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Abstract: A procedure to obtain relativistic expressions for photoionisation angular distribution
parameters using the helicity formulation is discussed for open-shell atoms. Electric dipole and
quadrupole transition matrix elements were considered in the present work, to study the photoioni-
sation dynamics of the 3s electron of the sodium atom in the vicinity of the dipole Cooper minimum.
We studied dipole–quadrupole interference effects on the photoelectron angular distribution in the
region of the dipole Cooper minimum. Interference with quadrupole transitions was found to alter
the photoelectron angular distribution, even at rather low photon energies. The initial ground and
final ionised state discrete wavefunctions of the atom were obtained in the present work using GRASP,
and we employed RATIP with discrete wavefunctions, to construct continuum wavefunctions and to
calculate transition amplitudes, total cross-sections and angular distribution asymmetry parameters.

Keywords: non-dipole interactions; photoelectron angular distributions; open-shell atomic systems;
Cooper minimum; GRASP; RATIP

1. Introduction

In the majority of studies of light–matter interaction, the dipole approximation is used.
It is generally applicable when electromagnetic radiation has a wavelength much larger
than the size of the atomic or molecular system. In the dipole approximation (eikr ∼ 1),
where k is the wavenumber of the incident photon, one neglects the spatial variation
of the electromagnetic field over the target system. Non-dipole effects are important at
short wavelengths, and have prompted several atomic and molecular studies [1–5] in
condensed matter physics [6] and astrophysics [7]. The emergence of intense laser light
sources, such as the free-electron laser (FEL) [8–10], have further revealed the importance
of non-dipole interactions in explaining photoelectron spectra, especially in relation to
non-linear absorption and time-resolved studies.

The importance of non-dipole effects has been highlighted by several authors, in both
experimental and theoretical works [3,11–25]. These studies have revealed that dipole–
quadrupole (E1–E2) interference affects the angular distribution of photoelectrons, due to
first-order corrections to the dipole approximation, even at rather low energies. Numerous
studies are available for closed-shell systems, but those on open-shell systems, especially
using relativistic methodologies, are few [26,27]. To the best of our knowledge, relativistic
calculations, including interchannel coupling, are not available for open-shell atoms.

Higher multipole corrections to total subshell cross-sections become important for
photon energies more than a few keV above the ionisation threshold. However, a number
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of situations exist in photoionisation processes that demand going beyond the dipole ap-
proximation, even at energies as low as a few eV [28–40]. Instances where the quadrupole
transition amplitudes are comparatively larger than the electric dipole transition ampli-
tudes occur in regions of the dipole Cooper minimum, dipole/quadrupole autoionisation
resonances, etc. The present work was motivated by an earlier work by Pradhan et al. [37],
which showed the importance of non-dipole effects in the case of Mg 3s photoionisation at
rather low photon energies, due to the presence of the Cooper minimum in the 3s dipole
ionisation channel. We explored a similar situation for the case of a typical open-shell atom,
viz., sodium, by studying the photoionisation of its valence shell in the photon energy range
5.14 eV to 7 eV. The 3s dipole photoionisation goes through the Cooper minimum in this
region. The required non-dipole angular distribution parameters were obtained, following
an earlier work by Huang [41,42], which used helicity eigenstates to study the dynamics.
This formulation is applicable to both open- and closed-shell systems [41,42]. On the other
hand, the methodology described in Derevianko et al. [43] is applicable only to closed-shell
systems. Below, we briefly present an overview of the procedure to include non-dipole
effects in the photoelectron angular distribution asymmetry parameters for s-subshell
photoionisation. The required transition amplitudes were determined in the present work
by using a combination of two computational algorithms, namely, the General-Purpose
Relativistic Atomic Structure Program (GRASP) [44–46] and the Relativistic calculations of
Atomic Transition, Ionisation and recombination Properties (RATIP) [47]. The combination
of GRASP and RATIP has already been successfully applied in a number of cases studying
atomic structure and dynamics [48–51]. In the present work, a single configuration initial
state of photoionisation was considered, but a multi-configuration initial state could also
be considered.

In Section 2, details of the helicity formalism [41,42], along with the important steps
involved in the derivation of the required photoelectron angular distribution parameters
by a linearly polarised light, are discussed. The results of our calculations are discussed in
Section 3. The important findings of this work are summarised in Section 4.

2. Theory

This section is divided into three sub-sections. In Section 2.1, the salient features of
the helicity formulation of photoelectron angular distribution from references [41,42] are
summarised. References [41,42] provide the form of β, and we explicitly discuss the various
steps involved in arriving at the equations in Section 2.2. The general expression for the
differential cross-section is available in the work of Huang [41,42], but not the expressions
for non-dipole angular distribution asymmetry parameters. Explicit expressions for angular
distribution asymmetry parameters inclusive of the quadrupole terms are developed and
presented in Section 2.3 for the first time, to the best of our knowledge. Also provided is a
brief discussion of second-order non-dipole photoelectron angular distribution parameters.

2.1. Photoionisation Dynamics Based on Helicity Formalism

Conventionally, the photoionisation transition matrix element is constructed using
angular-momentum eigenstates. However, in the helicity formalism, angular-momentum
eigenstates are transformed to helicity eigenstates. This approach was first adopted by
Lee [52] for the non-relativistic formulation of photoionisation processes in the electric
dipole approximation. This was extended to the relativistic regime by Huang [41,42]. In
this work, the reduced matrix element Dα(Ej), for photoionisation in the Coulomb gauge
for an electric 2j- pole transition (Ej), is given by

D(Ej)(κα) = i−`α eiδκα

〈
α− J

∣∣∣∣∣
∣∣∣∣∣ N

∑
i=1

~α · ~A(Ej)(~ri)

∣∣∣∣∣
∣∣∣∣∣J0

〉
. (1)

Here, δκα is the Coulomb phase shift of the photoelectron in the particular channel κα = (`α jα),
and ~A(Ej) is the normalised electric multipole vector potential, while j and J0 are, respectively,
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the total angular momenta of the photon and the initial states of the atom. J represents the total
angular momentum of the photoelectron plus the ionised atom system. A similar expression
of the reduced matrix element can be obtained for the magnetic 2j-pole transitions, and is
defined by D(Mj)(κα).

The expression for the angle-dependent differential cross-section, including all multi-
pole transitions in helicity formalism [41,42], is

dσ(θ, φ)

dΩ
=

σ

4π
F(θ, φ), (2)

where σ is the total photoionisation cross-section and F(θ, φ) is an angular distribution
function given by

F(θ, φ) = 1 + ∑
`≥1

B0`d`00 + (Sx cos(2φ) + Sy sin(2φ)) ∑
`≥2

B1`d`20, (3)

where Sx, Sy and Sz are the Stokes parameters of the incident light, d`mn denotes the ‘d’
functions of the rotation matrices and θ and φ are the polar and azimuthal angles of the
emitted photoelectron (of total angular momentum jα), with respect to the incident photon
direction k̂, as shown in Figure 1a. In the above expression,

B0` = ∑
j′ J′ j′α

∑
jJ jα

(−1)J0−Jα+1/2

σ̄
[j J jα]

[
j′ J′ j′α

]
[`]2
{

J J′ `
j′α jα Jα

}{
J J′ `
j′ j J0

}(
j′α jα `

1/2 −1/2 0

)(
j′ j `
−1 1 0

)
×
{

π`+

[
πk+(−1)k/2(E′E + M′M) + πk−(−1)(k+1)/2(E′M−M′E)

]
cos(δα′ − δα)

+ π`−
[
πk−(−1)(k+1)/2(E′E + M′M)− πk+(−1)k/2(E′M−M′E)

]
sin(δα′ − δα)

}
(4)

and,

B1` = ∑
j′ J′ j′α

∑
jJ jα

(−1)J0−Jα+1/2

σ̄
[j J jα]

[
j′ J′ j′α

]
[`]2
{

J J′ `
j′α jα Jα

}{
J J′ `
j′ j J0

}(
j′α jα `

1/2 −1/2 0

)(
j′ j `
−1 −1 2

)
×
{

π`+

[
πk+(−1)k/2(E′E−M′M)− πk−(−1)(k+1)/2(E′M + M′E)

]
cos(δα′ − δα)

+ π`−
[
πk−(−1)(k+1)/2(E′E−M′M) + πk+(−1)k/2(E′M + M′E)

]
sin(δα′ − δα)

}
. (5)
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Figure 1. Transforming from the co-ordinate system (θ, φ) to the co-ordinate system (θ̄, φ̄). The
co-ordinate (θ̄, φ̄) is obtained by rotating the co-ordinate (θ, φ) by 180◦ about the z-axis and 90◦ about
the y-axis.

The summation ∑
j′ J′ j′α

∑
jJ jα

takes into account the interference between various transi-

tion matrix elements, and δα is the phase of the reduced matrix element, D(Ej)(κα). In
the above expressions, Jα is the total angular momentum of the ionised state of the atom.
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B0l and B1l correspond to various multipole terms arising from electric–electric, electric–
magnetic and magnetic–magnetic interactions. Here, σ̄ = ∑

jJκα

[
|D(Ej)(κα)|2 + |D(Mj)(κα)|2

]
,

σ = 8π4c/ω[J0]
2σ̄, and E ≡ |D(Ej)(κα)|. Similarly, M ≡ |D(Mj)(κα)|. Note that [j] =√

2j + 1. The effects of magnetic interactions are very weak compared to electric inter-
actions, and hence are neglected in the present work. Furthermore, π`± and πk± in
Equations (4) and (5) are defined as follows:

π`+(π`−) =

{
1(0) ` is even
0(1) ` is odd

(6)

πk+(πk−) =

{
1(0) k is even
0(1) k is odd,

(7)

where ` is the summation index in Equation (3), k = j′ − j and ‘+/−’ correspond to
even/odd.

A photon with linear momentum vector ~k is not in an eigenstate of the angular
momentum j. However, being a massless particle, it has a definite value of helicity, which is
the component of the angular momentum in the direction of the photon momentum. Now,
for the electromagnetic waves (being transverse) the total angular momentum can take the
values j = 1, 2, 3, . . . [53]. The infinite series in Equation (3) can be truncated, depending
on the level of approximation considered, by making use of the Wigner 3j selection rules.
The truncation procedure at the level of dipole, quadrupole and octupole approximations
are discussed below.

2.2. Dipole Approximation

In the electric dipole approximation, j = j′ = 1. The ` values in the Wigner 3j

symbols,
(

j′ j `
−1 1 0

)
and

(
j′ j `
−1 −1 2

)
, of Equations (4) and (5) range from |j′ − j| to

j′ + j, giving ` = 0, 1 and 2. The summations begin from ` = 1 for the second term and
` = 2 for the third term of Equation (3). Hence, under the dipole approximation, ` only
takes values 1 and 2. In this particular case, the variable k in Equations (4) and (5) is an
even number (πk+), because k is given by j′ − j, which is zero. Since ` is odd and k is even,
the only term that needs to be considered in Equation (4) is the one that involves the electric
and magnetic interactions. However, in the dipole approximation, magnetic interactions
do not appear and, hence, B01 = 0. Therefore, only ` = 2 contributes in the dipole
approximation giving rise to B02 and B12. The Wigner 3j symbols of Equations (4) and (5),(

j′ j `
−1 1 0

)
and

(
j′ j `
−1 −1 2

)
give 1/

√
30 and 1/

√
5, respectively, for j = j′ = 1 and

` = 2. Using B01 and B02 along with Equation (3), Equation (2) reduces to

dσ

dΩ
=

σ

4π

[
1 + B02d2

00 +
(
Sx cos 2φ + Sy sin 2φ

)
B12d2

20

]
. (8)

The right-hand side of Equations (4) and (5) for ` = 2 can be written in terms of
a single parameter, β1 (a dipole asymmetry parameter), as follows: B02 = −β1/2 and
B12 = −

√
3/2 β1, where β1 is

β1 = −
√

30
(−1)J0−Jα+1/2

σ̄ ∑
j′ J′ j′α

∑
jJ jα

[
J jα J′ j′α

]{ J J′ 2
j′α jα Jα

}{
J J′ 2
1 1 J0

}(
j′α jα 2

1/2 −1/2 0

)
E′E cos(δα′ − δα). (9)

The term S1 cos 2φ + S2 sin 2φ in (8) is expressed as −p cos 2α cos(2(φ − γ)). Here,
the parameters p, α and γ can be understood as follows. Consider a coordinate system
XYZ, such that the Z axis is in the direction of the photon flux, as shown in Figure 2.
The X axis is chosen conveniently to determine the photon polarisation. The parameter
γ specifies the azimuthal orientation of the polarisation. When the photon polarisation
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vector coincides with the X axis, γ = 0. The angle between the electric field vectors at their
successive crests is α. In case of linearly polarised light, α = 0. The probability p (0 ≤ p ≤ 1)
of complete polarisation is referred to as the degree of polarisation of the photon. The
degree of polarisation p = 1 for pure linearly polarised incident photons. In Equation (8),
d2

00 = P2(cos θ) and d2
20 =

√
3

2
√

2
sin2 θ. Using these above relations, Equation (8) can be

further reduced to

dσ

dΩ
=

σ

4π

{
1− 1

2
β1

[
P2(cos θ)− 3

2
p cos 2α cos(2(φ− γ)) sin2 θ

]}
. (10)

Figure 2. Types of polarisation.

It is often convenient to express the above equation in an alternate co-ordinate system,
as shown in Figure 1b, where θ̄ corresponds to the angle between the photoelectron mo-
mentum and the polarisation direction, and where φ̄ corresponds to the angle between the
propagation vector and the projection of momentum vector in the X-Y plane. Under this
new co-ordinate system, Equation (10) reduces to

dσ

dΩ
=

σ

4π

{
1 + β1P2(cos θ̄)

}
(11)

for linearly polarised light, where α = 0 and p = 1.

2.3. Beyond Dipole Approximation
Including quadrupole interactions, j and j′ can take values 1 and 2. Consequently,

` takes values 1 ≤ ` ≤ 3. The variable k = j′ − j can be −1 and 1, which implies that k
is odd for the dipole and quadrupole interference terms. The even ` and the odd k can
contribute only via electric–magnetic interactions. Since they are neglected in the present
work, B02 = 0. Therefore, the only terms that contribute to the quadrupole approximation
are B01, B03 and B13, which are rewritten in terms of Γ1 and Γ3 as follows:

Γ1 = −3

√
3
2
(−1)J0−Jα+1/2

σ̄ ∑
j′ J′ j′α

∑
jJ jα

[
J jα J′ j′α

]{ J J′ 1
j′α jα Jα

}{
J J′ 1
j′ j J0

}(
j′α jα 1

1/2 −1/2 0

)
(−1)(k+1)/2E′E sin(δα′ − δα), (12)

Γ3 = −
√

21
(−1)J0−Jα+1/2

σ̄ ∑
j′ J′ j′α

∑
jJ jα

[
J jα J′ j′α

]{ J J′ 3
j′α jα Jα

}{
J J′ 3
j′ j J0

}(
j′α jα 3

1/2 −1/2 0

)
(−1)(k+1)/2E′E sin(δα′ − δα), (13)

where Γ1 = B01 and Γ3 = B03 =
√

3/10B13. Using these, the differential cross-section for
the photoionisation, given in Equation (3), with the inclusion for first-order quadrupole
terms, can be expressed as

dσ

dΩ
=

σ

4π

{
1 + Γ1P1(cos θ)− 1

2
β2P2(cos θ) + Γ1P3(cos θ) +

[
3
4

β2 −
5
2

Γ3 cos θ

]
p cos 2α cos(2(φ− γ)) sin2 θ

}
. (14)
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Note that the dipole asymmetry parameter β1 is now written as β2 under the quadrupole
approximation. The expression for β2 differs from β1 only in the σ̄ term in the denominator of
Equation (9). With the inclusion of non-dipole interactions, σ̄ = ∑

Jκα

[
|D(E1)(κα)|2 + |D(E2)(κα)|2

]
.

In general, the dipole amplitude dominates the quadrupole amplitude. It can be, there-
fore, easily seen that this additional term in σ̄ only plays a major role when the dipole
amplitude goes through a minima. We again transform the representation of dσ/dΩ from
(θ, φ)→ (θ̄, φ̄):

dσ

dΩ
=

σ

4π

{
1 + β2P2(cos θ̄) +

[
Γ1 + Γ3 − 5Γ3 cos2 θ̄

]
sin θ̄ cos φ̄

}
. (15)

The usual experimental scheme to measure these non-dipole parameters is to set
θ̄ = 54.7◦ and φ̄ = 0◦. The differential cross-section at these angles is

dσ

dΩ
=

σ

4π

{
1 +

√
2
3

(
Γ1 + Γ3 −

5
3

Γ3

)}
. (16)

It is convenient to write δ = Γ1 + Γ3 and γ = −5Γ3, so that

dσ

dΩ
=

σ

4π

{
1 +

√
2
27

(3δ + γ)

}
, (17)

where the combined quantity 3δ + γ can be extracted from a measurement. Equation (15)
is re-written in terms of δ and γ:

dσ

dΩ
=

σ

4π

{
1 + β2P2(cos θ̄) +

[
δ + γ cos2 θ̄

]
sin θ̄ cos φ̄

}
. (18)

This is in agreement with Derevianko et al.’s [43] expression for dσ/dΩ while considering only
the electric dipole and lowest order quadrupole interactions, which works for the closed-shell
system. The above expression can also be written as dσ/dΩ = σ

{
1 + A(θ̄, φ̄)

}
/4π, where

A(θ̄, φ̄) provides the angular distribution associated with the photoelectron ejection.
The above procedure can be further extended to higher-order terms. If we include the

second-order correction, the differential cross-section can be expressed as follows:

dσ

dΩ
=

σ

4π

{
1 +

(
BE1,E2

01

)
d1

00 +
(

BE1,E1
02 + BE1,E3

02 + BE2,E2
02

)
×d2

00 + BE1,E2
03 d3

00 +
(

BE1,E3
04 + BE2,E2

04

)
d4

00+
(
Sx cos 2φ− Sy sin 2φ

)
×[(

BE1,E1
12 + BE1,E3

12 + BE2,E2
12

)
d2

20 + BE1,E2
13 d3

20 +
(

BE1,E3
14 + BE2,E2

14

)
d4

20

]}
.

In Section 3, we present the results obtained using the above-mentioned procedures; in
particular, the quadrupole effects in the photoionisation of Na 3s. The calculations consid-
ered are those of single configurations. The photon–atom interaction resulting in the emis-
sion of an electron with a residual ion, for dipole transitions, is expressed as h̄ω(j = 1) +
Na
(
1s22s22p63s1)2SJ0=1/2 → Na+

(
1s22s22p6)1SJα=0 + εpjα=1/2, εpjα=3/2. Similarly, for the

quadrupole transitions, h̄ω(j = 2)+ Na
(
1s22s22p63s1)2SJ0=1/2 → Na+

(
1s22s22p6)1SJα=0 +

εdjα=3/2, εdjα=5/2. The transition amplitudes required for these calculations were calculated
using a combination of two software packages, GRASP and RATIP.

3. Results and Discussion
3.1. Cross-Section

Figure 3a shows the Na 3s cross-section, calculated at the dipole approximation level in
the length and velocity gauges, which is in reasonable agreement with the experimental data
in the energy range 5.14 to 7 eV, even at the single configuration level of calculation. This



Atoms 2023, 11, 125 7 of 13

region is particularly interesting, because of the presence of the dipole Cooper minimum
here. Above 7 eV, there is a disagreement with the experimental data, and the agreement
between length and velocity deteriorates. This may be due to the absence of initial state
correlation in the present calculation. However, the present work was aimed at the Cooper
minimum region below 7 eV, where there is a reasonable agreement between theory and
experiment. Figure 3b shows the dipole and quadrupole cross-sections in the length gauge.
This shows that the quadrupole cross-section was larger than the dipole cross-section at
the dipole minimum over a small range of photon energies ∼0.03 eV. It is to be noted that
although the cross-section is going through the Cooper minimum, the cross-section was not
zero, even at the single configuration level. This was because of the relativistic interactions
resulting from the s→ εp1/2 and s→ εp3/2 transitions, which underwent their respective
minima at slightly different energies. For simplicity, these final states are denoted εp+ and
εp−, respectively [54].

0
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Figure 3. (a) Total cross-section of sodium 3s in length and the velocity gauges compared to the
experimental data [55], (b) dipole and quadrupole cross-sections in length gauge in the region of the
Cooper minimum.

Direct experimental measurements provide information only about the sum of the
dipole (E1) and quadrupole (E2) cross-sections. Information about the relative magnitudes
of E1 and E2 individually is not available from experiment. However, this information
can be extracted from angular distribution studies. Previous studies have shown that, at
low energies, the effect of non-dipole interactions is more significant on the angular distri-
bution parameters than the cross-section [28–40]. To understand the effect of quadrupole
transitions on photoelectron angular distributions, we examine the asymmetry parameters.

3.2. Dipole Parameter, β

The equation for the asymmetry parameter for a half-filled ns subshell at the dipole
approximation level can be deduced from Equation (9), by making appropriate substitutions
of angular momentum values. We denote the transition matrix elements by Dα ≡ D(E1)(κα)
for dipole, and Qα ≡ D(E2)(κα) for quadrupole terms. This turns out to be

β1 =
|Dεp+|2 − 2

√
2|Dεp−||Dεp+| cos(δp− − δp+)

|Dεp−|2 + |Dεp+|2
. (19)

Subscript 1 is used in β, to indicate that this determines the angular distribution
parameter in the dipole approximation. In the absence of relativistic effects, β1 = 2. This can
be seen by re-writing Equation (19) in terms of radial matrix elements. The reduced matrix
elements and the radial matrix elements are related as follows: Dεp− = −

√
2/3Rεp− =

√
2/3|Rεp−|ei(δ′εp−+π) and Dεp+ = +

√
4/3Rεp+ =

√
4/3|Rεp+|eiδ′εp+ . Here, δ′εp± represents

the phase of the radial matrix elements, Rεp±. The term π is included, along with δ′εp−,
to account for the negative sign accompanying the radial matrix element Rεp−. Note
that δεp− ≡ δ′εp− + π and δεp+ ≡ δ′εp+. In the non-relativistic limit, |Rεp−| = |Rεp+| and
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δ′εp− = δ′εp+, resulting in cos(δεp− − δεp+) = cos(π), which reduces Equation (19) to its
non-relativistic value, 2.

Figure 4 shows rapid variation of the asymmetry parameter β1 in the region of the
Cooper minimum. Under the dipole approximation, the value of β1 is ≈2 over most of the
energy range, except in the region of the Cooper minimum, where it undergoes a dip and
takes a value close to −1, as expected [56]. However, when the quadrupole interactions are
taken into account, the above formula is modified, as discussed in Section 2. The expression
for the asymmetry parameter is modified, with an additional term in the denominator,
which is denoted as β2. It is easy to show that these two parameters are related via the
following equation:

β2 = β1 ×∑
κα

|Dκα |2
|Dκα |2 + |Qκα |2

. (20)

−1
−0.5

0
0.5

1
1.5

2

6.3 6.4 6.5 6.6 6.7

β

Photon energy (eV)

β1
β2

Figure 4. Asymmetry parameter β1 and the effect of quadrupole transitions on β is represented as β2.

From the above equation, it can be deduced that the factor multiplied by β1 can take
values unity or less. Thus, the deviation in the region of the Cooper minimum becomes
shallower when non-dipole interactions are present, as shown in Figure 4. In the absence
of non-dipole interactions, β1 goes all the way to −1 in the Cooper minimum region. This
amounts to a stronger yield in the direction perpendicular to the polarisation of the photon.
The inclusion of non-dipole terms causes the dip in the Cooper minimum region to be
close to zero (β2 ≈ 0), which corresponds to the photoelectron angular distribution being
roughly isotropic in comparison to β1. The present work, therefore, shows the importance
of non-dipole interactions in determining the photoelectron yield in different directions,
even at low energies.

3.3. Quadrupole Parameters Γ1 and Γ3

By making suitable substitutions in Equations (12) and (13), we arrive at the expres-
sions for Γ1 and Γ3 for the photoionisation of a half-filled ns subshell:

Γ1 =
−2
σ̄

(√
3
2
|Q3/2||D1/2| sin(δ3/2 − δ1/2)−

√
3

10
|Q3/2||D3/2| sin(δ3/2 − δ3/2) +

9
5
√

2
|Q5/2||D3/2| sin(δ5/2 − δ3/2)

)
, (21)

Γ3 =
2
σ̄

(
−|Q5/2||D1/2| sin(δ5/2 − δ1/2)−

3
√

3
5
|Q3/2||D3/2| sin(δ3/2 − δ3/2) +

4
5
√

2
|Q5/2||D3/2| sin(δ5/2 − δ3/2)

)
. (22)

These parameters, Γ1 and Γ3, are plotted in Figure 5. They are nearly zero in the
region away from the Cooper minimum, and they show rapid variation near the Cooper
minimum. Recall from Section 2 that Γ1 + Γ3 = δ (also shown in Figure 5) and γ = −5Γ3.
The features of Γ1 and Γ3 can be better understood in their non-relativistic limits. The
relations between the quadrupole reduced matrix elements and radial matrix elements are
Qεd− =

√
4/5Rεd− =

√
4/5|Rεd−|eiδ′d− and Qεd+ = −

√
6/5Rεd+ =

√
6/5|Rεd+|ei(δ′d++π).
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The corresponding relations for the dipole matrix elements are discussed in Section 3.2.
Using these relations, Equations (21) and (22) can be reduced to their non-relativistic limits:

Γ1 =
6
√

6
6|D|2 + 5|Q2| |Q||D| sin(δQ − δD), (23)

Γ3 = − 6
√

6
6|D|2 + 5|Q2| |Q||D| sin(δQ − δD). (24)

−1.5

−1

−0.5

0

0.5

1

1.5

6 6.2 6.4 6.6 6.8 7

Γ 1
an

d
Γ 3

Γ1
Γ3

Γ1 + Γ3

Photon energy (eV)

Figure 5. Quadrupole parameters Γ1 and Γ3 in the vicinity of the Cooper minimum.

It is easily seen that the non-relativistic δ vanishes, since Γ1 = −Γ3 for the ns subshell.
In the regions away from the CM, Q � D. Hence, it becomes evident from the above
expressions that Γ1 and Γ3 are directly proportional to Q/D, resulting in their values being
nearly zero. In the region where the dipole amplitude, D, undergoes the Cooper minimum,
the ratio becomes larger. At the dipole CM, there is a phase jump of π, leading to the
sign flip of Γ1 and Γ3. All these features are preserved, even in the relativistic Γ1 and Γ3,
except for the fact that δ = Γ1 + Γ3 has non-zero values in the region of the CM. This can
be attributed to the fact that relativistic dipole channels are undergoing the CM at slightly
different energies, which deviates the δ from its non-relativistic value.

As discussed in Section 2.3, one of the experimentally relevant parameters is γ = −5Γ3.
The significant values of γ and its strong dependence on photon energy show that the
photoelectron angular distribution (PAD) is very sensitive to photon energy in the region of
the Cooper minimum. To illustrate this, the shape of the photoelectron angular distribution,
1 + A(θ̄, φ̄), is plotted for a few selected energies, and is shown in Figure 6 in 2D (the xz
plane) and 3D. In order to bring out the role of the quadrupole effects, the PAD obtained
with and without the inclusion of the quadrupole interactions (denoted as 1 + A(θ̄, φ̄)E1E2
and 1 + A(θ̄, φ̄)E1, respectively) are shown. In the absence of relativistic and/or non-dipole
effects, the angular distribution is essentially cos2 θ̄. Here, the preferential direction (or
direction of maximum yield) of photoelectron ejection is along the polarisation direction ε̂.
This is seen at a photon energy of 5.25 eV. Both 1 + A(θ̄, φ̄)E1 and 1 + A(θ̄, φ̄)E1E2 show
a dipolar distribution, since this is well below the Cooper minimum, where non-dipole
interactions do not play any significant role in the dynamics. The values of β1 ≈ β2 = 1.93
(close to the non-relativistic value 2), Γ1 = 0.05 and Γ3 = −0.05 are smaller, because Q is
significantly less than D, as seen in Figure 3.

Figure 6b,d show the PAD at photon energies 6.48 eV and 6.54 eV, where both Γ1
and Γ3 take extremum values, due to the presence of the Cooper minimum. At 6.48 eV,
Γ1 = 0.97, Γ3 = −1.07 , β1 = 1.14 and β2 = 0.65, whereas at 6.54 eV the values are
Γ1 = −0.92, Γ3 = 0.82, β1 = 0.80 and β2 = 0.58. As a result, 1 + A(θ̄, φ̄)E1E2 at these ener-
gies significantly differs from 1 + A(θ̄, φ̄)E1. The direction of the maximum photoelectron
yield moves away from ε̂ at these energies for 1 + A(θ̄, φ̄)E1E2, i.e., with the inclusion of
quadrupole effects.
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Figure 6. Shape of the PAD in 2D and 3D, showing (1 + A(θ̄, φ̄))E1, including only the dipole–dipole
interactions (blue) and (1 + A(θ̄, φ̄))E1E2, including both the dipole–dipole and dipole–quadrupole
interactions (orange) at photon energies (a) PE = 5.25 eV (b), PE = 6.48 eV (c) PE = 6.51 eV and
(d) PE = 6.54 eV.

Also shown, in Figure 6c, is the PAD at a photon energy of 6.51 eV, where Γ1 + Γ3
is at its minimum. The shape of PAD 1 + A(θ̄, φ̄)E1E2 significantly deviates from PAD
1 + A(θ̄, φ̄)E1. For 1 + A(θ̄, φ̄)E1, the yield is zero along the ε̂; however, it is non-zero when
the quadrupole effects are considered, although the preferential direction remains the same
in both cases. It is important to note that the above determination of the PAD employs only
the first-order non-dipole parameters in the present work, which is valid, as long as D � Q.
However, as seen from Figure 3b, the quadrupole cross-section (and, thus, the matrix
element Q) is larger than the dipole matrix element D between 6.48 eV and 6.52 eV. In this
region, the second-order E2–E2 interference terms will not only be important but dominant.
Thus, Figure 6b–d should only be considered representative of the effects of first-order
non-dipole corrections, but do not represent physical reality, since the E2–E2 terms are
not included in the description of the PAD. For example, the small petal-like structures in
Figure 6b,d are artefacts of the first-order approximations. They will no longer appear if
the second corrections are included. The methodology developed here can be extended, to
incorporate the E2–E2 interference effect, and work in this direction is in progress.
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4. Conclusions

Following the earlier work on photoionisation dynamics based on helicity formal-
ism [41,42], explicit relativistic formulae for angular distribution parameters, including the
dipole and quadrupole interference effects, were derived for the ns subshells for cases of
open-shell atomic systems. Using the formulae obtained, the photoionisation dynamics of
Na 3s were studied in the region of the dipole Cooper minimum, which demonstrated the
importance of quadrupole transitions in determining the angular distribution at low photon
energies (≈7 eV). Although the calculations were done at the level of single-particle approx-
imation, they could be extended, to include multi-electron effects, by replacing the matrix
elements obtained by single configuration calculation with that of multi-configuration
calculation, using GRASP and RATIP. The methodology developed here could also be ex-
tended to higher-order multi-pole interactions and to other subshells. We hope the current
work will stimulate photoionisation dynamics studies of open-shell systems, studies that
would highlight both relativistic and multi-electron effects.
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