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Abstract: In this work, we theoretically and numerically investigate Rayleigh–Taylor dynamics
with constant acceleration. On the side of theory, we employ the group theory approach to directly
link the governing equations to the momentum model, and to precisely derive the buoyancy and
drag parameters for the bubble and spike in the linear, nonlinear, and mixing regimes. On the side
of simulations, we analyze numerical data on Rayleigh–Taylor mixing by applying independent
self-similar processes associated with the growth of the bubble amplitude and with the bubble merger.
Based on the obtained results, we reveal the constituents governing Rayleigh–Taylor dynamics in
the linear, nonlinear, and mixing regimes. We outline the implications of our considerations for
experiments in plasmas, including inertial confinement fusion.

Keywords: Rayleigh–Taylor instabilities; self-similar mixing; boundary value problems; inertial
confinement fusion

1. Introduction

Rayleigh–Taylor instability (RTI) plays an important role in a broad range of plasma
processes in nature and technology under conditions of high and low energy densities [1–6].
Examples include the abundance of chemical elements in supernova remnants, the influence
of irregularities in the Earth’s ionosphere on regional climate change, the formation of hot
spots in inertial confinement fusion, and the efficiency of plasma thrusters [7–12]. While
realistic plasma processes are necessarily electro- and magneto-dynamic, the control of
Rayleigh–Taylor (RT) phenomena often require a better understanding of the fluid dynamic
aspects [4]. In this work, we study, both analytically and numerically, RTI driven by
constant acceleration in neutral plasma (fluid). We employ the group theory approach and
the analysis of numerical data of Front Tracking simulations [4]. We reveal independent
driving constituents that the RT flow possesses in the scale-dependent and self-similar
regimes.

RT unstable interfaces and interfacial mixing play an important role in plasma pro-
cesses at astrophysical and atomic scales [4]. In core-collapse abarzhi-2019, RT mixing
of materials of the progenitor star enable conditions for synthesis of heavy mass chemi-
cal elements [7,13–17]. In the Sun, RT mixing is responsible for the accelerated ejection
of matter in downdrafts propagating deeply inside of the convection zone [18]. In the
inertial confinement fusion, the unstable interface between the hotter plasma, the colder
plasma, and the ensued interfacial mixing influence the formation and shape of the hot
spot [9,10,16,19–24]. In the Earth’s ionosphere, RT unstable plasma structures are directly
relevant to the climate change on regional scales [25]. In plasma processes in technology,
RT unstable interfaces are inherent in light–matter interaction, nanofabrication, and in the
plasma discharges formed in and interacting with liquids [26–29].

In even vastly distinct physical conditions, RT flows exhibit similar features in their
evolution [4,30–32]. RTI develops when fluids of different densities are accelerated against
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their density gradients [1,2]. Small perturbations at the fluid interface grow quickly. The
flow proceeds to the nonlinear regime. The interface is transformed to a composition of
small-scale shear-driven vortical structures and a large-scale coherent structure, with the
heavy (light) fluid penetrating the light (heavy) fluid in bubbles (spikes) [3,4]. Eventually,
the flow transitions to a state of intense interfacial mixing, where the amplitude of the
mixing layer increases quadratically with time [5]. RT mixing is self-similar, anisotropic,
heterogeneous, and sensitive to deterministic conditions [4,33].

RTI and RT mixing are challenging to study in experiment, in theory, and in simula-
tion [4]. RT experiments impose tight requirements on the flow implementation, diagnostics,
and control [6,34]. RT simulations need to track unstable interfaces, capture small-scale
processes, and ensure large spans of spatial and temporal scales [31,35]. In RT theory, we
have to solve a boundary value problem at the unstable freely evolving interface, identify
asymptotic solutions, and capture symmetries of the singular and ill-posed RT dynamics [4].

Significant success has recently been achieved in theory, simulation, and experiments
of RT dynamics [6]. In particular, the group theory approach has identified the asymptotic
solutions and the invariant forms of RT dynamics in the scale-dependent and self-similar
regimes, and has explained the experimental observation that RT mixing may keep order
even at high Reynolds numbers [6,34,36]. The Front Tracking simulations and the associated
merger model of the numerical data have provided experiments with accurate practical
mechanisms for the evolution of RT mixing and found that numerical values of the mixing
zone growth agreed with experiments [5].

In RT flow, two key constituents govern the specific (per unit mass) dynamics of a
fluid parcel: the rate of momentum gain (a buoyant force) and the rate of momentum
loss (an effective dissipation force) [4,5,37]. The buoyant force accelerates the fluid parcel,
whereas the effective dissipation decelerates it and drags it from free fall [5,33]. We need
to better understand whether these buoyancy and drag constituents can be treated as
independent processes in the scale-dependent linear regime, scale-dependent nonlinear
regime, and self-similar mixing regime. We have to examine whether the group theory
approach and the analysis of data of the Front Tracking simulations are consistent with
one another [5,33].

In this work, we investigate, both theoretically and numerically, RT dynamics with
constant acceleration. In theoretical analysis, we employ the group theory approach to
directly link the governing equations to the momentum model and to precisely derive
the buoyancy and drag parameters for the bubble and spike in the linear, nonlinear,
and mixing regimes [38]. In numerical analysis, we analyze 2D experimental and 3D
simulation studies of RT mixing. We construct 2D and 3D merger trees illustrating the
merger process. We find that predictions made by the merger model are in agreement with
physical experiments and are better than previously reported. Based on our analytical
and numerical results, we reveal that the buoyant force and the effective drag force are
independent constituents governing RT dynamics in each of the regimes (linear, nonlinear,
and mixing). We discuss the implications of our considerations for experiments in plasmas,
including inertial confinement fusion [9,34].

Fluid instabilities and interfacial mixing are a subject of active research in contempo-
rary plasma physics [4,5,10,12,13,21,22,24,27,28,39,40]. The novelty of our work is in the
rigorous theoretical solution of RT dynamics and in the detailed analysis of the numerical
data of Front Tracking numerical simulations. The group theory approach precisely de-
rives from the governing equations the independent driving constituents of RT dynamics.
The interpretation of the analyzed numerical data of Front Tracking simulations agrees
with experiments. Our results provide extensive benchmarks for plasma processes to which
RT instability and RT mixing are relevant.

Our paper has the following structure. After Introduction, we proceed to the mathe-
matical problem of RT dynamics in Section 2. Section 3 presents the group theory approach.
Section 4 provides analytical results for the buoyancy and drag parameters in linear and
nonlinear RTI. Section 5 illustrates in detail the properties of special analytical solutions in
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the nonlinear regime. Section 6 investigates analytically the regime of self-similar mixing.
Section 7 presents the numerical approach. Section 8 studies the merger process of two-
dimensional bubbles and presents the two-dimensional merger trees. Section 9 focuses on
the merger process of three-dimensional bubbles and presents three-dimensional merger
tree figures. Section 10 investigates simulation growth rates. Section 11 reviews the merger
model. Section 12 discusses the application of the merger model to experiments. Section 13
discusses the outcomes of our work. Section 14 presents the conclusions.

2. Mathematical Problem of RT Dynamics

We consider immiscible, inviscid fluids of differing densities separated by a well-
defined interface. The heavier fluid sits above the lighter fluid and the entire system is
subject to a time-dependent downwards acceleration field. The dynamics of such fluids are
governed by conservation of mass, momentum, and energy:

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0,

∂

∂t
(ρvj) +

∂

∂xi
(ρvivj) +

∂P
∂xj

= 0,

∂E
∂t

+
∂

∂xi
((E + P)vi) = 0, (1)

where i = 1, 2, 3, (x1, x2, x3) = (x, y, z) are the spatial coordinates, t is time, (ρ, v, P, E) are
the fields of density ρ, velocity v , pressure P, and energy density E = ρ(e + 1

2 v2), and e is
the specific internal energy [4,13,32].

It is necessary that momentum is conserved at the interface and that there can be no
mass flow across it. Hence, the boundary conditions at the interface are[

ρ

(
θ̇

|∇θ| + v · n
)]

= 0, [v · n] = 0, [P] = 0,

[v · τ] = arbitrary, [W] = arbitrary, (2)

where [· · · ] denotes the jump of functions across the interface; W = e + P/ρ is the spe-
cific enthalpy; n and τ are the normal and tangential unit vectors of the interface with
n = ∇θ/|∇θ| and n · τ = 0; θ = θ(x, y, z, t) is a local scalar function, with θ = 0 at the
interface and θ > 0 (θ < 0) in the bulk of the heavy (light) fluid, indicated hereafter by
subscript h(l). The initial conditions consist of initial perturbations of the flow fields and
the interface. The flow is periodic in plane (x, y) normal to the z-direction, as is set by the
initial conditions [4,32,38].

Instability is driven by acceleration. Acceleration can be due to a body force and be
directed from the heavy to the light fluid. It can also be the acceleration of the (nearly
planar) interface (i.e., the inertial acceleration) and be directed from the light to the heavy
fluid. In our work, acceleration g is due to a body force and is directed from the heavy
to the light fluid along the z-axis g = (0, 0,−g). This acceleration modifies the pressure
field: P ! P − ρgz. We assume that there are no mass sources and hence the velocity
in the upper (lower) fluid moves to zero as z ! ∞ (z ! −∞). The Atwood number
A = (ρh − ρl)/(ρh + ρl) parameterizes the ratio of the fluid densities [4,13,32].

The mathematical problem of RTI requires one to solve the system of nonlinear partial
differential equations in four-dimensional space-time, the boundary value problems at the
unstable nonlinear interface and at the outside boundaries, and also the ill-posed initial
value problem with account for non-locality and singularities [4,13,41,42]. In our work, we
solve this problem analytically by employing group theory approach [4,13] and numerically
by analyzing data from Front Tracking simulations.
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3. Group Theory Approach
3.1. Large-Scale Coherent Structures

The large-scale coherent structure is an array of bubbles and spikes periodic in the
plane normal to the acceleration direction. The initial conditions determine the length
and time scales of the problem. The length scale is the wavelength λ of the array, or the
associated wave-vector k−1, with λ ∼ k−1. As a specific example, we consider the flow
which has square symmetry, in which case the length scale λ and the wave-vector k are
related as k = 2π/λ.

The group theory approach [4,13] accurately describes both the linear and nonlinear
dynamics of the unstable interface. In particular, for the nonlinear dynamics, there are
families of asymptotic solutions with the number of relevant parameters defined by flow
symmetry; the dynamics are multi-scale and characterized by the contributions of two
macroscopic length scales, these being the spatial period and the amplitude of the interfacial
coherent structure. Furthermore, in any regime, the dynamics are essentially interfacial,
with intense motion of the fluids near the interface and effectively no motion away from
the interface; see works [4,13].

Even for ideal incompressible fluids, with ė = 0 and∇e = 0, system Equations (1) and
(2) are extremely challenging [4,13,32]. Even with this amount of complexity, the dynamics
nevertheless have remarkable features of universality and order and can thus be approached
using group theory [4]. Here, we implement the group theory approach and compare the
principal resulting equation with the momentum model, the equations of which have the
same symmetries and scaling transformations as conservation laws [4].

3.2. Analytical Methodology

RT dynamics are known to possess certain features of universality and order, and can
be analyzed from first principles by applying group theory [4]. For scale-dependent dynam-
ics, group theory can employ space groups to derive from governing equations a dynamical
system and find its solutions. For scale-dependent and self-similar dynamics, group the-
ory can be realized in a momentum model with the same symmetry transformations as
governing equations [13].

For spatially periodic flows, scale-dependent RT dynamics are invariant with respect
to space group G, whose generators are translations in the plane, rotations and reflections,
and which also has anisotropy in the acceleration direction and inversion in the normal
plane, such as the groups of square p4mm or hexagon p6mm in three-dimensional flows.

By deriving the structures of flow fields in the bulk from the governing equations, con-
sidering dynamics with potential velocity fields vh(l) = ∇Φh(l), and applying irreducible
representations of the relevant group, we can expand the flow fields as Fourier series and
perform a spatial expansion in the vicinity of a regular point of the interface—the tip of
a bubble or a spike with coordinates (0, 0, z0(t)) and velocity (0, 0, v(t)) with v(t) = ż0(t)
(the dot indicating a partial time derivative). This reduces the governing equations to a
dynamical system for moments (each of which is a correlation function represented by an
infinite sums of Fourier amplitudes) and surface variables. For square group p4mm, to the
first order, N = 1, the interface is z− z0(t) = ζ(t)(x2 + y2) and the dynamical system is

ρh

(
ζ̇ − 4M1ζ − M2

2

)
= 0, ρl

(
ζ̇ − 4M̃1ζ +

M̃2

2

)
= 0, (3)

(1 + A)

(
Ṁ1

2
+ ζṀ0 −

M2
1

2
− ζg

)

= (1− A)

(
˙̃M1

2
− ζ ˙̃

0M−
M̃2

1
2
− ζg

)
, (4)

M0 = −M̃0 = −v(t). (5)
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Here, M(M̃) are the moments of the heavy (light) fluid, and v ≥ 0(≤ 0), ζ ≤ 0(≥ 0) are
the velocity and curvature of the interface at the tip of the bubble (spike). The system
length-scale is k−1, where the wavevector is k ∼ λ−1 and the wavelength is λ. The time
scale is τ = 1/

√
kg. Group theory is further applied to solve the closure problem and find

linear and nonlinear solutions for scale-dependent RT dynamics. The initial curvature and
velocity are ζ(t0) and v(t0), respectively, and t0 � τ is the initial time.

3.3. The Momentum Model

The momentum model [4,13,33,38] has the same symmetries and scaling transforma-
tions as the conservation laws, and balances, per unit mass, the rates of gain and loss of
specific momentum. In doing so, it identifies invariant, scaling, and spectral properties of
the dynamics.

The dynamics of a parcel of fluid are governed by the balance per unit mass of the rate
of momentum gain µ and the rate of momentum loss µ̃ as

dh
dt

= v,
dv
dt

= µ̃− µ, (6)

where h is the displacement along acceleration direction g, v is the corresponding velocity,
µ̃ and µ are the magnitudes of the rates of gain and loss of specific momentum in that
direction [4,13]. Rates of gain µ̃ and loss µ of specific momentum are associated with rates
of gain ε̃ and loss ε of specific energy as µ̃ = ε̃/v and µ = ε/v. The rates of energy gain
and dissipation are ε̃ = Bgv and ε = Cv3/L, with B and C being the buoyancy and drag
parameters and L being the length scale for energy dissipation. This leads to µ̃ = Bg and
µ = Cv2/L, and hence

dh
dt

= v,
dv
dt

= Bg− C
v2

L
, (7)

with h = h(t) > 0 and v = v(t) > 0 for t > t0 > 0. Length scale L for energy dissipation
can be the horizontal scale (wavelength) L ∼ λ ∼ k−1, the vertical scale (amplitude) L ∼ h,
or a combination of these. Cases L ∼ λ ∼ k−1 and L ∼ h correspond to scale-dependent
and scale-invariant dynamics, respectively.

The dynamical system in terms of moments and surface variables enables the study
of the interplay of harmonics and asymptotic solutions, whereas the momentum model
reveals explicit solutions and the asymptotic limits of RT dynamics.

3.4. Effect of Symmetry and Dimension

The group theory approach accommodates the analysis of two-dimensional and
three-dimensional RT dynamics. In this work, we present analytical solutions for a three-
dimensional RT flow. Two-dimensional analytical solutions can be obtained from three-
dimensional solutions with proper transformations [13,38].

4. Analytical Quantities for Buoyancy and Drag

To derive expressions for buoyancy and drag parameters in RT dynamics, we directly
link the dynamical system and the momentum model.

4.1. Scale-Dependent Linear Dynamics

In the dynamical system, we associate the curvature with the amplitude, kz0 = −4ζ/k,
and retain only first-order harmonics in expressions for the moments. In the momentum
model, we relate the vertical scale with amplitude h = z0, and the length-scale with
wavevector, L = k−1 [38]. This transforms the governing equations to

ḣ = v, v̇ = Bl g− Clkv2, ζ = − k2

4
z0, v = −M0 = M̃0, (8)
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where the buoyancy parameter is Bl = Akz0 = −4Aζ/k with Bl > 0 for bubbles and
Bl < 0 for spikes, and the drag parameter is constant, Cl = A/2 > 0; subscript l stands for
linearity. By integrating these equations, we obtain solutions for RT dynamics of bubbles
(spikes) moving up (down) and being concave down (up) with z0 > 0, v > 0, ζ < 0
(z0 < 0, v < 0, ζ > 0):

z0(t) = C1e
√

Akt + C2e−
√

Akt,

v(t) =
√

AkC1e
√

Akt −
√

AkC2e−
√

Akt, ζ(t) = − k2

4
z0(t),

where C1 and C2 are determined by initial conditions z(t0) and v(t0). These results hold
for kz0 � 1 and v�

√
Bl g/Clk.

The formation of bubbles and spikes is defined by the initial conditions, with bubbles
developing for ζ(t0) < 0 and spikes developing for ζ(t0) > 0. For both bubbles and spikes,
the magnitude of the curvature increases with time, and the magnitude of the velocity also
increases.

In the linear regime, buoyancy grows with amplitude, and the constant drag is set by
the initial conditions. The linear RT dynamics of bubbles and spikes are single-scale and
defined by the horizontal scale—the wavelength of the coherent structure.

4.2. Scale-Dependent Nonlinear Dynamics

As time progresses, the bubble/spike amplitude increases, its curvature approaches a
constant value, and RT dynamics become nonlinear.

In a dynamical system, we impose a constant curvature condition and retain higher-
order harmonics in the moments. In the momentum model, we relate the vertical scale with
the amplitude, h = z0, and the length-scale with the wavevector, L = k−1. This transforms
the governing equations to

ż0 = v, v̇ = Bng− Cnkv2, ζ = kξ, v = −M0 = M̃0. (9)

For square symmetry, buoyancy parameter Bn and drag parameter Cn are, respectively,

Bn(A, ζ) =
−2Aζ(9k2 − 64ζ2)

3k3 + 10Ak2ζ − 128Aζ3 ,

Cn(A, ζ) =
k3(9Ak2 − 48kζ + 64Aζ2)

(9k2 − 64ζ2)(3k3 + 10Ak2ζ − 128Aζ3)
, (10)

in domain [−ζcr, ζcr] with ζcr =
3
8 k. Sub-script n stands for nonlinearity.

Figures 1 and 2 are the plots of buoyancy and drag parameters, respectively, in
nonlinear RT dynamics.

For RT bubbles, the values of buoyancy and drag parameters are Bn ≥ 0, Cn ≥ 0 for
ζ ∈ (−ζcr, 0) with Bn ∈ [0, B̂∗], B̂∗ = B̂∗(A), and Cn ∈ [0, ∞). For RT spikes, the values
are Bn ≤ 0 with [B̌∗, 0], B̌∗ = B̌∗(A), for ζ ∈ (0, ζcr), and Cn ≤ 0 with Cn ∈ (−∞, 0)],
for ζ ∈ (ζA, ζcr). Here, ζA = ζA(A), ζA ∈ (0, ζcr) is the curvature of the fastest spike; we
call it the Atwood spike. A spike has unbounded velocity when the drag parameter is zero.
This occurs for ζ = ζA, where

ζA

ζcr
=

1−
√

1− A2

A
. (11)

Hence, we find that for nonlinear RT dynamics, there is a family of buoyancy and
drag values parameterized by the interface morphology, that is, the curvature of the
bubble/spike; for given (A, ξ), values (Bn, Cn) are constant. The non-uniqueness is due
to the presence of shear at the interface. This can be seen by defining the shear func-
tion Γ as the spatial derivative of the jump of tangential velocity at the interface. It is
Γ = M̃1 −M1 = 6k3v/(9k2 − 64ζ2) near the tip of the bubble/spike.
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Figure 1. Buoyancy parameter as a function of scaled curvature for various Atwood numbers in the
nonlinear regime.
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Figure 2. Drag parameter as a function of scaled curvature for various Atwood numbers in the
nonlinear regime.

Asymptotically, the solution of the second of Equations (9) is

v = ±

√
Bng
Cnk

.

For square symmetry p4mm, this velocity is

v = ±
√

g
k

9k2 − 64ζ2

k2

√
−2Akζ

64Aζ2 − 48kζ + 9Ak2 , (12)

and the corresponding shear function is

Γ = ±6
√

kg

√
−2Akζ

64Aζ2 − 48kζ + 9Ak2 . (13)

In Equations (12) and (13), the positive sign applies for bubbles and the negative sign applies
for spikes. Figures 3 and 4 show the bubble tip velocity and shear function, respectively,
as functions of the bubble curvature. Figures 5 and 6 show the spike tip velocity and shear
function, respectively, as functions of the spike curvature.
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Figure 3. Bubble velocity as a function of curvature for various Atwood numbers in the nonlin-
ear regime.
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Figure 4. Shear as a function of bubble curvature for various Atwood numbers in the nonlin-
ear regime.
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Figure 5. Spike velocity as a function of curvature for various Atwood numbers in the nonlin-
ear regime.
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Figure 6. Shear as a function of spike curvature for various Atwood numbers in the nonlinear regime.

Differentiating Equation (12) with respect to ζ and setting the result to zero shows that
curvature ζvmax which maximizes velocity satisfies equation

ζ4
vmax −

k
A

ζ3
vmax +

9k2

32
ζ2

vmax − k4
(

3
16

)3
= 0. (14)

By solving this equation and substituting the solution into Equation (12), we find that the
corresponding maximum velocity is

vmax = 16
√

2
∣∣∣∣ ζvmax

k

∣∣∣∣ 3
2
. (15)

This is a universal relation between the curvature and the maximum velocity. We refer to
this bubble as the ‘Atwood’ bubble to emphasize its dependence on the Atwood number.

RT dynamics are set by the interplay of buoyancy and drag for a given interface
morphology and shear. The dynamics of RT bubbles are regular and influenced by a few
competing factors: bubbles with larger curvature have larger buoyancy and move faster
than flattened bubbles; yet, bubbles with larger curvature have larger shear and larger drag
reducing their velocities; for curved bubbles, the shear alone can maintain the pressure at
the interface, leading to zero buoyancy and infinite drag.

The dynamics of RT spikes are singular. While the magnitude of the spike’s buoyancy
is qualitatively similar to that of the bubble, the spike’s drag vanishes Cn ! 0 for ζ ! ζA.
This leads to a singularity indicating that the RT Atwood spike has velocity and shear
growing quickly with |v|/

√
g/k ! ∞ and |Γ|/

√
kg ! ∞.

The nonlinear RT dynamics of bubbles/spikes are multi-scale and defined by the two
macroscopic length scales—the vertical and horizontal scales—the amplitude and wave-
length of the structure, respectively. Mathematically, the (as we call it) multi-scalability is
associated with the dependence of the buoyancy and the drag parameters on the interface
morphology and shear. Physically, it can be understood by viewing RT coherent structures
as standing waves with growing amplitudes. This reveals the mechanisms of the transition
of RT dynamics from the scale-dependent to scale-invariant regimes. Particularly, the tra-
ditional merger and amplitude dominance mechanisms can both lead to the acceleration of
RT bubbles/spikes due to drag force reduction, and can transfer scale-dependent dynamics
L ∼ k−1 ∼ λ to scale-invariant mixing L ∼ |h|.

5. Special Solutions

We note the presence of special solutions in the nonlinear family. Some of these
special solutions include the Taylor bubble/spike with curvature magnitude k/8, similar
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to works [3,38]; the Layzer-drag bubble/spike with velocity dependence
√

2A/(1± A),
similar to works [37,43]; the fastest Atwood bubble with (ζ̂A, v̂A, Γ̂A) and the fastest Atwood
spike with (ζ̌A, v̌A, Γ̌A); see works [13,38].

5.1. Special Solutions for Nonlinear Bubbles

We introduce nondimensional variables

ζ̂ = − ζ

k
, v̂ =

v√
g/k

, Γ̂ =
Γ√
kg

, B̂ = B, Ĉ = C.

5.1.1. The Taylor Bubble

We refer to this bubble as a ‘Taylor bubble’ since its curvature is the same as in work [3]
of Davis and Taylor except for a difference in the wavevector value [4]. For the Taylor
bubble, the curvature, velocity, shear function, and buoyancy and drag parameters are

ζ̂T =
1
8

, v̂T =

√
8A

3 + 5A
, Γ̂T =

3
4

v̂T,

B̂T =
2A

3− A
, ĈT =

3 + 5A
4(3− A)

. (16)

5.1.2. The Layzer-Drag Bubble

The family of bubbles has a solution with velocity v̂ =
√

2A/(1 + A). We call this
solution the ‘Layzer-drag bubble’ since the drag model applies this velocity rescaling with
the Atwood number to the single-mode Layzer first-order approximation at A = 1 [37,43].
Experiments and simulations tend to compare well with this rescaling [37,43,44]. For the
Layzer-drag bubble, the curvature, velocity, and shear function are

ζ̂L = ζ̂L(A), v̂L =

√
2A

1 + A
, Γ̂L =

6v̂L

9− 64ζ̂2
L

, (17)

and the buoyancy and drag parameters are as defined in Equation (10). The dependence of
the Layzer-drag bubble curvature on the Atwood number is cumbersome. For fluids with
very different densities, A ! 1, in the solution for the Layzer-drag bubble,

ζ̂L !
1
8

(
1 +

√
1− A

6

)
,

v̂L ! 1− 1− A
4

, Γ̂L !
3
4
+

√
6(1− A)

32
,

B̂L ! 1 +

√
1− A

6
, ĈL ! 1 +

√
1− A

6
.

For fluids with very similar densities, A ! 0, in the solution for the Layzer-drag bubble,

ζ̂L !

√
9− 4

√
3

8
, v̂L !

√
2A, Γ̂L !

√
3A
2

,

B̂L !
8
√

3ζ̂L

3
A, ĈL !

4
√

3
3

ζ̂L.

The Layzer-drag bubble is more curved for fluids with similar densities, A ! 0, when
compared to fluids with very different densities, A ! 1. For fluids with very different
densities, A ! 1, the values of the curvature, velocity, shear, and group-momentum
coefficients of the Layzer-drag bubble are the same as the values of the corresponding
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quantities of the Taylor bubble. For 0 < A < 1, the Layzer-drag bubble is more curved and
has smaller velocity and larger shear when compared to the Taylor bubble.

5.1.3. The Atwood Bubble

We refer to the fastest member of the family of solutions as the ‘Atwood bubble’ to
emphasize its dependence on the Atwood number [38]. The curvature, velocity, shear
function, and buoyancy and drag parameters of the Atwood bubble are

ζ̂A = ζ̂vmax, v̂A = 16
√

2ζ̂3
A, Γ̂A =

6v̂A

9− 64ζ̂2
A

,

B̂A =
8192ζ̂4

A

9− 320ζ̂2
A − 8192ζ̂4

A
, ĈA =

16ζ̂A

9− 320ζ̂2
A − 8192ζ̂4

A
, (18)

where ζvmax = −kζ̂vmax is given by Equation (14). We note that

B̂A = ĈAv̂2
A.

For fluids with very different densities, A ! 1, in the solution for the Atwood bubble,

ζ̂A !
1
8

(
1− 1− A

8

)

v̂A ! 1− 3
16

(1− A), Γ̂A !
3
4
− 21

128
(1− A),

B̂A ! 1− 13
8
(1− A), ĈA ! 1− 5

4
(1− A).

For fluids with very similar densities, A ! 0, in the solution for the Atwood bubble,

ζ̂A !
3

16
A

1
3 , v̂A !

√
27A

8
, Γ̂A !

√
3A
2

,

B̂A !
9
8

A
4
3 , ĈA !

1
3

A
1
3 .

For fluids with very different densities, A ! 1, the values of the curvature, velocity, shear
function, and group-momentum coefficients of the Atwood bubble are very close to the
values of the corresponding quantities of the Taylor and the Layzer-drag bubbles. For fluids
with a finite density ratio, the curvatures relate as ζ̂A/ζ̂cr ∈ (0, 1/8), ζ̂L/ζ̂cr ∈ (0, 1) and
ζ̂A/ζ̂T ∈ (0, 1). For 0 < A < 1, the Atwood bubble is less curved and has larger velocity
and smaller shear when compared to the Layzer-drag and the Taylor bubble.

Figures 7–11 are plots of the nondimensional variables as functions of the Atwood
number A for these special bubbles.
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Figure 7. Buoyancy parameter B as a function of the Atwood number for the special nonlinear bubbles.
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Figure 8. Drag parameter C as a function of the Atwood number for the special nonlinear bubbles.
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Figure 9. Scaled curvature ζ̂ = −ζ/k as a function of the Atwood number for the special nonlin-
ear bubbles.
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Figure 10. Scaled velocity v̂ = v/
√

g/k as a function of the Atwood number for the special nonlin-
ear bubbles.
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Figure 11. Scaled shear function Γ̂ = Γ/
√

gk as a function of the Atwood number for the special
nonlinear bubbles.

5.2. Special Solutions for Nonlinear Spikes

We introduce nondimensional variables

ζ̌ =
ζ

k
, v̌ = − v√

g/k
, Γ̌ = − Γ√

kg
, B̌ = −B, Č = −C.

5.2.1. The Taylor Spike

We refer to this spike as a ‘Taylor spike’ since its curvature magnitude is the same
as in work [3] of Davis and Taylor except for a difference in the wavevector value [4].
For the Taylor bubble, the curvature, velocity, shear function, and buoyancy and drag
parameters are

ζ̌T =
1
8

, v̌T =

√
8A

3− 5A
, Γ̌T =

3
4

v̌T,

B̌T =
2A

3 + A
, ČT =

3− 5A
4(3 + A)

. (19)

For the Taylor spike, the velocity and the shear function have non-positive values, which
are zero for A ! 0+, finite for 0 < A < 3/5, and which become singular approaching
negative infinity for A ! 3/5.
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5.2.2. The Layzer-Drag Spike

The family of spikes has amongst them a solution with velocity v = −
√

2A/(1− A).
We call this solution the ‘Layzer-drag spike’ since the drag model applies this velocity
rescaling with the Atwood number to the single-mode Layzer first-order approximation
at A = 1 [37,43]. Experiments and simulations tend to compare well with this rescal-
ing [37,43,44]. For the Layzer-drag bubble, the curvature, velocity, and shear function are

ζ̌L = ζ̌L(A), v̌L =

√
2A

1− A
, Γ̌L =

6v̌L

9− 64ζ̌2
L

, (20)

and the buoyancy and drag parameters are as defined in Equation (10). The dependence of
the Layzer-drag spike curvature on the Atwood number is cumbersome. For fluids with
very different densities, A ! 1, in the solution for the Layzer-drag spike,

ζ̌L !
3
8

(
1−

√
2(1− A)

)
,

v̌L !

√
2

1− A
, Γ̌L !

1
6

√
2

1− A
,

B̌L !
9

11

(
1− 4

11

√
2(1− A)

)
, ČL !

9
22

(1− A).

For fluids with very similar densities, A ! 0, in the solution for the Layzer-drag spike,

ζ̌L !

√
9− 4

√
3

8
, v̌L !

√
2A, Γ̌L !

√
3A
2

,

B̌L !
8
√

3ζ̌L

3
A, ČL !

4
√

3ζ̌L

3
.

The Layzer-drag spike is more curved for fluids with very different densities A ! 1 than
for fluids with very similar densities A ! 0. For a two-fluid system with A ∈ (0, 1),
ζ̌L/ζ̌T ∈ (

√
9− 4

√
3, 3), and the Layzer-drag spike is more curved than the Taylor spike.

The Layzer-drag spike has smaller absolute velocity and smaller absolute shear than the
Taylor spike.

For fluids with very similar densities A ! 0 , the magnitude of the curvature of
the Layzer-drag spike is the same as that for the Layzer-drag bubble, with ζ̌L = ζ̂L.
The magnitudes of the velocity and shear of the Layzer-drag spike differ from those of the
Layzer-drag bubble: the velocity and shear magnitudes of the spike approach infinity for
A ! 1, whereas the velocity and the shear magnitudes of the bubble are finite for any A.

5.2.3. The Atwood Spike

The fastest spike is where the drag parameter is zero. Its curvature is that given in
Equation (11). We refer to this spike as the ‘Atwood spike’ to emphasize its dependence on
the Atwood number [13,38]. It is the fastest growing, and hence the physically significant
spike. For the Atwood spike, the curvature is regular, ζ̌ ! ζ̌A, whereas the velocity and the
shear function are singular, with v̌A/

√
g/k ! ∞, for any Atwood number.

For fluids with very different densities, A ! 1, the solution for the Atwood spike is

ζ̌A =
3
8

(
1−

√
2(1− A)

)
, BA =

9
11

(
1− 4

11

√
2(1− A)

)
.

For fluids with very similar densities, A ! 0, the solution for the Atwood spike is

ζ̌A =
3

16
A, BA =

9
8

A2.
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The Atwood spike is less curved than the Layzer-drag spike for A ∈ [0, 1) and has the same
curvature as the Layzer-drag spike ζ̌A/ζ̌L = 1 at A = 1. The Atwood spike attains the
same curvature as the Taylor spike ζ̌A/ζ̌T = 1 at A = 3/5.

The properties of the curvature, velocity, and shear of the Atwood spike differ dra-
matically from those of the Atwood bubble: for any density ratio A, the magnitudes of
the velocity and shear of the Atwood spike are singular, whereas the magnitudes of the
velocity and shear of the Atwood bubble are regular and finite. While the magnitudes of
the curvature of the Atwood spike and the Atwood bubble are both finite, the Atwood
spike is more curved (less curved) when compared to the Atwood bubble for fluids with
very different (very similar) densities A ! 1 (A ! 0).

Figures 12–16 are plots of nondimensional variables as functions of the Atwood
number A for these special spikes.
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Figure 12. Buoyancy parameter B as a function of the Atwood number for the special nonlinear
spikes.
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Figure 13. Drag parameter C as a function of the Atwood number for the special nonlinear spikes.
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Figure 14. Scaled curvature ζ̌ = ζ/k as a function of the Atwood number for the special spikes.
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Figure 15. Scaled velocity v̌ = −v/
√

g/k as a function of the Atwood number for the special
nonlinear spikes. The scaled velocity of the Atwood spike is v̌ ! ∞.
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Figure 16. Scaled shear function Γ̌ = −Γ/
√

gk as a function of the Atwood number for the special
nonlinear spikes. For the Atwood spike, the scaled shear function is Γ̌ ! ∞.



Atoms 2023, 11, 155 17 of 40

6. Self-Similar Mixing

In the mixing regime, the dynamical system is generalized as

v̇ = Bmg− Cm
v2

h
, ḣ = v. (21)

In the momentum model, we relate the length-scale for energy dissipation with the am-
plitude as L = |h| = |z0|, and we set B = Bm, C = Cm, where subscript m stands for
mixing. The buoyancy and drag are free values due to the many scales contributing,
with Bm, Cm > 0 (< 0) for bubbles (spikes) with h > 0, v > 0 (h < 0, v < 0). Herein,
we consider Bm > 0, Cm > 0, h > 0, v > 0. Our consideration can also be applied for
Bm < 0, Cm < 0, h < 0, v < 0; see works [4,33,36].

We solve the model equation in domain h, v > 0, t > t̃0 for constant Bm, Cm > 0 and
with initial conditions h̃0 = h(t̃0), ṽ0 = v(t̃0):

ḧ + Cm
ḣ2

h
− Bmg = 0.

The solution is sought in the physical domain with h, v, t > 0 and with initial conditions
t = t0, h0 = h(t0), and v0 = ḣ(t0) [4,36].

The associated homogeneous equation is ḧ = −Cḣ2/h. It can be solved by the method
of separation of variables leading to the general solution, with integration constants H0,
V0, as

hC+1
d − HC+1

0

HC
0

= (C + 1)V0(t− t0),

where subscript d stands for dissipative dynamics. For t/t0 � 1, the solution is

hd = Bdt
1

1+C , Bd = H0

(
(C + 1)

V0

H0

) 1
C+1

.

To find a particular solution for the non-homogeneous equation ḧ + Cḣ2/h = g,
we invoke Lie group analysis and employ one-parameter scaling transformation t̂ = eψt,
ĥ = eγψh, where ψ and γ are the transformation’s parameter and constant. This leads to
e(γ−2)ψ(ḧ + Cḣ2/h) = g and hence γ = 2 and the corresponding invariant h/t2. The partic-
ular solution is ha = Bagt2/(2 + 4C), where subscript a stands for accelerative dynamics.
The general solution is a function of the dissipative and accelerative solutions, h = h(hd, ha).

Whilst solutions hd and ha should be coupled because of the nonlinear nature of
the differential equation, it has, in fact, the remarkable property that in the respective
asymptotic regimes, (t − t0)/t) � 1 and t/t0 � 1, solutions ha and hd are effectively
decoupled. This decoupling is due to the distinct symmetries of the solutions, ha and
hd [4,36].

For L ∼ λ, the gains and losses are fully balanced, µ = µ̃ and ε = ε̃. For L ∼ h,
the gains and losses are unbalanced, µ 6= µ̃ and ε 6= ε̃ [4,36]. According to data, the im-
balance is small, (µ̃− µ)/µ̃� 1 [5]. This slight imbalance results in the flow acceleration
and in the development of self-similar RT mixing: parcel of the heavy fluid moves in the
acceleration direction, parcel of the light fluid moves against the acceleration direction,
the position of the center of mass of the fluid system changes, energy is gained, almost
all of this gain effectively dissipates, and its remnant leads to flow acceleration [4,36].
The transition from nonlinear RTI to RT mixing may occur via the growth of the horizontal
scale, as the merger model predicts [5].

7. Numerical Approach

Assuming that acceleration is uniform in time, we recall that the penetration of the
bubble interface into the heavier fluid occurs on an acceleration-determined time scale and
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follows a t2 scaling law. The penetration distance of the light fluid into the heavy fluid is
known to be given by

hb = αb Agt2, (22)

where A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number, a relative density difference that
modifies the uniform acceleration, g. Here, ρ1 (ρ2) denotes the density of the light (heavy)
fluid. The constant αb is a growth rate parameter.

This remainder of this paper analyzes RT mixing data in depth, with archived data
that could be used in future studies of bubble merger. Here, we analyze 2D experimental
and 3D simulation studies of RT mixing; 2D and 3D merger trees are constructed as a result
of this process. In these figures, the bubble merger process occurring over multiple time
steps can be observed. Detailed analysis of all measured properties of each bubble are
recorded in a spreadsheet (not included here due to its size), and will aid in any further
analyses; see Sections 8 and 9.

The mean bubble radius, r, and the separation height between adjacent bubbles un-
dergoing a merger, hm, grow on a quadratic time scale [45], in common with αb. These
growth rates are related by the model, with αr and αhm being their respective growth rate
parameters. We determine these three growth rates for the numerically simulated experi-
ment. The extraction and analysis of these data, including relevant plots, are presented in
Section 10.

The bubble merger model correctly predicts the measured merger rates relative to
experimental data. The model has one adjustable parameter, which is a noise level (fluctua-
tion or variance) in the bubble radii. A brief overview of the merger model and all relevant
equations is given in Section 11.

On a quantitative level, we revisit predictions made by the merger model and reported
in [45]. We find that for the Smeeton and Youngs (SY) experiments [46], the merger model
better predicts growth rate αb than originally reported. Applications of this model to
numerical simulation data are also presented; see Section 12. We comment that αb is
sensitive to the amplitude of long wavelength random (noise) perturbations to the initial
data, as was observed in the experiments of Meusche, Andrews and Schilling [47–49] and
the LEM experiments of Dimonte [50] whose long-wavelength noise in the experiment
apparatus made its use for comparison to simulations difficult. The bubble merger model
studied here excludes such initial perturbations, which appear to be missing in the SY
experimental data [46] and are missing in the simulation data studied here.

We recall that the fluids are accelerated; this is customarily achieved by a rapid
downward acceleration of a gravitationally stable two-fluid system, with the light fluid
above the heavy. These turbulent events accelerating the bubble penetration occur at the
base of the bubble, or even above the base, in the form of a vortex ring wrapping around the
stem above the downward moving bubble. According to this picture, we see the origin of
the randomness as lying in the fluids at the base of the bubble, or even above it, and coming
from turbulent aspects of the mixing flow, a well-known source of randomness. In fact,
in our data, we observe that the merger occurs in stages, starting at the base and progressing
downwards to the tip. Not explored here, but likely, is the fact that the merger begins
earlier, at the level of vortex rings driving the bubble.

We mention an alternate bubble merger model [37] which predicts one observed
parameter (αb) on the basis of one input parameter: a noise level in the initial data that
is assumed to originate in the initial perturbations of the initial interface. This model
mispredicts the bubble radius and velocity for non-interacting bubbles. The misprediction
is significant as its velocity contains a term proportional to its radius. The bubble merger
model proposed by Cheng et al. [45] yields a range of predictions for the bubble height-
to-width ratio that is consistent with the values observed in experiment and simulation.
However, as noted in [51], the model [52,53] predicts a value for this ratio that falls outside
the observed range.
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8. 2D Bubble Merger

Five experiments of SY are analyzed (numbered 99, 103, 104, 105, and 114). Plates
A-F in each experiment reflect six subsequent times in the evolution of the mixing front.
The elapsed time between plates varies by experiment and are shown in Table 1. These
experiments are presented as photographs taken from face on cameras, so the resulting
data are essentially two-dimensional. The acceleration is tangential to the y-axis in these
experiments. The data show a few of the bubbles surviving until the final plate, while
many smaller bubbles, present initially, are left behind and disappear from the mixing front
and from the plots as time evolves. As the fronts are moving downward in time, the later
bubbles are below the earlier ones. We show the larger of the observed bubbles at each time
frame. The edges of the same bubble, observed at successive times, are joined to provide a
picture of the continuous evolution of each major bubble.

Table 1. Elapsed time between plates in SY experiments [46]. Experiments differed in the densities
of the two fluids involved, the tank pressure, the interfacial tension, and/or the mean acceleration.
Plates A–F in each experiment reflect six subsequent times in the evolution of the mixing front.

Time Elapsed (ms)

Experiment No. A ! B B ! C C ! D D ! E E ! F

99 28.5 10.6 15.9 16.0 10.6
103 16.1 10.7 16.1 12.4 11.5
104 16.3 10.8 11.5 11.0 11.0
105 20.6 10.3 10.2 10.3 20.4
114 10.3 10.3 10.3 13.1 10.3

Analysis is omitted for Plates A and B across all experiments due to the low resolution
and small amplitudes of bubbles. Plate C is also omitted for Experiments 99 and 103
for identical reasons. Plate photographs are scaled using tank dimensions from SY and
center-line values from [54].

To minimize the possibility of interpretation errors in assigning heights and widths
to each bubble, both values are independently measured for all bubbles in the ensemble
by two authors. Leading bubbles are defined as bubbles with the furthest penetration and
with sufficiently large radii. Two authors independently identify the leading bubbles of
each plate.

We construct a merger path for a qualitative analysis of the bubble merger using
bubble positions and widths. Construction of merger paths begins with the terminal
leading bubbles of each experiment and continues working backwards in time to identify
its predecessor(s).

Figures 17–21 present bubble merger trees, which contain the leading bubbles of each
plate along with their adjacent neighbors. For all bubbles in the ensemble, including those
not involved in a merger, we represent their widths by a horizontal line. Coloring and line
styles are used to identify a bubble’s plate of origin. One can observe the merger process,
where a given bubble grows systematically by expanding into space vacated by smaller
bubbles. We quantify this observation in Table 2a.
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Figure 17. 2D merger trees for SY Experiment 99 [46], showing the evolution of bubble widths for all
leading bubbles within the ensemble. The acceleration is tangential to the y-axis in this experiment.
Bubble widths, including those not directly involved in a merger, are represented by a horizontal line
with line style and color corresponding to their plate of origin. Isolated horizontal lines represent
bubbles not involved in the merger process. See Table 1 for the elapsed times between plates.

Figure 18. 2D merger trees for SY Experiment 103 [46]. See Figure 17 for details.

Figure 19. 2D merger trees for SY Experiment 104 [46]. See Figure 17 for details.
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Figure 20. 2D merger trees for SY Experiment 105 [46]. See Figure 17 for details.

Figure 21. 2D merger trees for SY Experiment 114 [46]. See Figure 17 for details.

Table 2. We quantify the bubble merger process in Rayleigh–Taylor dynamics by counting the
number of bubbles lost between successive time steps, denoted as Plates A-F, in SY experiments [46].
Analysis was omitted for Plates A and B across all experiments due to the low resolution and small
amplitudes of bubbles. (a) 2D experiments. The time evolution of bubble loss across various physical
experiments of SY [46]. Details regarding the elapsed time between plates are given in Table 1. Plate
C in Experiment 99 and Experiment 103 could not be analyzed due to insufficient bubble amplitudes
and resolution. (b) 3D simulation. The time evolution of bubble loss in 3D simulation data modeling
SY Experiment 112 [46]. The times elapsed between Plates C, D, E, and F in this simulation are all
10 ms.

(a)

Number of Bubbles Lost

Experiment No. C ! D D ! E E ! F

99 N/A 3 1
103 N/A 2 3
104 6 7 2
105 11 5 2
114 12 8 0

(b)

Number of Bubbles Lost

Experiment No. C ! D D ! E E ! F

112 (sim.) 5 2 2
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9. 3D Bubble Merger

We construct the three-dimensional analogue of the merger trees found in Section 8.
The 3D nature of the data introduces additional difficulties in its analysis and presentation.
We examine simulation data modeling the miscible and compressible SY [46], Experi-
ment 112. This experiment involves sodium iodide solution (ρh = 1.89 g/cm3) and a solu-
tion consisting of water, hydrochloric acid, and phenolphthalein (ρl = 1.00 g/cm3), with an
approximate Atwood number of 0.3. The mean acceleration is 39g0, where g0 = 9.81 m/s2.
The domain in this simulation has dimensions 3.75 cm × 0.625 cm × 15 cm, with periodic
boundaries in the x-y plane, and it has no edge effects. The spatial mesh has spacing
∆x = ∆y = ∆z = 5/192, and the numbers of grid cells are Nx = 144, Ny = 24, and
Nz = 567. The initial conditions contain short-wavelength perturbations and the equation
of state for this simulation is a gamma law gas. We thank Tulin Kaman for providing the
simulation data used in this study. For details on a related simulation study of Experi-
ment 112, see [55].

Simulations are analyzed at four time steps (40, 50, 60, and 70 ms), each corresponding
to one of the Plates C–F from Experiment 112 of SY [46]. Data from these simulations consist
of a meshed interface modeling the mixing front and discrete state variables, namely density.
Unlike the 2D case of the preceding section, we note greater ambiguity in identifying
bubbles of light fluid in the mixing front. We define a bubble as a structure of reasonable
shape that grows from a distinct tip. An example is shown in Figure 22. We observe that in
this example, the bubble structure contains a filament of heavy fluid within its enclosure,
which we ignore in subsequent analyses.

Figure 22. Example of a bubble structure in simulated RT mixing data. This figure was generated
using version 3.1.2 of the VisIt visualization software. Here, we show the 2D cross-section of the
bubble base, where the cross-section is taken to be perpendicular to the direction of acceleration. We
indicate the bubble by an arrow. The domain in these simulations is periodic in the x-y plane and has
dimensions 3.75 cm × 0.625 cm × 15.0 cm.

At a fixed time step, we identify distinct bubble tips and record each bubble’s height at
three distinct levels. The lowest height is the bubble tip, above this is a larger cross-section
at the middle of the downward moving bubble, and above that is a rim that forms the
upper limit of the bubble within the fluid. A bubble’s terminal rim is defined as the largest
of the bubble’s heights at which its cross-section has a consistent and maximum shape.
The data analysis consists of examination of cross-sections at different height (z) levels
through the simulation data.

Following data collection and bubble identification, we construct a merger path for
each terminal bubble. That is, for each terminal bubble, we determine what bubble(s) must
have preceded it in earlier time steps. The resulting five merger paths are presented in
Table 3; here, p is used to denote a bubble split periodically in that respective coordinate.
We note in particular Bubble 5 of Table 3, which originates from two distinct tips but
terminates at a common base, and so the merger must have occurred at a height beyond
the tip.
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Table 3. Three-dimensional merger paths for successive time steps (denoted as Plates C–F) in
numerical RT mixing data simulating Experiment 112 of SY [46]. The domain of this simulation
is periodic in the x-y plane and has dimensions 3.75 cm × 0.625 cm × 15.0 cm. The acceleration
is tangential to the z-axis. Starting with Plate C, we identify each bubble by recording the (x, y, z)
coordinates of its approximate bubble center and follow its position as time evolves until Plate F. This
defines a merger path (MP). Here, p is used to denote splitting by the periodic boundary. MP 1–4
display the expected dynamics of a single bubble, expanding in time into space vacated by smaller
bubbles. MP 5 originates from two distinct tips but terminates at a common base, and so the merger
occurs at heights beyond the tips. See Figures 23–27 for visualization.

MP C D E F

1. (3.75p, 0.50, 7.05) (3.75p, 0.625p, 6.43) (3.75p, 0.625p, 5.85) (3.75p, 0.625p, 5.44)

2. (1.40, 0.625p, 7.26) (1.40, 0.625p, 6.69) (1.25, 0.625p, 5.96) (1.25, 0.625p, 5.31)

3. (1.75, 0.18, 6.82) (1.70, 0.20, 6.38) (1.75, 0.20, 5.98) (1.90, 0.20, 5.46)

4. (2.30, 0.35, 7.26) (2.40, 0.40, 6.52) (2.45, 0.55p, 5.67) (2.10, 0.625p, 4.71)

(3.50, 0.30, 7.16)
5. (3.40, 0.625p, 7.21) (3.75p, 0.47p, 7.00) (3.75p, 0.53p, 6.64) (3.75p, 0.625p, 6.22)

(3.25, 0.15, 7.21)

We now outline the process of constructing the 3D merger trees. For a given bubble,
we first extract three 2D subsets from the 3D simulation data, one for each of the heights of
interest previously discussed. Each slice is digitized, converting all density values to binary
values, with each grid block taking a value of zero if it contains density values closer to
that of the lighter fluid, and one for values closer to the heavier fluid. A marching squares
algorithm, a two-dimensional analogue of the marching cubes algorithm, is then used to
identify the vertices of each bubble’s contour. We filter out the non-leading bubbles that
do not have the potential to participate as a leading bubble at any time step, using bubble
centers to identify the leading bubbles and then take their convex hull. The remaining
non-leading bubbles are analyzed separately. Bubbles split by the periodic boundary are
reconstructed using appropriate coordinate shifts. Contours are then plotted to create 3D
merger trees. Each terminal bubble, and thus each merger tree, is plotted separately. Each
bubble is shown at three heights, from the tip to the middle to its base. To suggest time
evolution, the bases at the different times are joined by a few nearly vertical line segments.
Time evolution is coded by color and line style, consistent with the 2D figures shown in
Section 8, with red corresponding to Plate C, green for Plate D, blue for Plate E, and black
for Plate F. See Figures 23–27, with two alternate viewing angles in most cases.

We recall the picture behind the bubble merger model, which states that the larger
bubbles expand by occupying space vacated by smaller bubbles that were swept aside.
This process can be observed in Figures 28–30, where all bubbles in the ensemble, including
smaller (non-leading) bubbles, are shown. As in Figures 23–27, the time evolution of each
bubble is shown using nearly vertical lines connecting three of its cross-sections: the bubble
tip, an intermediate height, and the bubble rim. The leading bubbles can be seen expanding
with time, and non-leading bubbles are swept aside and ultimately vanish from the mixing
front. We quantify these phenomena, both for the 2D and 3D cases, in Table 2b.

Another example of the bubble merger process can be found in Figure 31. This example
follows a fixed region of the mixing front as time evolves. The images in these figures are
taken directly from the numerical simulation’s meshed interface data and visualized using
the VisIt visualization software. In particular, we point out two smaller, less advanced
bubbles, which are indicated by a solid red and dashed blue arrows, respectively. The first
bubble survives until Plate D, whereas the second survives until Plate E. By Plate F, we
observe that both bubbles have vanished, while the nearby leading bubbles have grown in
size and have penetrated further into the heavy fluid.



Atoms 2023, 11, 155 24 of 40

Figure 23. Three-dimensional merger tree for Bubble 1 of Table 3, showing the evolution of bubble
cross-sections across various time steps. For each time step, the bottommost contour is the bubble tip
and the uppermost is the bubble rim. The trajectory of the bubble rim expands with time, occupying
space vacated by smaller bubbles that were pushed aside.
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Figure 24. Three-dimensional merger tree for Bubble 2 of Table 3. See Figure 23 for details.
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Figure 25. Three-dimensional merger tree for Bubble 3 of Table 3. See Figure 23 for details.
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Figure 26. Three-dimensional merger tree for Bubble 4 of Table 3. See Figure 23 for details.
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Figure 27. Three-dimensional merger tree for Bubble 5 of Table 3. We observe an incomplete merger
with two distinct tips merging to a common base. See Figure 23 for additional details.
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Figure 28. The combined view of all bubble trajectories from Plates C and D in numerically simulated
RT mixing data modeling SY Experiment 112 [46] is shown here, including smaller non-leading
bubbles. The smaller bubbles from the earlier plate are swept aside and the vacancies are filled by
larger (leading) bubbles.

Figure 29. As in Figure 28, the combined view of all bubble trajectories from Plates D and E in
numerically simulated RT mixing data modeling SY Experiment 112 is shown [46].
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Figure 30. As in Figure 28, the combined view of all bubble trajectories from Plates E and F in
numerically simulated RT mixing data modeling SY Experiment 112 is shown [46].

(a)

(b)

(c) (d)
Figure 31. Example of the bubble merger process within interface data from a numerical simulation
modeling Experiment 112 of SY [46]. Two bubbles (indicated by dashed blue and red arrows,
respectively), moving downstream from the mixing front, are depicted by a series of time steps.
As time evolves, the two bubbles are swept further upstream, and ultimately disappear from the
mixing front while neighboring leading bubbles are enhanced. (a) Plate C; (b) Plate D; (c) Plate E;
(d) Plate F.
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10. Data Collection and Simulation Growth Rates

We further analyze numerical simulation modeling Experiment 112 discussed in
Section 9. In particular, we wish to determine measured values for three growth rate param-
eters: αb, αr, and αhm . Of most importance is the bubble growth rate, αb, which describes
the asymptotic growth behavior of the mixing layer resulting from RT instability [51]. We
determine these parameters first by measurement, and later predict these growth rates
using the merger model (Sections 11 and 12). Values for the measured parameters presented
in this section can be found in Table 8.

Required quantities are measured using interface data, as opposed to state variables,
due to their superior resolution. An example of these interface data is pictured in Figure 31
using the VisIt visualization software.

10.1. Bubble Growth Rate, αb

We recall from Equation (22) that the penetration distance of the bubble front follows
a t2 scaling law. The leading bubble of each time step is defined as the bubble which
penetrates furthest into the heavy fluid. The penetration of the leading bubble is taken
as the overall penetration distance of the bubble ensemble, and is what we define as hb.
Penetration distances for the numerical simulation are provided by Tulin Kaman and are
presented in Table 4.

Table 4. Penetration distance of the leading bubble, hb, of each time step for numerical simulation
data modeling Experiment 112 of SY [46].

Time (ms) hb (mm)

0 0.009
2.87 0.109
11.5 0.398
25.8 0.543
45.9 0.617
71.8 0.806
103 1.51
141 3.17
184 5.64
232 8.82
287 12.4
347 16.3
413 21.7
485 26.3
563 30.8

The values for hb are then regressed against scaled acceleration distances X = Agt2

to determine αb; see Figure 32. We observe αb = 0.056 in the numerical experiment.
The nonzero intercept in Figure 32 suggests a delay in mixing, which is consistent with the
original SY experiment.

SY report αb = 0.052 for Experiment 112 [46]. We compare our measured value
to SY, but do not expect and do not achieve exact agreement due to the 3.5 mm initial
thickness present in the SY experiments, which is in contrast to the sharp interface of
the numerical simulation. The role of this initial thickness parameter was studied in [55],
and the discrepancy of the simulation αb to the SY value is consistent with study [55].
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Figure 32. Linear fit of hb against X = Agt2 for numerical simulation data modeling Experiment 112
of SY [46]. Data points are shown in red and the linear fit is shown in black. We observe an R2 value
of 0.971 and regression parameters hb = 0.0555X− 2.173.

10.2. Radius Growth Rate, αr

It was shown in [45] that the mean bubble radius, r, satisfies a self-similar scaling law
similar to Equation (22):

r ≈ αr Agt2. (23)

We now determine the radius growth rate, αr, for numerical simulation data. We note that
the transition from 2D to 3D introduces additional difficulties; in particular, the base of
the bubble is not perfectly circular, but rather (approximately) elliptical. Thus, to have a
well-defined notion of a bubble’s radius, we define the radius at the base to be half the
length of its major axis. We collect radius values for all bubbles in the ensemble, including
smaller non-leading bubbles. The mean radius of each plate is presented in Table 5.

Table 5. Mean radius, r, of each plate for numerical simulation data modeling Experiment 112. of
SY [46].

Plate Time (ms) r (mm)

C 40 1.308
D 50 1.764
E 60 2.125
F 70 2.870

By regressing the values of Table 5 against the scaled acceleration distances, we obtain
αr = 0.004; see Figure 33. The results from Table 5 are consistent with the qualitative picture
behind the bubble merger, where bubbles are expanding as time evolves.
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Figure 33. Linear fit of r against X = Agt2 for numerical simulation data modeling Experiment 112
of SY [46]. Data points are shown in red and the linear fit is shown in black. We observe an R2 value
of 0.989 and regression parameters r = 0.00401X + 0.566.

10.3. Separation Height Growth Rate, αhm

Another parameter within the merger model is the maximum separation height be-
tween adjacent bubbles undergoing a merger, denoted as hm. According to [45], this
parameter is also governed by a t2 scaling law:

hm = αhm Agt2. (24)

This can be seen in Figure 31, where the height between adjacent bubbles increases as
time evolves.

We wish to determine the growth rate parameter, αhm , for numerical simulation data.
To this end, we record the maximum separation distance of adjacent bubbles for each plate.
The results are presented in Table 6. As before, the growth rate, αhm , is determined through
regression; see Figure 34. We measure αhm = 0.0323.

Table 6. Maximum separation height between adjacent bubbles, hm, of each plate for numerical
simulation data modeling Experiment 112. of SY [46].

Plate Time (ms) hm (mm)

C 40 4.729
D 50 7.355
E 60 12.326
F 70 16.663
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Figure 34. Linear fit of hm against X = Agt2 for numerical simulation data modeling Experiment 112
of SY [46]. Data points are shown in red and the linear fit is shown in black. We observe an R2 value
of 0.995 and regression parameters hm = 0.0323X− 1.42.

11. Review of Merger Model

Here, we present a brief overview of the model and model equations; we refer the
reader to [45] for details. The merger model predicts three measured parameters:

1. the mixing rate, αb,
2. the bubble height separation at the time of merger, hm,
3. the mean bubble radius, r,

and
takes in a noise level as an adjustable input.
This noise level, as presented in the original merger model, is taken to be the variance

of the fluctuations amongst bubble radii. More explicitly, for fixed time, the randomness
within the bubble ensemble can be measured by first applying map r 7! (r/r− 1), where r is
the bubble radius, and computing the variance of the transformed distribution. Area preser-
vation and geometrical arguments concerning bubble merger lead to defining parameter

k ≡
(

rnew −
r1 + r2

2

)/( r1 + r2

2

)
, (25)

where

r1 = r(1 + σ),

r2 = r(1− σ),

rnew =
√

r2
1 + r2

2,

and σ is the standard deviation of fluctuations amongst bubble radii. After some elementary
manipulations, Equation (25) can be rewritten to be independent of r:

k =
√

2(1 + σ2)− 1. (26)

We recall that hm and r satisfy self-similar scaling laws:

r(t) ≈ αr Agt2, αr =
k
2

〈 1
t′m

〉2

∗
, (27)
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and

hm = αhm Agt2, αhm =
k2

4
h′m
〈 1

t′m

〉2

∗
= h′mαr, (28)

where h′m = hm/r, and 〈1/t′m〉∗ is the averaged merger rate evaluated at the renormalization
group fixed point.

Using the above, the model predicts αb as

αb =
k
4

(
cb +

1 + k
2

h′m
〈 1

t′m

〉
∗

)〈 1
t′m

〉
∗
=

1
2

cbα1/2
r +

( 1
2k

+
1
2

)
αhm , (29)

where cb is a constant obtained from experiment or from theoretical determination. In all
subsequent analyses, we follow [45] and take cb = 0.532 for hexagonal bubbles.

Thus, given a measure of randomness, a prediction for αb using Equation (29) reduces
to determining h′m and 〈1/t′m〉∗. To this end, we consider two interacting adjacent bubbles
with radii r1 and r2. We let rl = min(r1, r2) and rh = max(r1, r2). We note that ratio rh/rl
is then itself a measure of randomness. When using experimental data, this value can be
computed directly from the standard deviation of bubble radii using

rh
rl

=
r(1 + σ)

r(1− σ)
=

1 + σ

1− σ
. (30)

The velocity of a single bubble, when used in conjunction with geometric considera-
tions of interacting bubble tips on a larger length scale, provides a criterion for completion
of merger:

6
χ1/2 =

5
λ1/2

( eλxm/2 − λxm/2− 1
eλxm/2 + 1

)1/2
+
( exm − xm − 1

exm + 1

)1/2
, (31)

where

R ≡ rh + rl (32)

xm ≡ hmβ1/R (33)

χ ≡ 1 + rh/rl (34)

λ ≡ χ

1 +
√(

1 + (χ− 1)2
)
/2

, (35)

and β1 is the first zero of the Bessel function, J1(r).
We observe that solving Equation (31) for xm and using Equation (33), along with the

fact that R/r = (rh + rl)/[(rh + rl)/2] = 2, yields h′m, as desired.
The model determines 〈1/t′m〉∗ by using the already found value for xm:〈 1

t′m

〉
∗
=

1
x2

m

∫ xm

0

xm − x
t′m(x)

dx, (36)

where

t′m ≡ 3

√
2
β1

∫ xm

x

[√
ex − x− 1

ex + 1
+

5√
λ

√
eλx/2 − λx/2− 1

eλx/2 + 1

]−1

dx. (37)

Having determined the averaged merger rate at the RNG fixed point, we may use
Equations (27)–(29) to predict theoretically the growth rates, αr, αhm , and αb.
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12. Application of Model to Experiment

We use the process outlined in Section 11 to predict model parameters. We begin
first by applying the model to various radius ratios rh/rl and reproduce Table III of [45]
keeping all notation consistent; the results are shown in Table 7. We then apply the model
to Experiments 104, 105, and 114 of SY, and compare the results with those reported in [45].
We present these predictions in Table 8. For consistency, we use the measured standard
deviation reported in [45] as an input into the model.

Minor discrepancies in the numerical solution for nonlinear Equation (31) are corrected,
as well as the modifications to the experimental predictions. αb prediction improves in
comparison to the experiment, while predictions for αr and αhm become somewhat worse.
These changes are made with the acceptance of the authors of [45].

Table 7. Merger model predictions with various radius ratios rh/rl given as an input. This table
is a reproduction of Table III of [45], but with a minor discrepancy in the numerical solution for
Equation (31) corrected.

rh/rl k χ xm h′m 〈1/t′m〉∗ αr αb hb/(2r)

1.0 0.414 2.0 3.488 1.82 0.432 0.00799 0.049 3.04

1.1 0.416 2.1 3.325 1.74 0.440 0.00839 0.049 2.93

1.2 0.420 2.2 3.181 1.66 0.448 0.00886 0.050 2.82

1.3 0.427 2.3 3.051 1.59 0.455 0.00945 0.051 2.70

1.4 0.434 2.4 2.934 1.53 0.462 0.01005 0.052 2.59

1.5 0.442 2.5 2.829 1.48 0.468 0.01071 0.053 2.49

Table 8. Merger model predictions for various SY [46] experiments, one of which is simulated
numerically.

Experiment σ rh/rl k 〈1/t′m〉∗ α
exp
r αr α

exp
hm

αhm α
exp
b αb

104 0.405 2.36 0.526 0.5065 0.0177 0.0087 0.0205 0.0278 0.065 0.068

105 0.39 2.28 0.518 0.5037 0.0170 0.0117 0.0200 0.021 0.064 0.072

114 0.31 1.90 0.481 0.4887 0.0138 0.0108 0.0179 0.0359 0.059 0.060

112 (sim.) 0.43 2.48 0.534 0.5104 0.0004 0.0188 0.0323 0.0211 0.056 0.067

Additionally, we apply the model to the 3D numerical simulation modeling Experi-
ment 112 of SY that is discussed in Sections 9 and 10. We measure the radius at the base of
each bubble in the ensemble and measure the fluctuations within the resulting distribution
as was discussed in Section 11, similar to the 2D analysis carried out in [45]. Due to the
3D nature of the simulation, the cross-sections at the base are not perfectly circular and so
we note some ambiguity in interpreting its radius. We map these standard deviations to
radius ratios using Equation (30) as input to the model. The results can be found in the last
row of Table 8.

We recall from Section 10.1 that we cannot confirm that the sharp interface in the
numerical simulations is relevant to SY’s Experiment 112 [46]. Furthermore, the unavail-
ability of data from earlier time steps renders our application of the merger model to
simulation incomplete. We posit that this exclusion has an influence on the predicted value
for αb. For these reasons, we do not compare the merger model prediction to the αb value
measured in either experiment or simulation.
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13. Outcomes

We studied RTI driven by constant acceleration in neutral plasmas (fluids and/or
gases). We employed the group theory analytical approach and the analysis of numerical
data in Front Tracking simulations. We revealed the independent driving constituents that
RT flow possesses in each of the linear, nonlinear, and mixing regimes.

13.1. Outcomes from Analysis

In our analysis, we employed the group theory approach and directly linked the gov-
erning equations to the dynamical system and the momentum model [4,38]. We precisely
derived the buoyancy and drag parameters for RT bubbles and RT spikes in the linear,
nonlinear, and mixing regimes. The governing equations include the conservation laws in
the bulk, the boundary value problem at the interface and the initial value problem; see
Equations (1), (2) and (6). They are reduced to the dynamical system by using an irreducible
representation of the group of RT flow. The momentum model has the same symmetries
and scaling transformations as the governing equations; see Equations (3)–(7).

In each regime, we precisely derived from the governing equations the momentum
model parameters for RT bubbles and RT spikes. We integrated the momentum model
equations and investigated their asymptotic limits, finding complete consistency with
asymptotic analytical solutions for the dynamical system; see Equations (8) and (9) and
Figures 3–6. In addition to the interplay of harmonics, the group theory approach cap-
tures the interfacial character of RT dynamics, with intense fluid motion at the interface,
effectively no motion far from the interface, and with shear-driven vortical structure at
the interface; see works [13,38]. Our approach can be applied to three-dimensional and
two-dimensional RT flows [4].

We revealed that the buoyancy and drag parameters are independent characteristics
of RT dynamics. The expressions for the buoyancy and drag parameters are distinct in
the early-time linear, later-time nonlinear, and mixing regimes. They are also distinct for
RT bubbles and RT spikes. In addition to the density ratio, they depend on the interface
morphology and the interfacial shear. However, they are independent of the acceleration,
thus expanding the validity of our results to variable, in space and time, accelerations; see
Equations (8)–(10) and (21) and Figures 1, 2 and 7–16.

13.2. Outcomes from Simulations

In regard to simulations, we presented 2D and 3D merger tree diagrams showing
the dynamics of the merger model. In these figures, we observed that smaller and less
advanced bubbles are pushed downstream and away from the mixing front. Larger and
leading bubbles expand into this vacated space. Hence, we concluded that the qualitative
picture behind the bubble merger is correct. Figures showing the growth of a single bubble
as a result of this process are also presented, including an incomplete merger with two
distinct tips merging to a common base; see Figures 17–21 and 23–31.

We analyzed numerical simulation data modeling Experiment 112 of SY and presented
a detailed data analysis; see Section 10. Due to the significant difference in the initial
thickness of the mixing layer in the SY experiment (3.5 mm) and the numerical simulation
(0 mm), we did not compare our parameter values to the SY data.

On the quantitative side, we revisited predictions made by the merger model [45] and
corrected the numerical solution to a nonlinear equation pertaining to the model. The result
is an improvement in αb for all three experiments, and some worsening of the two other
growth rate parameters αr and αhm . We applied this model to the numerical simulation
data and presented similar findings; we predicted αb = 0.067. We did not compare this
prediction to the value measured in experiment or simulation due to the absence of early
time data; see Tables 7 and 8.

The success of this model indicates that the direct measurement of randomness related
to the bubble front evolution, in terms of a measured variance and standard deviation, is
feasible both for simulation data and data collected from physical (2D) experiments. The re-
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sults of this analysis may motivate future studies of bubble merger to further investigate
the growth of randomness in hopes of constructing a fully theoretical model.

13.3. Outcomes for Plasma Experiments

Our analysis and simulations suggests the following implications in our considerations
for plasma experiments, including inertial confinement fusion [9,34,36]. (1) RT dynamics
are driven by two independent constituents—the buoyancy and the drag. The values
of the buoyancy and drag parameters depend on the regime and on the deterministic
conditions, and are distinct for bubbles and spikes; see Equations (8), (10) and (21) and
Figures 1, 2 and 7–16. (2) In order to accurately describe experimental and numerical
simulation data for uncontrolled broadband initial conditions, one needs to consider two
independent self-similar processes—the merger process, as introduced in Section 1, and the
amplitude growth process; see Equations (8), (9) and (21) and Figures 1 and 2. (3) RT
dynamics can, in principle, be controlled, by means of the deterministic conditions (i.e.,
the initial and the flow experimental conditions), in agreement with experiments in fluids
and plasmas at high Reynolds numbers [13,38].

Our results suggest new opportunities for control of plasma flows by means of these
deterministic conditions [9,33,34,36]. For instance, in inertial confinement fusion (ICF), it
may be worth scratching the target in order to impose proper deterministic conditions and
to gain better control of fluid instabilities and the interfacial mixing. This may help existing
methods focused on fine polishing of ICF targets in order to fully eliminate RTI [9]. Our
results can also be applied in nanofabrication, by describing the dynamics and morphology
of the RT unstable interface in the scale-dependent linear and nonlinear regimes, and their
scaling properties, along with the sensitivity to deterministic conditions in the self-similar
mixing regime [26].

14. Conclusions

We studied, analytically and numerically, RTI with constant acceleration in neutral
plasma (fluid) by employing the group theory approach and the merger model. Based
on the obtained analytical solutions and conclusions drawn from the data analysis of
numerical and physical experiments, we revealed the independent constituents governing
RT dynamics in the linear, nonlinear, and mixing regimes. Our results can be used to
enhance methods of control of RT unstable plasma flows.
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