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Abstract: While generating high harmonics in long media of helium gas, at certain laser intensities
and chirp, the spectral shift and split of the harmonic lines were experimentally observed, some-
times exceeding one harmonic order. Beyond reporting these results, numerical simulations were
performed to understand the phenomenon. A 3D propagation model was solved under the strong
field approximation. According to the simulations, the distortion of the laser beam profile during
propagation and the consequently accused change in the conditions of phase matching are responsible
for the observations. The observed phenomena can be an excellent tool to produce tunable narrow
band harmonic sources covering a broad range around 13.5 nm for spectroscopy and for seeding
X-ray lasers, and to understand non-desired detuning of the seed wavelength.

Keywords: high harmonic generation; light–atom interaction; non-linear propagation; strong-
field physics

1. Introduction

Using ultrashort and intense near-infrared (NIR) laser pulses is a relatively conve-
nient way to produce coherent short wavelength ultrashort pulses by the generation of
high-order harmonics (HH) in the interaction between the NIR laser pulse and rare gases.
The generated spectra can be composed from a few harmonic lines to thousands. Such a
broad spectral range and ultrashort pulse duration opened the gate for wide variety of
applications, including time-resolved extreme ultraviolet (EUV) and X-ray spectroscopy,
high-resolution microscopy and EUV lithography. To improve the efficiency of the HH
generation process for better applicability, different phase matching schemes, different
illumination geometries [1] such as semi-infinite gas cells [2–6], and X-ray parametric am-
plification (XPA) [7–9] were successfully utilized. To understand their usefulness and limits,
several experiments were conducted to study the beam profile [5,10–12] and spectral prop-
erties, specifically the harmonic line shape and spectral shift [4,5,13–15] of the HH radiation.
In both cases, complex behaviors were observed. Inspecting the beam profiles and their
interference effects, the role and importance of the short and long electron trajectories and
the quantum path interferences in the generation process have been resolved [10–12,16–19].
The spectral shift of the harmonic lines from their expected spectral position was also
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recognized. Beyond being an interesting phenomenon, spectral shift has practical impor-
tance because this effect can be used to produce a tunable source of harmonics [20,21] for
spectroscopy or seeding X-ray lasers [22,23]. For tuning the HH source wavelength to that
of the X-ray laser, the tuning of the wavelength of the pump laser would be an obvious
option [15,23]. However, this may not always be feasible, as is the case with glass lasers,
which have a narrow gain bandwidth. Other tuning options include adjusting the initial
chirp [15,24] of the laser pulse, as well as modifying factors such as gas pressure, gas jet
position, or laser intensity [20]. In addition, spectral shift of the harmonic lines can have
undesirable consequences, as it can result in the detuning of the harmonic line from the
required seed wavelength of the X-ray laser. When applying phase-matched HH schemes,
it is essential to consider that the actual wavelengths of the harmonic lines may not be
integer divisors of the pump laser wavelength [1].

The shift of the harmonic lines also reveals the underlying physical processes of HH
generation. Blue or red shifts can be caused by the presence of XPA [25], and a blue shift
can also be produced by the blue shift of the generating laser beam during propagation
and nonlinear interaction in the gas medium. Such spectral shifts can be a limiting factor
in the coherent buildup of the harmonics since they can negatively affect the generation
efficiency [14] and the implementation of various phase-matching schemes.

The current work aims to produce an intense and tunable HH source, especially at
13.5 nm (~59th order of the 800 nm drive laser), a spectral region where HH can contribute
to efficient extreme ultraviolet (EUV) lithography and the seeding [23] of X-ray lasers. In the
present study, the drive laser traveled in a 20 mm long gas tube. The nonlinear propagation
of the driving laser pulse considering the change of its beam profile and spectral shape,
together with the phase-matching conditions produce a wildly tunable and bright HH
source at around 13.5 nm.

After describing the experimental conditions and the theoretical model used for
simulations, we examine the spectral shift and split of the harmonic lines due to the initial
chirp of the pump laser pulse and the position of the laser focus in the long gas medium.
The experimental results are compared with simulations, attributing observed effects to
nonlinear propagation, gas ionization, and the resulting blue shift and beam profile changes
in the laser pulses.

2. Methods Employed in Experiments and Simulations
2.1. Experimental Setup

The experiment was carried out at QST Kansai. The NIR drive laser was a Ti:Sapphire
laser (center wavelength: 800 nm, pulse duration: 40 fs, beam diameter: 20 mm, maximum
pulse energy: 80 mJ, repetition rate 10 Hz). The pulse duration was measured by a SPIDER,
and the measured compressed pulse is presented in Figure 1c.

The laser was focused onto the gas target by a lens with a focal length of 4 m. The
beam diameter (FWHM) was ~220 µm, and the Rayleigh length was 40 mm (both mea-
sured) supporting the measurements, with peak intensities of ~2.2 PW/cm2 for 52 mJ and
~3.4 PW/cm2 for 80 mJ pulse energies. The gas target was a Mo tube that was 20 (40 and
80) mm in length with a diameter of 2.9 mm. A photo of the 80 mm long gas target is
seen in Figure 1b. The gas was supplied by a fast solenoid valve with various stagnation
pressures. The valve opening time of ~5 ms served to limit HH absorption due to the gas.
The gas target is illustrated in Figure 1a with the focused beam and the formed plasma. The
HH spectra were measured with a grazing incident spectrometer with a spherical mirror,
enabling us to estimate the beam divergence. Fundamental laser light was blocked by a
thin Zr filter.
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Figure 1. (a) The laser beam was loosely focused into the long tube. Plasma was formed at around 
the focus to generate harmonics. The position of the focus zf is measured from the entrance of the 
tube. (b) Photo of the 80 mm long tube connected to the fast solenoid valve. (c) SPIDER measurement 
of the laser pulse and (d) a typical measured spectrum. The highlighted harmonic lines at around 
13.5 nm (59th harmonic) are examined in detail. 
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In order to describe the nonlinear propagation of the laser pulse in the long gas tube 

and the generation and propagation of HH pulses, a system of coupled differential 
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The second terms on the left-hand side of Equations (1) and (2) account for beam 
divergence considering cylindrical symmetry. On the right-hand side of Equation (1), the 
terms describe the free-electron and atomic dispersion, and the effect of the ionization. 
The right-hand side of Equation (2) includes the reabsorption of the generated harmonics 
in the gas during propagation and the generation term. El, Eh, ωp, Wb, ε0, c, αh, Ph, and c.c. 
represent the electric field of the laser and harmonics, the plasma frequency, the ionization 
potential, the speed of light, the absorption coefficient of the harmonics, the polarization, 
and the complex conjugate. A coordinate system moving with the speed of the light is 
introduced as 𝜏 ൌ 𝑡 െ 𝑧 𝑐⁄ , 𝜉 ൌ 𝑧, and the equations are solved numerically, as detailed in 
[27]. The Keldysh parameter considering the parameter range of our study is well below 
the unity (~0.3–0.4), and therefore, we are in the condition of efficient tunneling [28]. In 
order to compute the ionization rate in the tunnel regime, we resort to the Ammosov–
Delone–Krainov theory [29]. If a broader parameter range were to be considered, different 
ionization regimes could be readily incorporated into the propagation calculations [30,31]. 

  

Figure 1. (a) The laser beam was loosely focused into the long tube. Plasma was formed at around
the focus to generate harmonics. The position of the focus zf is measured from the entrance of the
tube. (b) Photo of the 80 mm long tube connected to the fast solenoid valve. (c) SPIDER measurement
of the laser pulse and (d) a typical measured spectrum. The highlighted harmonic lines at around
13.5 nm (59th harmonic) are examined in detail.

2.2. Theoretical Model

In order to describe the nonlinear propagation of the laser pulse in the long gas
tube and the generation and propagation of HH pulses, a system of coupled differential
equations for the electric fields of the laser and the harmonics was considered as in [26]:

∂ξ El(ξ, τ)− c
2∇2
⊥
∫ τ
−∞ El(ξ, τ′)dτ′ = −1

2c
∫ τ
−∞ ω2

p(ξ, τ′)El(ξ, τ′)dτ′

−ζ(1)

c ∂τ [1− ne(ξ, τ)]El(ξ, τ)− Wb
2ε0c

∂τne(ξ,τ)
El(ξ,τ)

(1)

∂ξ Eh(ξ, τ)− c
2
∇2
⊥

∫ τ

−∞
Eh
(
ξ, τ′

)
dτ′ = −αhEh(ξ, τ)− 1

2ε0c
∂τ Ph[El(ξ, τ)] + c.c. (2)

The second terms on the left-hand side of Equations (1) and (2) account for beam
divergence considering cylindrical symmetry. On the right-hand side of Equation (1), the
terms describe the free-electron and atomic dispersion, and the effect of the ionization. The
right-hand side of Equation (2) includes the reabsorption of the generated harmonics in
the gas during propagation and the generation term. El, Eh, ωp, Wb, ε0, c, αh, Ph, and c.c.
represent the electric field of the laser and harmonics, the plasma frequency, the ionization
potential, the speed of light, the absorption coefficient of the harmonics, the polarization,
and the complex conjugate. A coordinate system moving with the speed of the light is
introduced as τ = t− z/c, ξ = z, and the equations are solved numerically, as detailed
in [27]. The Keldysh parameter considering the parameter range of our study is well below
the unity (~0.3–0.4), and therefore, we are in the condition of efficient tunneling [28]. In
order to compute the ionization rate in the tunnel regime, we resort to the Ammosov–
Delone–Krainov theory [29]. If a broader parameter range were to be considered, different
ionization regimes could be readily incorporated into the propagation calculations [30,31].

3. Spectral Shift and the Spectral Shape of the Harmonic Lines
3.1. Dependence on the Initial Chirp of the Laser Pulse

It is expected that the laser pulses interact nonlinearly with the long gas medium
during propagation, which alters the pulse shape, the spectral shape, and the beam profile
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of the laser pulses. These changes affect the generated harmonic spectra. In one of the
experimental series, the initial chirp (group delay dispersion: GDD) of the laser pulse was
varied, while the laser beam was focused near the middle of the 20 mm long gas tube
(zf = 7 mm). The used pulse energy of the laser pulses was 52 mJ. In the experiments, the
chirp was changed by changing the distance between the gratings of the pulse compressor.
The results at harmonic order around H59 are plotted in Figure 2a and for few GDDs,
the spectra and beam profiles can be seen in Figure 2c,d. At GDD < 0, a small blue
shift proportional to the GDD can be observed. It is followed by a well-defined and
strong spectral blue shift, and a change in the shape of the harmonic lines starts at around
GDD = 0 fs2 and remains until about +1000 fs2. After that, narrower and cleaner harmonic
lines are generated, and their spectral positions regress back to the non-shifted position.
The beam profiles of Figure 2d exhibit some interesting behaviors. In both cases, a large
divergent and weak component can be seen together with a much stronger low divergent
beam. These large divergent components appear like thick (blue) vertical lines above and
below the small and strong beams. They are very weak and hardly observable. Such
a beam structure was also observed earlier [9,12] and explained by the contribution of
different electron trajectories (long and short) in the generation process or the contribution
from different radial parts of the generating laser pulse [11]. Beyond the difference in the
divergence, it can be observed that the small divergent intense beams are somewhat blue-
shifted at +600 fs2 and somewhat red-shifted at −1400 fs2 relative to the large divergent
component.
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Figure 2. Both the line shift and line shape of the (a) measured and the (b) simulated spectral lines are
strongly affected by the chirp of the pump pulse. The color bars are in arbitrary units. (c) Measured
harmonic lines and (d) spectrally resolved beam profiles at around H59 for different initial chirps of
the driver laser pulses. Dashed lines of (d) indicate the non-shifted positions of the harmonic lines.

To gain deeper insights into the behavior of the generated harmonics, simulations
were conducted by numerically solving Equations (1) and (2). This approach proves
invaluable as it allows for the calculation of laser pulse propagation within the extended
gas tube, enabling the tracking of spatial variations in both the longitudinal and radial
directions of the laser pulse and the associated harmonic generation. Such detailed analysis
is challenging to achieve experimentally. The generated harmonics at H59 are plotted in
Figure 2b as a function of the initial chirp of the laser pulse. The harmonics are from the end
of the tube and radially integrated to be comparable to the experiment in Figure 2a. The
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stagnation gas pressure for the gas valve was 0.3 bar in the experiments, which corresponds
to about a 20 mbar pressure in the interaction range based on a comparison between
the measurements and the simulations. In agreement with the observed effects in the
experiment, the simulations accurately reproduce parallel behaviors, including spectral
shifts and intensity changes in the harmonic lines. The chirp of the pump pulse strongly
affects the shift and the split of the harmonic lines. Between values of the GDD of 0 fs2 and
+1000 fs2, a strong blue shift and spectral shape distortion can be observed. The spectral
shifts of the simulations are somewhat larger than in the experiments. The reason for this
can be that the peak laser intensity of the laser pulse in the experiments was somewhat
smaller than in the simulations, because the pulse shapes (temporal and spatial) were
somewhat different.

To understand what is actually happening in the gas tube, the spatial evolution of the
harmonics spectrum and the spectral and radial change of the laser pulse are calculated
and presented in Figure 3a–c at four values of GDD (+200 fs2, +600 fs2, +1000 fs2 and
+1400 fs2) within the range where the harmonic spectra experienced large blue shift and
shape distortion. These effects are the consequence of the strong ionization of the gas
medium by the laser pulse and the feedback of the ionization to the pulse propagation,
which was considered by the last term of Equation (1). The first observation is that at
an almost fully compressed laser pulse, +200 fs2, the laser spectrum becomes strongly
blue-shifted (~4%), splits at the first 5 mm part of the tube, and remains so later. Within the
first 5 mm propagation, the beam profile also develops into a flat-top-like shape with some
ring structures. Both are the consequence of the large nonlinear effect of the ionization of
the gas medium [32,33].

At increased chirp, both the blue shift of the laser pulse and the distortion of the beam
profile are getting smaller and almost disappear at +1400 fs2 because of the much lower
ionization rate at the lower laser intensities of the chirped pulses. It could be expected that
the generated harmonic spectra follow the mentioned blue shift and split of the laser pulse
spectrum; however, it only happens partly. The largest blue shift of ~2.4 harmonic order
can be expected from the ~0.04-harmonic-order blue shift of the laser pulse at +200 fs2,
however the blue shift of H59 is ~1.1 harmonic order (at the position of H60.1) and no
split can be observed. Contrarily, at +600 fs2, H59 splits while the laser spectrum does
not split. The blue shift of the stronger part is about the same (~1.1) as for +200 fs2 chirp,
which is close to the expected ~1.2 harmonic order calculated by the ~0.02 harmonic order
blue shift of the laser spectrum. The harmonic lines split even at +1000 fs2 chirp and for
both +1000 fs2 and +1400 fs2 chirps, the blue shifts start to decrease following the blue
shift of the laser pulse. The observed differences at small chirp values can be understood
as the effects of the phase-matching conditions during propagation in the gas medium
because at low chirp (short pulse), the beam profile distortion is large, which increases
the Gouy-phase contribution, as studied in detail in [33], and temporal phase-matching
can be achieved at a certain point of the generation medium. This phenomenon can be
observed in the panels of Figure 3d. At +200 fs2 chirp, the phase-matching increase in the
harmonic yield can only be observed at the beginning (z < 2 mm) of the medium and at
around z = 17 mm. At other parts of the medium, the increase in the yield is nearly linear,
which is a clear consequence of the blue shift in the laser beam [14]. At +1000 fs2, more
temporal phase-matching positions can be recognized, and H59 becomes strong, while at
+1400 fs2, at the end of the medium, the effect of the saturation can be recognized.

3.2. Independence of the Focus Position in the Gas Tube

In the previous section, it was observed that the intensity, spectral shift, and shape of
the generated harmonics were strongly dependent on the initial chirp of the laser pulse.
This was experimentally demonstrated, and the simulations showed the major role of the
propagation nonlinearity of the laser pulse, both temporally and spatially. Because of the
strong nonlinear effects during propagation, the position of the focus (zf) within the long
medium can be important.
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Figure 3. The simulations show the evolution of (a) the harmonic lines around H59, (b) the laser
spectrum, and (c) the beam profile during propagation. (d) Evolution of the peak intensity of the blue
shift and split of H59 at certain spectral position given in harmonic order.

Experiments were performed to address this question, and the results are presented in
Figure 4. The focus position was scanned from the beginning (zf = 0 mm) of the 20 mm long
gas tube. The definition of the zf is shown in Figure 1a. For 52 mJ pump, Figure 4a, the initial
chirp was chosen to be −800 fs2, where strong splits of the harmonic lines were observed.
In the cases of the spectral shape and the beam profile, no dependence on the focus position
was observed. The intensity of harmonic lines has only a weak dependence. Choosing a
larger 80 mJ energy of the laser pulse, an energy for which much stronger nonlinear effects
can be expected, a much stronger split of the harmonic lines occurs, although no essential
dependence of the harmonic signal (intensity, spectral shape, and beam profile) on the
focus position was observed, as presented in Figure 4b. It is possible only to recognize a
small spectral shift. We can conclude that the choice of the focus position essentially does
not affect the spectral position and shape of the harmonic lines.

3.3. The Spectral Shape of the Harmonic Lines Strongly Affected by the Pump Energy

As it was visible in Figure 4, both the intensity of the generated harmonics around
H59 and also the spectral shift and shape of the harmonic lines were weakly affected by
the position of the focus in the long gas tube. This observation is further supported by
the results presented in Figure 5, where the focus was placed 21 mm before the entrance
of the gas tube. Other experimental and simulation parameters were the same. One can
compare the simulation in Figure 2b to the simulation in Figure 5a at a lower pump energy
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(52 mJ). The simulations basically show the very similar behaviors of GDD dependence.
The simulation at the larger pump energy of 80 mJ predicts a somewhat larger spectral
shift of the harmonic lines compared to 52 mJ pumping. In both cases, the harmonic lines
are split at around GDD = 0 fs2, while they are more intense and continuously tunable at
positive GDD.
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Figure 4. The spectral positions and shape/split and beam profiles of the harmonic lines affected
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We are here mainly interested in a tunable and intense harmonic source for spec-
troscopy and seeding X-ray lasers. Thus, the suitable range of positive GDD was examined
experimentally in Figure 5b at both 52 mJ and 80 mJ pump energies. While the simulations
predicted larger values, about one harmonic order broad tuning range, the experiments
show about a 0.5 harmonic order tuning possibility, and this essentially does not change at
higher pump energies. The split of the harmonics line, however, is much larger at 80 mJ
pump compared to 52 mJ. Strong blue-shifted harmonic lines can be observed together
with weaker red-shifted lines, and both regress back to their original harmonic position at
an increased chirp of the pump laser pulse. The split of the harmonic lines can be so large
that the red-shifted harmonics line almost merge with the blue-shifted previous harmonics
lines, as can be seen on the spectrally resolved beam profiles in Figure 5c.
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Figure 5. (a) Simulations of HH generation for the chirps of the driving laser pulses being scanned in
a broad interval at two pump energies, 52 mJ and 80 mJ, as indicated. (b) Measured harmonics at
around H59 in the positive GDD range, where the harmonics are intense and well tunable. (c) Spectra
and (d) beam profiles from (b) at few initial chirps (fs2) indicated in the labels. Dashed lines of (d)
indicate the non-shifted positions of the harmonic lines.

4. Conclusions

In the present study, high harmonic generation in a 20 mm long gas medium was ex-
amined both experimentally and theoretically. At certain experimental conditions, a strong
blue shift of the harmonic lines was observed accompanied sometimes by a strong spectral
distortion and even a spectral split of the harmonic lines exceeding one harmonic order.
To understand these observations, we employed a theoretical model—a 3D propagation
model—that describes the propagation and high harmonic generation in the gas medium,
considering both longitudinal and radial directions. This model was numerically solved
under the strong field approximation. The simulations revealed that, the blue shift and
split of the harmonic lines were partially caused by the blue shift and spectral split of the
laser beam during propagation in the gas, which was observed under conditions when the
driving laser pulses were positively chirped in the range between 0 fs2 and 1000 fs2. The
distortion of the laser beam profile during propagation leading to changes in the conditions
of phase-matching played an essential role and primarily caused the observed phenomena.
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The nonlinear propagation of the driving laser pulse considering the change of its
beam profile and spectral shape, together with the phase matching conditions, produced
a bright HH source, which was widely tunable at around 13.5 nm (~59th order of the
800 nm drive laser). The beam divergence of the generated harmonic beam remained small,
within the 0.11 ± 0.02 mrad range (defined by FWHM), even under divergent experimental
conditions, as shown in Figure 2d, the right column of Figure 4, and in Figure 5c. The
energy of the generated EUV pulse of the 59th harmonic in Figure 5c was approximately
47 pJ. A seed beam with a suitable small divergence and large pulse energy is essential
for seeding X-ray lasers [34]. The observed phenomena offer a promising tool to produce
tunable narrow-band harmonic sources, especially at 13.5 nm, a spectral region where
HH can contribute to efficient extreme ultraviolet (EUV) lithography and seeding of X-ray
lasers. For practical applications of a 13.9 nm Ni-like Ag plasma X-ray laser, the 57th
order harmonic is most suitable when considering the use of a Ti:sapphire laser with a
fundamental wavelength of 792.3 nm.
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