the are no terms of type W2p0,2p0 because of
the Pauli principle. Therefore, the corresponding places in the Table are void (this term is
included only to maintain the ordering and symmetry of the table).

Some particular cases in this table that illustrate the isoelectronic equivalence are those
of [C0] with [O2+], [O0] with [F+] and [F0] with [Ne+], where the sequence of numbers for
each of these pairs of elements are the same. Interestingly, the difference in the energies
of cases within the same isoelectronic series is produced only by the electron–nucleus
interaction, which depends on the atomic number Z.

For further and more detailed analysis I give in Appendix B the complete expressions
of the variational energy for all the possible charge states of Ne, which also yields the
expressions for all the other elements with Z ≤ 10 when the properties of isoelectronic
series are applied.

Table 1. Number of Energy Terms for various sample cases.

Ion T2p V en
2p

V1s,2p V2s,2p V2p0,2p0 V2p0,2p±1 V2p±1 ,2p±1

W1s,2p W2s,2p W2p0,2p0 W2p0,2p±1 W2p+1,2p−1

C0 2 2 4 4 0 1 0
2 2 - 1 0

C+ 1 1 2 2 0 0 0
1 1 - 0 0

O0 4 4 8 8 0 3 3
4 4 - 2 1

O+ 3 3 6 6 0 2 1
3 3 - 2 1

O2+ 2 2 4 4 0 1 0
2 2 - 1 0

O3+ 1 1 2 2 0 0 0
1 1 - 0 0

F0 5 5 10 10 1 6 3
5 5 - 3 1

F+ 4 4 8 8 0 3 3
4 4 - 2 1

Ne0 6 6 12 12 1 8 6
6 6 - 4 2

Ne+ 5 5 10 10 1 6 3
5 5 - 3 1
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5. Determination of the Variational Parameters
5.1. One Variational Parameter (V1 Formulation)

I will first consider the simplest formulation in terms of one variational parameter α,
so that, in this case, β = α. This will be referred to as the “V1 formulation”.

Once the set of terms that contribute to the energy of each ion and atom are determined,
and having also determined the exact algebraic values of each term as a function of
parameter α (by Equations (18)–(23) and the equations in Appendix B), it is possible
to determine the value of α by minimizing the variational energy in each case. This can be
made in a straightforward way by noticing that the kinetic energy is a quadratic function
of α, while all the other terms have a linear dependence on this parameter. Hence, the
expression for the total energy is in all cases of the form

E(α) = T0α2 −Uen
0 Zα + Vee

0 α−Wee
0 α (31)

where T0 , Uen
0 , Vee

0 , and Wew
0 are the appropriate coefficients corresponding to the total

kinetic energy (T0), electron–nucleus interaction energy (Uen
0 ), and direct and exchange

electron–electron interaction energies (Vee
0 , Wee

0 ), and where the dependencies on the pa-
rameter α and nuclear charge Z have been explicitly factorized.

This expression makes it obvious that the value of α that minimizes the energy is

α =
Uen

0 −Vee
0 + Wee

0
2T0

(32)

Let us consider, for example, the case of carbon atoms, C0. In this case, according to
Equations (18)–(23) and those of Appendix B, and the numbers in Table 1,

T0 =
3
2

(33)

Uen
0 = 3Z (34)

Vee
0 =

5
8
+ 4

17
34 +

77
29 + 4

59
35 + 4

83
29 +

3
5

149
29 (35)

Wee
0 = 2

24

36 + 2
7× 24

38 + 2
15
29 +

3× 6!
21352 (36)

Substituting this into Equation (32) and arranging terms, we get a long but exact
expression for the value of α,

α = Z− 1
3

[
(

5
8
+ 4

17
34 +

77
29 + 4

59
35 + 4

83
29 +

3
5

149
29 )− (2

24

36 + 2
7× 24

38 + 2
15
29 +

3× 6!
21352 )

]
(37)

with Z = 6 in this case.
Finally, after some algebraic work and the cancellation of common factors, one gets

α =
36091694313
7346640384

∼= 4.91268 . . . (38)

A similar treatment can be made for all the possible ions and atoms in the range
Z ≤ 10, obtaining, in all cases, exact algebraic values for the corresponding parameter α.
The complete set of numerical values is collated in Table 2. The table contains all the cases
of possible charge states n, from n = 0 to Z− 1; the latter case corresponds to ions carrying
only one electron so the value of α is just Z (hydrogen-like ions). The total number of cases
described is 55 (or 45 if the obvious cases with α = Z are excluded), which covers all the
possible atoms and ions in the prescribed range of Z values.
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Table 2. Variational parameter α (in atomic units).

Ion n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

Hn+ 1
Hen+ 1.688 2
Lin+ 2.545 2.688 3
Ben+ 3.372 3.545 3.688 4
Bn+ 4.151 4.372 4.545 4.688 5
Cn+ 4.913 5.151 5.372 5.545 5.688 6
Nn+ 5.660 5.913 6.151 6.372 6.545 6.688 7
On+ 6.382 6.660 6.913 7.151 7.372 7.545 7.688 8
Fn+ 7.098 7.382 7.660 7.913 8.151 8.372 8.545 8.688 9

Nen+ 7.807 8.098 8.382 8.660 8.913 9.151 9.372 9.545 9.688 10

By observing the results in this table, one finds some interesting regularities: the
values in the diagonals, when reading them from left to right, increase from one place to
the next by exactly 1. It can be seen that this is a property of the electronic structure of
ions belonging to the same isoelectronic series. For these cases, the sequence of occupation
numbers for the whole series is the same; therefore, the values of α may be expressed in a
way similar to Equation (37), which starts with the value of Z (with the rest of numbers
being the same for the whole isoelectronic series).

As a consequence of this property, one realizes that it would be enough to determine
the values of α for all the charge states of Ne (with n from 0 to 9) to obtain the values of α
for the rest of the cases in the table.

Unfortunately, this regularity applies only in the one-parameter formulation. Instead,
in the following description, in terms of two parameters, each ion or atom must be solved
as a particular case.

5.2. Two Variational Parameters (V2 Formulation)

I consider now an extension of the variational calculation using two parameters.
This approach will be referred to as the V2 formulation. As noticed before, an important
condition of the variational method is to assure the orthogonality of the trial wave functions.
In the present study, I take advantage of the automatic orthogonality between the s and p
orbitals that arises from the angular dependencies. In addition, the three p-type orbitals
must be mutually orthogonal. To assure these conditions, I use a set of hydrogenic p orbitals
containing a common variational parameter β.

Therefore, I will keep the α parameter for the 1s and 2s orbitals, according to Equa-
tions (9) and (10), and introduce parameter β for the 2p wave functions, according to
Equations (11) and (12), and the related densities given by Equations (15) and (16) (and
with auxiliary parameters γ = α/2, λ = β/2).

The calculation of the direct and exchange interaction terms is now much more
cumbersome. Some details of these calculations are given in Appendix A and the resulting
values in Appendix B.

With this new scheme, the expression for the variational energy depends now on both
α and β: E(α, β). The values of α and β were then determined by minimizing E(α, β) with
respect to both parameters. To find the optimum values of these parameters, a detailed
study of the function E(α, β) in the α–β plane must be made. This was performed in a
numerical way, and the results are given in Table 3. The void places in this table correspond
to electronic configurations that involve only 1s and 2s orbitals (so in these cases, β = α).
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Table 3. Variational parameters α, β.

Ion n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

Hn+ α 1
Hen+ α 1.688 2
Lin+ α 2.545 2.688 3
Ben+ α 3.372 3.545 3.688 4
Bn+ α 4.348 4.372 4.545 4.688 5

β 1.877
Cn+ α 5.305 5.329 5.372 5.545 5.688 6

β 2.755 3.290
Nn+ α 6.256 6.279 6.318 6.372 6.545 6.688 7

β 3.517 3.979 4.418
On+ α 7.211 7.228 7.264 7.312 7.372 7.545 7.688 8

β 4.167 4.674 5.091 5.501
Fn+ α 8.163 8.180 8.209 8.253 8.308 8.372 8.545 8.688 9

β 4.835 5.294 5.767 6.165 6.556
Nen+ α 9.113 9.130 9.158 9.195 9.245 9.304 9.372 9.545 9.688 10

β 5.508 5.940 6.376 6.831 7.215 7.596

Figure 1 shows an example of the case of Nen+ with charges varying from 0 to 9.
The black dots are the results of the one-parameter formulation (V1 case), and the blue
dots are those of the two-parameter formulation (V2 case). For Ne charges larger than
five, the three curves collapse into a single one; the reason for this is that for these higher
charge values all the 2p-shell electrons are removed, and so the calculation restricts to the
one-parameter case.

The figure also illustrates an interesting feature: when the possibility of two parameters
occurs (i.e., from charge 0 to 5), the values of α increase (with respect to the one-parameter
formulation) and the new parameter β appears with a much lower value. This corresponds
to the physical feature that the 1s and 2s orbitals move inward (approaching the nucleus)
while the 2p orbitals move outward (with respect to the one-parameter description). The
result of this is that the interaction energy between these electrons decreases, as well as
the total energy. (There are other terms, such as the kinetic energy of s orbitals, whose
value increases, but it may be shown that the main difference is the reduction in the
electrostatic interaction between s and p orbitals due to the largest spatial separation.) Thus,
the additional degree of freedom arising from the availability of the two parameters gives
the possibility of lowering the total energy.

0 1 2 3 4 5 6 7 8 9

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

   (variat. 1)
 ,  (variat. 2)

pa
ra

m
et

er
s 

 
, 

Neon charge

Figure 1. Parameters α and β for Nen+ with charges varying from 0 to 9. The black dots are the
results of the one-parameter formulation (V1 case), and the blue dots are those of the two-parameter
formulation (V2 case).
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Figure 2 illustrates how this readjustment of parameters takes place, and the ensuing
shift in the value of α. The dotted curve in this figure shows the values of the energy E(α)
corresponding to the V1 scheme. The optimum value of α, in this case, is 7.807, and the
corresponding variational energy is −121.9 a.u. On the other hand, the solid line shows the
values of the two-parameter energy E(α, β), for a fixed value of β, as a function of α. In this
figure, the value of β was fixed at the optimum value, β = 5.508, obtained by a numerical
iterations procedure. This curve indicates an increase in the optimum α value resulting in
α = 9.113, leading to a lower energy, E = −126.56 a.u., which is closer to the Hartree–Fock
energy, EHF = −128.55 a.u., here represented by the lower red dashed line. The difference
between these two values is 1.6 %.
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Figure 2. Variational energy as a function of parameter α for the V1 and V2 formulations. The dotted
curve in this figure shows the values of the energy E(α) corresponding to the V1 case; the solid line
shows the values of the energy E(α, β) for the V2 case and for a fixed value of β. The red dashed line
represents the HF value.

Therefore, it is expected that the two-parameter variational formulation will yield a
better description of the electronic structure of the atoms and ions. In the following, we will
test the degree of improvement by comparing it with precise atomic structure calculations.

6. Variational Results, Comparisons and Applications

The results of the variational minimization of the energy expressions for each of the
atoms and ions included in this study are condensed in Table 2 (one-parameter cases) and
Table 3 (two-parameter cases). The changes in the parameter values have been analyzed,
and the next question is to compare them with the precise results obtained from the
numerical solutions of the Hartree–Fock equations. For this purpose, I will use here the set
of results tabulated by Clementi and Roetti [12].

6.1. Total Energies

The first critical test of the variational calculations is to compare the values of the total
energy with those obtained from the solutions of the Hartree–Fock (HF) equations.

Figure 3 shows the values of the variational energy obtained with the one-parameter
(V1) and two-parameter formulations (black and blue lines, respectively) for Be, C, O, and
Ne with various charge states. The red dots in this figure are the HF values obtained from
Ref. [12]. As may be observed, the variational results agree very closely with the HF values.
The maximum deviation from the HF values occurs for Ne0, with differences of 5.2% for the
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V1 case, and 1.6% for the V2 case (this case corresponds to the one illustrated in Figure 2).
As shown in the figures, the results of the V2 formulation are in excellent agreement in
all cases.
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Figure 3. Comparison between energy values resulting from variational calculations using 1 and 2
parameters and those from the Hartree–Fock calculation for neutral atoms (Q = 0) and for ions with
charge Q = 2 and Q = 4.

6.2. Densities and Form Factors

Before entering into this analysis, it is appropriate to introduce the formulas for the
form factors corresponding to the present formulation.

As is known, the form factors are defined by the Fourier transform of the electron
density, in the form

Fi(q) =
∫

d3rei−→q .−→r ni(
−→r ) (39)

Considering the densities of the 1s, 2s, and 2p orbitals of interest in this work, the
following expressions for the corresponding form factors are obtained:

F1s(q) =
16α4

(q2 + 4α2)2 (40)

F2s(q) =
α8 − 3α6q2 + 2α4q4

(q2 + α2)4 (41)

F2p(q) = β6 β2 − q2

(β2 + q2)4 (42)
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To obtain the expression for the function F2p(q), I have taken the angular average
of the corresponding density; in this way, the average form factors for the 2p0 and 2p±1
become equal.

The form factor for the whole atom or ion is then defined by

F(q) = Z− N1sF1s(q)− N2sF2s(q)− N2pF2p(q) (43)

where N1s, N2s and N2p are the occupation numbers of each orbital.
Figure 4 shows the form factors corresponding to the 1s, 2s, and 2p orbitals of Oxygen,

obtained with the one- and two-parameter formulations. The features illustrated in this
figure are a consequence of the previously described readjustment of atomic orbitals when
switching from the one-parameter (dotted lines) to the two-parameter (solid lines) approach.
The 1s and 2s curves shift to larger values of q (corresponding to the orbitals that move
radially inward in space), while the 2p curve shows the opposite behavior. The largest
effect is found in the 2p form factor due to the much lower value of the parameter β with
respect to α shown in Figure 1. The final result of these readjustments is a total form factor
that compares very well with the HF form factor (open circles in this figure).
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Figure 4. Form factors corresponding to 1s, 2s, and 2p electrons obtained from the one-parameter
(dotted lines) and two-parameter (solid lines) formulations, and the corresponding total form factors
for Oxygen; the circles are the values of the form factor obtained from the HF calculations of Ref. [12].

A different model to calculate the form factors for atoms and ions, frequently used in
the area of ion–solid interactions, is the Brandt–Kitagawa model (BK) [34,35]. This model
is based on the statistical properties of high-Z atoms [9]. For this reason, it may not be
expected to yield accurate results for relatively low-Z elements (as is the present case),
where the shell structure is a notorious feature.

In the BK approach, the form factor is given by.

FBK(q) = Z− N
1 + Λ2q2 (44)

where N is the number of electrons and Λ is a screening parameter given by

Λ =

√
0.23N3/2

(Z− N/7)
(45)

Figure 5 compares the values of the radial densities, defined as 4πr2n(r) (upper two
panels) and form factors (lower two panels) for C0 and C+. The curves in panels (a) and
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(b) show significant differences in the electron densities with respect to the HF results
(with some mild improvement in the V2 curves). However, the corresponding form factors
shown in panels (c) and (d) provide a distinct view. The form factor obtained from the V1
formulation compares fairly well (considering the simplicity of the approach) with the HF
form factor, while the V2 curve shows an almost excellent comparison with the HF curve.
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Figure 5. Radial densities (upper panels) and form factors (lower panels) for C0 and C+. Dotted lines:
one variational parameter; dashed lines: two variational parameters; solid red lines: HF values. The
lower (BK) lines in panels (c,d) are the form factors calculated with the statistical model of Ref. [34].

This tendency of a much better comparison of the form factors than of the densities
with the HF results was obtained in all the cases covered by this study.

The two additional curves depicted in the figures denoted as BK are the form factors
obtained from the Brandt–Kitagawa model [34]. These results confirm the expectation that
the statistical models may fail for low-Z elements [9].

Further examples and comparisons of form-factor behavior are shown in Figure 6,
which depicts the cases of Ne0, Ne2, Ne4+, and Ne6+. For Ne0, the one-parameter V1 curve
deviates significantly from the HF one but shows an improvement for higher charge states.
The two-parameter V2 curves show an excellent agreement with the HF values in all cases.
On the other hand, the BK curves show deviations from the more correct values.
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Figure 6. Form factors for Ne0, Ne2, Ne4+, and Ne6+. Dotted lines (v1): one-parameter case; dashed
lines (v2): two-parameter case; solid lines: HF results; BK lines: statistical model of Ref. [34] .

7. Sample Applications
7.1. Electron Scattering

The amplitude of elastic scattering fscatt(θ) of electrons by a spherical-averaged poten-
tial Vs is given by [36]

fscatt(θ) = −
2me2

}2q2 Vs(q) (46)

where Vs(q) is the Fourier transform of the scattering potential, q is the momentum-angle
variable: q = 2k sin θ/2, with k = mv/}, and v is the electron speed.

Using the relation between Vs and the form factor F(q), Vs(q) = 4πe2F(q)/q2, the
expression for the differential cross-section becomes:

dσ

dΩ
= | fscatt(θ)|2 =

4m2e4

h4q4 |F(q)|
2 (47)

or introducing the scattering intensity I(q) (in atomic units):

I(q) =
dσ

dΩ
=

4
q4 |F(q)|

2 (48)

Pioneering calculations of electron scattering by atoms based on HF form factors have
been reported by Mott and Massey [36].
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In Figure 7, I show the values of the scattering intensity I(q) for atoms of Be, C, O,
and Ne. The curves are the results of the present variational model (according to the V2
formulation), while the dots are the HF values tabulated in Ref. [36], rescaled to the present
format. An excellent agreement between these fully independent calculations is found over
a wide range of I(q) values.
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Figure 7. Scattering intensity of electrons in Be, C, O, and Ne, according to Equation (48). The symbols
are the calculations reported in Ref. [36]; the lines are the results of the variational calculations with
two parameters.

Finally, the variational results are presented in Figure 8 in the form of I(q)/Z2, showing
the asymptotic convergence to the Rutherford limit 4/q4.
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Figure 8. Scaling of the scattering intensity using the same calculations of Figure 7, plotted here in
form I(q)/Z2, showing the asymptotic convergence to the Rutherford limit 4/q4.
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7.2. Plasma Stopping Power

The standard expression for the stopping power of a medium with dielectric function
ε(q, ω) incorporating the ion form factor F(q) was given in Refs. [37,38],

S = −dE
dx

=
2e2

πv2

∫ ∞

0

dq
q
|F(q)|2

∫ kv

0
dω ω Im

[
−1

ε(q, ω)

]
(49)

Here, I will apply this formulation to a plasma with Tokamak-like conditions, namely:
density n = 1015cm −3 and temperature T = 108 K, using the classical dielectric function
with a quantum cut-off from Ref. [39].

The results for C and Ne ions with charge states 0, 2+, and 4+ are shown in Figures 9
and 10. The lines in these figures are the results of the variational model (V2), while the
circles are similar calculations using the HF form factors. Again, an excellent agreement
is obtained.
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Figure 9. Energy loss of carbon in a Tokamak plasma with density n = 1015 cm−3 and temperature
T = 108 K for three charge states: 0, 2+, and 4+. The lines are the calculations using variational form
factors (two-parameter formulation); the circles are the calculations using HF form factors.
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Figure 10. Same as in Figure 9 but for Ne0, Ne2+, and Ne4+.
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These comparisons, as well as the previous ones, show the convenience of using
the variational method to obtain reliable values of scattering intensities (for high-energy
electrons) and of the energy loss of ions in plasmas for the whole set of ions covered by this
study. It may be expected that similarly good results could be obtained in other processes
of interactions of ions or ion beams with matter.

8. Summary and Conclusions

In this work, an extension of the variational approach for atomic systems has been
made in a way that applies to all the atoms and ions with atomic numbers up to 10. This
includes a total of 45 cases (not considering the trivial cases where α = Z). The approach
considers two alternative formulations in terms of one- and two-variational parameters.
The most complicated part of this work has been the calculation of numerous electron-
interaction integrals. All these integrals have been calculated analytically, as described in
Appendix A, obtaining exact algebraic results for the one- and two-parameter formulations
given in Appendix B.

In the one-parameter description, the value of the variational parameter was calculated
exactly. In the two-parameter case, the values of the parameters were obtained numerically
using the exact algebraic expressions for the variational energy.

The results of these calculations are presented in two tables that include all the atoms
and ions in the range of this study.

From the theoretical point of view, the extension of the variational method to a larger
group of ions and atoms fills a long-standing gap in this area.

Although the present calculations were cumbersome due to numerous electron inter-
actions that were involved, the application of the results should be quite straightforward
using the tabulated values of parameters together with the remarkably simple expression
of the form factor given by Equations (40)–(43). This makes the formulation specially useful
for the handling of complex problems.

The comparisons with Hartree–Fock calculations show distinct views: while significant
differences are found for the electron densities, the results of form factors show fairly
good agreements in the one-parameter description and excellent agreements when two
variational parameters are used. The comparison of total energies is also in excellent
agreement with HF values.

This opens the way to a number of applications in different areas of research. Two
examples were considered in this work: elastic scattering of high-energy electrons by atoms
and energy loss of C and Ne ions in Tokamak plasmas. In both cases, the results of the
variational approach were in excellent agreement with HF calculations. These examples
serve as brief illustrations of the possibilities of the variational approach to replace with a
good level of accuracy some of the most sophisticated calculations made on the basis of the
Hartree–Fock method. It is indeed quite remarkable that the variational formulation using
only two parameters gives results that compare so well with those of the HF theory, which
requires 26 parameters for each atom or ion.

Some of the contexts in which the present variational approach may be useful include
the area of current nuclear fusion studies (both in the lines of magnetically confined
and inertially confined plasmas), as well as in space science or in cases of astrophysical
interest, such as processes involving highly ionized elements in stellar interiors. Still,
other possible areas of application are the area of medical physics, where irradiation with
high-energy ion beams plays a very important role or in technological applications using
ion beams. The convenience of a simplified but still fairly accurate method may become a
very useful alternative in these areas, particularly in computer codes to simulate large or
complex systems.

Finally, it is interesting to notice that the analysis performed here may be applied as
well to ions with atomic numbers Z > 10 when the state of ionization is such that the
number of remaining bound electrons is in the range 1–10. Thus, for instance, ions of
Aln+ with n > 2, or Sin+ with n > 3 can also be described through this formulation (with
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appropriate values of the variational parameters). Therefore, the number of ions to which
this formulation applies is actually much larger than the cases considered in this work.
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Appendix A. Calculation of Interaction-Energy Terms

The calculation of direct and exchange interaction terms is made using Equations (24)–
(27). A large number of interactions appear when the number of electrons increases; a
total of 22 different integrals have been calculated, considering the one-parameter and
the two-parameter cases. All the integrals were calculated analytically, obtaining exact
algebraic values. I will give here a brief summary of the calculation procedures with a few
illustrative examples. The complete set of results is contained in Appendix B.

Appendix A.1. Direct Interactions

(1) Terms 1s− 1s, 1s− 2s, and 2s− 2s:

The treatment of the integrals for the 1s− 1s case is rather elementary and has been
described in textbooks. Due to the spherical symmetry, a very similar treatment can be
applied to the integrals corresponding to the 1s− 2s and 2s− 2s interactions. These integrals
have been evaluated in Ref. [32]. Therefore, I will skip these cases and will go directly to
the treatment of the integrals that involve 2p orbitals. Here I just write the results for the
former cases:

V1s,1s =
5
8

α = 0.625 α (A1)

V1s,2s =
17
81

α ∼= 0.210 α (A2)

V2s,2s =
77

512
α ∼= 0.1590 α (A3)

(2) Calculation of terms 1s− 2p and 2s− 2p:

From symmetry considerations (since the 1s and 2s densities are spherically symmet-
ric), it may be shown that the interaction energies are independent of the orientation of the
2p orbitals; therefore, they are the same for the 2p0, 2p+1 and 2p−1 states. In particular, I
will consider here the interaction between the 1s and the 2p0 orbitals given by

V1s,2p0 =
∫

d3r1

∫
d3r2 n1s(r1)

e2

r12
n2p0(r2, θ2) (A4)

Using the representation of 1/r12 in terms of spherical harmonics given by Equa-
tion (26), and separating the radial and angular terms of n2p0 = f2p(r) cos2 θ, as in Equa-
tion (15), the angular integration derives in terms of the form

Alm =
∫

dΩ1

∫
dΩ2Y∗lm(θ1, ϕ1)Ylm(θ2, ϕ2) cos2 θ2 = clmdlm (A5)

where:

clm =
∫

dΩ1Y∗lm(θ1, ϕ1) =
√

4π
∫

dΩ1Y∗lm(θ1, ϕ1)Y00(θ1, ϕ1) =
√

4πδl,0δm,0 (A6)

dlm =
∫

dΩ2Ylm(θ2, ϕ2) cos2 θ2 =

√
4π

3
δl,0δm,0 +

2
3

√
4π

5
δl,2δm,0 (A7)
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where I have used the relation:

cos2 θ =

√
4π

3
Y00 +

2
3

√
4π

5
Y20 (A8)

Therefore, the angular integral Alm becomes

Alm =
4π

3
δl,0δm,0 (A9)

Then, the sum of spherical harmonics in the expression of 1/r12 reduces to the term
l = 0, m = 0, and (considering the factor rl

</rl+1
> = 1/r>, for l = 0) the radial integral

separates into the following two terms:

V1s,2p0 [r1 > r2] =
(4π)2

3
e2
∫ ∞

0
r2

1
1
r1

n1s(r1)dr1

∫ r1

0
r2

2 f2p(r2)dr2 (A10)

and

V1s,2p0 [r2 > r1] =
(4π)2

3
e2
∫ ∞

0
r2

1n1s(r1)dr1

∫ ∞

r1

r2
2

1
r2

f2p(r2)dr2 (A11)

where f2p(r) is the function defined by Equation (17).
The calculation of these two integrals, in the simplest case of the one-parameter

formulation, yields (in atomic units)

V1s,2p =
59
243

α ∼= 0.2428 α (A12)

A fully similar calculation can be made for the 2s− 2p0 case, with the only difference
of changing n1s(r) by n2s(r) in the radial integrals. The result, also for the one-parameter
case, is

V2s,2p =
83
29 α ∼= 0.1621 α (A13)

The calculations for the two-parameter cases are much more cumbersome and yield
rather awkward results given in Appendix B, Equations (B14)–(B18).

(3) Cases 2p− 2p′:
This comprises three cases: 2p0 − 2p0, 2p0 − 2p±1, and 2p±1 − 2p±1 , which give
different results, since the spatial overlap of the corresponding densities are different.
The calculations for these cases are as follows.

(3a) Term 2p0 − 2p0:
Using the function f2p(r) defined before, the interaction-energy integral is

V2p0,2p0 =
∫

d3r1

∫
d3r2 f2p(r1) cos2 θ1

(
e2

r12

)
f2p(r2) cos2 θ2 (A14)

In this case, the two angular integrals are equal,

c′lm = d′lm =
∫

dΩ1Ylm(θ1, ϕ1) cos2 θ1 =

√
4π

3
δl,0δm,0 +

2
3

√
4π

5
δl,2δm,0 (A15)

Then, the angular integration now provides two terms:

Alm = c′lmd′lm =
4π

9
δl,0δm,0 +

16π

45
δl,2δm,0 (A16)

This leads to the energy expression

V2p0,2p0 = 4πe2
∫

r2
1dr1 f2p(r1)

∫
r2

2dr2 f2p(r2)

[(
4π

9

)
1

r>
+

(
16π

45

)
1
5

r2
<

r3
>

]
(A17)
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Again, this may be separated into two integrals (with r1 < r2 and r2 < r1),
leading to the final result

V2p0,2p0 =
3
5

167
29 β ∼= 0.1957 β (A18)

(3b) Term 2p0 − 2p±1:
Consider now the second case 2p0 − 2p±1. Using the function f2p(r) defined
before, the energy integral is

V2p0,2p±1 =
∫

d3r1

∫
d3r2 f2p(r1) cos2 θ1

(
e2

r12

)
f2p(r2)

2
sin2 θ2 (A19)

The angular integrations may be performed using Equation (A8) and

sin2 θ = 2

√
4π

3
Y00 −

2
3

√
4π

5
Y20 (A20)

which leads to:

V2p0,2p±1 = 4πe2
∫

r2
1dr1 f2p(r1)

∫
r2

2dr2
f2p(r2)

2

[(
8π

9

)
1

r>
−
(

16π

45

)
1
5

r2
<

r3
>

]
(A21)

which again may be split into the corresponding integrals for r1 > r2 and
r2 > r1.
The integrations are rather long but straightforward and yield the final result:

V2p0,2p±1 =
3
5

149
29 β ∼= 0.1746 β (A22)

(3c) Term 2p±1 − 2p±1:
The integrals for the cases 2p+1 − 2p+1, 2p+1 − 2p−1, and 2p−1 − 2p−1 are
equal. Considering the 2p+1 − 2p−1 case, the integral becomes

V2p+1,2p−1 =
∫

d3r1

∫
d3r2

f2p(r1)

2
sin2 θ1

(
e2

r12

)
f2p(r2)

2
sin2 θ2 (A23)

and after angular integrations, we get

V2p1,2p−1 = 4πe2
∫

r2
1dr1

f2p(r1)

2

∫
r2

2dr2
f2p(r2)

2

[(
16π

9

)
1

r>
+

(
16π

45

)
1
5

r2
<

r3
>

]
(A24)

Separating the integrals for the cases r1 > r2 and r2 > r1 as before and
performing these integrations, one obtains the final result:

V2p±1,2p±1 =
237

5× 28 β ∼= 0.1852 β (A25)

Appendix A.2. Exchange Interactions

The calculation of the exchange integrals is similar to the previous ones but still more
tedious. I will show here two particularly interesting examples.

(i) 1s− 2p0 case:

From Equation (25), the corresponding integral in this case is

W1s,2p0 =
∫

d3r1

∫
d3r2 ψ1s(

−→r 1)ψ2p0(
−→r 2)

(
e2

r12

)
ψ2p0(

−→r 1)ψ1s(
−→r 2) (A26)
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The angular dependence of ψ2p0 is

ψ2p0(
−→r ) = g2p(r) cos(θ) (A27)

with

g2p(r) =
λ5/2
√

π
re−λr (A28)

(where λ = β/2).
Using the expansion of 1/r12 in spherical harmonics, the angular integrals are now:

∫
dΩ1 cos θ1Y∗lm(θ1, ϕ1)

∫
dΩ2Ylm(θ2, ϕ2) cos θ2 =

(
4π

3

)2
δl,1δm,0 (A29)

and the corresponding factor in the 1/r12 expansion is r</r2
>.

Then, we obtain the r1 < r2 and r1 > r2 contributions:

W1s,2p0 [r1 > r2] =

(
4π

3

)2 ∫ ∞

0
r2

1dr1

∫ r1

0
r2

2dr2 ψ1s(r1)ψ1s(r2)
r2

r2
1

g2p(r1)g2p(r2) (A30)

W1s,2p0 [r2 > r1] =

(
4π

3

)2 ∫ ∞

0
r2

2dr2

∫ r2

0
r2

1dr1 ψ1s(r1)ψ1s(r2)
r1

r2
2

g2p(r1)g2p(r2) (A31)

The radial integrations are now more complicated due to an entanglement of the
parameters α and β, and at the end, one obtains

W1s,2p0 =
7× 24

3
α3β5

(2α + β)7 (A32)

In the one-parameter case, α = β, this reduces to:

W1s,2p0 =
7× 24

38 α (A33)

(ii) 2p0 − 2p1 case:

The form of the exchange integral here is

W2p0,2p1 =
∫

d3r1

∫
d3r2 ψ∗2p0(

−→r 1)ψ
∗
2p1(
−→r 2)

(
e2

r12

)
ψ2p1(

−→r 1)ψ2p0(
−→r 2) (A34)

and using the wave functions from Section 2.1 (Equations (11) and (12)) and the auxiliary
function g2p(r), the integral takes the form

W2p0,2p1 =
∫ ∞

0
r2

1dr1

∫ ∞

0
r2

2dr2 g2p(r1)
g2p(r2)√

2

g2p(r1)√
2

g2p(r2) A(r1, r2) (A35)

(with γ = α/2), where A(r1, r2) represents the angular integration

A(r1, r2) =
∫

dΩ1

∫
dΩ2 cos θ1 sin θ2e−iϕ2

(
e2

r12

)
sin θ1eiϕ1 cos θ2 (A36)

Using the expansion of 1/r12 in terms of spherical harmonics, we get the l, m terms of
the angular integration:

slm =
∫

dΩ1 cos θ1Y∗lm(θ1, ϕ1) sin θ1eiϕ1 (A37)
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and
s∗lm =

∫
dΩ2 cos θ2Ylm(θ2, ϕ2) sin θ2e−iϕ2 (A38)

Using the property

Y21(θ, ϕ) = −
√

15
8π

cos θ sin θ eiϕ (A39)

we finally get

slm = −
√

8π

15
δl,2δm,1 (A40)

The corresponding factor in the 1/r12 expansion is now r2
</r3

>, and the radial integrals
for r1 < r2 and r1 > r2 take the form:

W2p0,2p1 [r1 > r2] =
4πe2

5
8π

15

∫ ∞

0
r2

1dr1
1
r3

1

g2
2p(r1)

2

∫ r1

0
r2

2dr2 r2
2

g2
2p(r2)

2
(A41)

W2p0,2p1 [r1 < r2] =
4πe2

5
8π

15

∫ ∞

0
r2

1dr1 r2
1

g2
2p(r1)

2

∫ ∞

r1

r2
2dr2

1
r3

2

g2
2p(r2)

2
(A42)

Evaluating these integrals with the function g2p(r) of Equation (A28) I finally get

W2p0,2p1 =
3× 6!
21352 β (A43)

Appendix B. Values of Direct and Exchange Integrals

The calculation of the direct and exchange integrals was made according to the proce-
dures exemplified in Appendix A. This appendix contains the results of calculations of all
the integrals for the one-parameter and two-parameter cases.

Appendix B.1. One-Parameter Case

(i) Direct/Coulomb integrals

The exact algebraic results and numerical values of all the electron–electron interaction
energies are the following (values given in atomic units):

1s− 1s:

V1s,1s =
5
8

α (B1)

1s− 2s:

V1s,2s =
17
34 α ∼= 0.210 α (B2)

2s− 2s:

V2s,2s =
77
29 α ∼= 0.1504 α (B3)

1s− 2p:

V1s,2p =
59
35 α ∼= 0.2428 α (B4)

2s− 2p:

V2s,2p =
83
29 α ∼= 0.1621 α (B5)

2p0 − 2p0:

V2p0,2p0 =
3
5

167
29 α ∼= 0.1957 α (B6)

2p0 − 2p±1:

V2p0−2p±1 =
3
5

149
29 α ∼= 0.1746 α (B7)



Atoms 2023, 11, 23 23 of 26

2p± − 2p±1:

V2p±1−2p±1 =
237

5× 28 α ∼= 0.1852 α (B8)

(ii) Exchange integrals

The values of the terms corresponding to exchange energies are the following:
1s− 2s:

W1s,2s =
24

36 α ∼= 0.0219 α (B9)

1s− 2p:

W1s,2p =
7× 24

38 α ∼= 0.0171 α (B10)

2s− 2p:

W2s,2p =
15
29 α ∼= 0.0293 α (B11)

2p0 − 2p±1:

W2p0,2p±1 =
3× 6!
21352 α ∼= 0.0105 α (B12)

2p+1 − 2p−1:

W2p+1,2p−1 =
3× 6!
21252 α ∼= 0.0211 α (B13)

I wish to notice that the results for the terms 1s− 1s, 1s− 2s, and 2s− 2s agree with
those obtained earlier by Kaneko [32].

Appendix B.2. Two-Parameter Case

The integrals for the two-parameter case can be handled in similar ways, as discussed
in Appendix A, but the calculations of the double integrals become much more cumbersome
due to the entanglement between the parameters α and β when the s and p orbitals are
combined. Here, I give the corresponding results.

The terms corresponding to interactions between 1s and 2s electrons are the same
as given in Equations (B1)–(B3) and (B9) since they involve only the single parameter α.
Therefore, I write here only the new terms related to 2p orbitals (including the interactions
between the s and p orbitals).

(i) Direct/Coulomb integrals

The interaction between the 1s and 2p orbitals may be expressed as:

V1s,2p0 = V1s,2p±1 = β G
(

β

α

)
(B14)

where:
G(x) =

1
(x + 2)6 (x5 + 12x4 + 40x3 + 60x2 + 48x + 16) (B15)

The interaction between the 2s and 2p orbitals contains two terms:

V2s,2p0 = V2s,2p±1 =
α

12
G1

(
2β

α

)
+

β

6
G2

(
2β

α

)
(B16)

where:

G1(x) =
3x5

(x + 2)8

[
x3 + 16x2 − 8x + 768

]
(B17)

G2(x) =
48

(x + 2)8

[
5x5 − 25x4 + 56x3 + 56x2 + 32x + 8

]
(B18)
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The other three integrals depend only on parameter β,

V2p0,2p0 =
3
5

167
29 β ∼= 0.1957 β (B19)

V2p0,2p±1 =
3
5

149
29 β ∼= 0.1746 β (B20)

V2p±1,2p±1 =
237

5× 28 β ∼= 0.1852 β (B21)

(ii) Exchange integrals:

The exchange integral between 1s and 2s states is the same as in Equation (B9), in
terms of parameter α. The additional exchange terms involving 2p states are the following:

W1s,2p =
112

3
α3β5

(2α + β)7 (B22)

W2s,2p =
14
3

α3β5

(α + β)9

[
(α + β)2 +

185
14

α2 − 7α(α + β)

]
(B23)

W2p0,2p±1 =
3× 6!
52213 β ∼= 0.0105 β (B24)

W2p+1,2p−1 =
3× 6!
52212 β ∼= 0.0211 β (B25)

This completes the whole set of cases that must be taken into account for the analysis
of the electronic structure of atoms and ions considered in this work.

Appendix B.3. Example: Expressions for the Variational Energy

For the sake of clarity and for further applications, it is useful to give an example of
how the expressions for the variational energy are constructed. Here I will show the case of
Neon, which contains all the energy terms quoted before, and implicitly contains all the
possible cases of atoms or ions considered in this study.

As discussed in the text, from the knowledge of these expressions, one can obtain
the expressions for all the atoms and ions with Z ≤ 10 by considering the equivalence of
electronic structures provided by the isoelectronic considerations mentioned in the text.
Therefore, the energy expression for any other ion or atom is formally the same as the one
for the Nen+ ion that contains the same number of electrons as the particular ion or atom
being considered (but the values of the variational parameters will be different).

As indicated in the main text, I have used letters U, V, and W to represent the three
types of interaction terms: electron–nucleus interactions (U), direct (V), and exchange (W)
interactions between electrons.

First, I write the expression for the energy of the Be atom, namely:

E
[

Be0
]

= 2T1s(α) + 2T2s(α)− 2U1s(α)− 2U2s(α) + V1s,1s(α) + 4V1s,2s(α)

+V2s,2s(α)− 2W1s,2s(α) (B26)

Then, the energy of the Ne atom is expressed in terms of that of Be as follows:

E
[

Ne0
]
= E

[
Be0
]
+ ∆Ep(α, β) (B27)
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where

∆Ep(α, β) = 6T2p(β)− 6U2p(β) + 12V1s,2p(α, β) + 12V2s,2p(α, β)

+V2p0,2p0(β) + 8V2p0,2p1(β) + 6V2p1,2p1(β)− 6W1s,2p(α, β)

−6W2s,2p(α, β)− 4W2p0,2p1(β)− 2W2p1,2p−1(β) (B28)

In the same way, the energy of Ne+ is written as in Equation (B27), where now

∆Ep(α, β) = 5T2p(β)− 5U2p(β) + 10V1s,2p(α, β) + 10V2s,2p(α, β)

+V2p0,2p0(β) + 6V2p0,2p1(β) + 3V2p1,2p1(β)− 5W1s,2p(α, β)

−5W2s,2p(α, β)− 3W2p0,2p1(β)−W2p1,2p−1(β) (B29)

With the same criterion, the energies of the following ionization states of Ne are given
by the following expressions of ∆Ep(α, β):

For Ne2+:

∆Ep(α, β) = 4T2p(β)− 4U2p(β) + 8V1s,2p(α, β) + 8V2s,2p(α, β)

+V2p0,2p0(β) + 3V2p0,2p1(β) + 3V2p1,2p1(β)− 4W1s,2p(α, β) (B30)

−4W2s,2p(α, β)− 2W2p0,2p1(β)−W2p1,2p−1(β)

For Ne3+:

∆Ep(α, β) = 3T2p(β)− 3U2p(β) + 6V1s,2p(α, β) + 6V2s,2p(α, β) + 2V2p0,2p1(β) + V2p1,2p1(β)

−3W1s,2p(α, β)− 3W2s,2p(α, β)− 2W2p0,2p1(β)−W2p1,2p−1(β) (B31)

For Ne4+:

∆Ep(α, β) = 2T2p(β)− 2U2p(β) + 4V1s,2p(α, β) + 4V2s,2p(α, β) + V2p0,2p1(β)

−2W1s,2p(α, β)− 2W2s,2p(α, β)−W2p0,2p1(β) (B32)

For Ne5+:

∆Ep(α, β) = T2p(β)−U2p(β) + 2V1s,2p(α, β) + 2V2s,2p(α, β)

−W1s,2p(α, β)−W2s,2p(α, β) (B33)

For the following charge states, ∆Ep(α, β) = 0 since there are no p electrons. Therefore,
we can write the energy of the Ne6+ ion as:

E
[

Ne6+
]

= 2T1s(α) + 2T2s(α)− 2U1s(α)− 2U2s(α) + V1s,1s(α) + 4V1s,2s(α)

+V2s,2s(α)− 2W1s,2s(α) (B34)

Notice that this expression is the same as the one for Be0 but with a different value of
the nuclear charge (Z = 10 instead of 4) in the electron–nucleus interactions U1s and U2s.

Similarly, the energy of the Ne7+ ion contains the same terms as Be+ (with Z=10
instead of 4) and is given by

E
[

Ne7+
]
= 2T1s(α) + T2s(α)− 2U1s(α)−U2s(α) + V1s,1s(α) + 2V1s,2s(α)−W1s,2s(α) (B35)

and the energy of Ne8+, which contains the same terms as Be2+, Li+ or He0, reduces to

E
[

Ne8+
]
= 2T1s(α)− 2U1s(α) + V1s,1s(α) (B36)

Finally, the cases of Ne9+ (hydrogen-like) and Ne10+ (bare nucleus) are trivial.
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