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Abstract: Following the work of Giulio Racah and others from the 1940s onward, the rotational
symmetry of atoms and ions, e.g., the conservation of angular momentum, has been utilized in
order to efficiently predict atomic behavior, from their level structure to the interaction with external
fields, and up to the angular distribution and polarization of either emitted or scattered photons and
electrons, while this rotational symmetry becomes apparent first of all in the block-diagonal structure
of the Hamiltonian matrix, it also suggests a straight and consequent use of symmetry-adapted
interaction amplitudes in expressing the observables of most atomic properties and processes. We
here emphasize and discuss how atomic structure theory benefits from exploiting this symmetry,
especially if open-shell atoms and ions in different charge states need to be combined with electrons
in the continuum. By making use of symmetry-adapted amplitudes, a large number of excitation,
ionization, recombination or even cascade processes can be formulated rather independently of the
atomic shell structure and in a language close to the formal theory. The consequent use of these
amplitudes in existing codes such as GRASP will therefore qualify them to deal with the recently
emerging demands for developing general-purpose tools for atomic computations.

Keywords: approximate atomic Green function; atom; atomic cascade; electron capture and emission;
electron continuum; language for atomic computations; many-electron interaction amplitude; Racah’s
algebra; relativistic; rotational symmetry

1. Introduction

Electronic structure calculations of atoms and ions have a long tradition in physics with
many applications in basic research, spectroscopy and at various places elsewhere. Soon
after the self-consistent Hartree–Fock (HF) theory was developed, Swirles [1] formulated
a first set of relativistic self-consistent field (SCF) equations including exchange, i.e., the
antisymmetry of the many-electron wave functions. These equations were built on the
Dirac–Coulomb Hamiltonian and are currently referred to as Dirac–Hartree–Fock (DHF)
equations. Using Racah’s algebra, these coupled equations were re-examined and brought
into a compact form by Grant in 1961 [2] and, since these days, form the foundation for almost
all (relativistic) atomic structure codes which are based upon the variational principle.

Indeed, the role of Einstein’s special relativity upon the electronic structure of atoms
and ions became quickly evident when Grant explored and visualized the shape of hy-
drogenic wave functions for multiplied and highly charged ions [3]. Since then, various
numerical solutions to the DHF equations have been developed and were utilized as start-
ing point for both the multiconfiguration DHF (MCDHF) and the relativistic many-body
perturbation theory (RMBPT). These developments also led to the first few relativistic
general-purpose codes [4,5], from which the General-purpose Relativistic Atomic Structure
Program (GRASP) is widely used today [6,7]. All these codes are explicitly based on Racah’s
algebra that combines the rotational symmetry of open-shell atoms with the re-coupling of
angular momenta and the calculus of irreducible tensor operators [8–10], though perhaps
with different goals and focus in their implementation [11–13].
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Today, different applications of (relativistic) atomic structure theory come with quite
distinct requirements with regard to the accuracy and complexity of the computations as
well as to the shell structure of the atoms and ions of interest, and while the need for good
atomic data can hardly be overestimated, the present-day demands call for a descriptive
language of atomic computations and a re-organization of the codes in order to make
optimal use of atomic theory. We shall explain and discuss below how the consequent
use of symmetry-adapted amplitudes in general-purpose codes will help expand atomic
computations towards second-order in perturbation theory and continuum processes,
atomic cascades or even for alternative representations of the atomic states. In particular,
we shall formulate a few guidelines how these amplitudes can simplify the communication
with and within a program and help overcome present-day limitations. These guidelines
(may) also facilitate to make GRASP and other structure codes ready for new applications
of atomic theory.

This work is structured as follows. In Section 2, we first discuss the use and impact of
symmetry-adapted basis states upon the implementation of general-purpose (relativistic)
codes and especially upon GRASP. Apart from the indisputable successes and capabilities
of this code, we shall explain several of its limitations that come along with present-day
demands on atomic theory. In Section 3, we then argue how an explicit and consequent
use of symmetry-adapted amplitudes paves the way towards recently emerging appli-
cations of atomic theory and may help establish a language for describing all necessary
computations. Apart from the role of proper data types and various features from con-
temporary programming, we here briefly discuss JAC, the Jena Atomic Calculator [14], in
which such a language has been partly realized, although with emphasis on ionization and
recombination processes. Finally, a summary and a few conclusions are drawn in Section 4.

2. Impact of Symmetry-Adapted Basis States
2.1. First Steps towards a General-Purpose Code

Ian Grant’s reformulation of the relativistic self-consistent theory in the 1960s, and
especially his review from 1970 [15], set the scene for numerical solutions and, eventually,
for a general-purpose MCDHF code, which became available from the Computer Physics
Communications Program Library in 1980 [5,16]. This code made use of the calculus of irre-
ducible tensor operators and Racah’s algebra for (re-)coupling the angular momenta [8,17].
If combined with symmetry-adapted and antisymmetric (sub-)shell states, a concept origi-
nally advanced in nuclear theory [18,19], this approach led to a powerful machinery that
helped predict the level energies and approximate atomic state functions (ASF) for atoms
and ions with a complex shell structure [10,20]. These developments also stimulated mas-
sive relativistic calculations of transition probabilities [21,22], hyperfine structures [23,24]
as well as (auto-)ionization [25,26] and scattering processes [27] for open-shell atoms and
ions, because they all occur very frequently in nature.

While not much needs to be said about the history of relativistic structure theory, it
is quite obvious today that the details and accuracy of any atomic computation critically
depend on the representation of the ASF and the explicit definition of the many-electron
basis. Like in the symmetry-adapted nonrelativistic HF approximation, an ASF is written
within the MCDHF method as superposition of configuration state functions (CSF) with
well-defined parity P, total angular momentum J and projection M [28],

ψα(PJM) ≡ |α JM〉 =
nc

∑
r=1

cr(α) |γrPJM〉 , (1)

and where γr refers to all additional quantum numbers that are needed in order to spec-
ify the (N-electron) CSF uniquely. In most standard computations the set {|γrPJM〉,
r = 1, . . . , nc} of CSF are constructed as antisymmetrized products of a common set of
orthonormal (one-electron) orbitals for a given atomic state or for a selected set of ASF. In
the expansion (1), moreover, the notation J ≡ JP has been introduced to just specify below
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the overall symmetry of any level by its total angular momentum and parity. Together with
a proper choice of the (relativistic) Hamiltonian, such a symmetry-adapted representation
of the many-electron basis states also make atomic computations feasible well beyond the
lowest excited levels of an atom and, hence, for a general use in atomic physics.

With the symmetry-adapted basis from above and a proper decomposition of all
atomic interactions into spherical tensor operators, the (reduced) matrix elements of the
Hamiltonian and almost all interaction operators can be written for symmetric one- and
two-particle operators always as

T(K) = ∑
j

f (K)(j; . . .)
〈

γr Jr

∥∥∥ T (K)
∥∥∥γs Js

〉
= ∑

t
u (atbt; K) X(atbt; K), (2)

T(K) = ∑
i<j

g(K)(i, j; . . .)
〈

γr Jr

∥∥∥ T (K)
∥∥∥γs Js

〉
= ∑

t
v (Lt; atbtctdt; K) XLt(atbtctdt; K), (3)

and where the X(atbt; K) and XLt(atbtctdt; K) denote the one- and two-particle interac-
tion strengths, respectively. In this notation, the . . . refer to the parametric (or model)
dependence of the interaction operators and Lt to any internal rank in (re-)coupling the
one-electron angular momenta, while the effective interaction strengths are specific to the
particular interaction or transition operator of a given property or process, the (so-called)
angular coefficients u (atbt; K) and v (Lt; atbtctdt; K) only depend on the overall rank K of
the operator and the shell structure of the two CSF involved, e.g., the shell occupation and
the coupling of their associated subshell states. Various library functions have been devel-
oped and improved over the years [29–31] in order to calculate these angular integrals for
any pair of CSF and for interaction operators of different rank. It is this—formally—rather
simple decomposition (2) and (3) of all reduced matrix elements that makes the MCDHF
or any of the associated configuration interaction codes with a symmetry-adapted basis
often superior and much simpler to expand when compared to implementing most other
methods. Of course, this advantage applies first of all also to GRASP and has given rise to a
good number of benchmark results [32–34].

2.2. The GRASP Code: Successes, Capabilities and Limitations

The earlier developments of GRASP [5] have been pushed forward especially by
Parpia and coworkers [6] by providing a modern implementation (at that time) of the
SCF field and by supporting rather systematic enlargements of the CSF and orbital bases.
Since these orbitals satisfy a coupled set of integro-differential equations, one for each
participating subshell n κ, they are often solved iteratively and by keeping the other orbitals
fixed. A systematic iteration scheme then varies the potentials and provides in turn updates
of the orbital functions, until the successive changes are negligible for the given application.
In such a finite-difference iteration scheme, the positron orbitals never occur explicitly in
the implementation, although they are affected by the variational procedure [10].

The advancement and general-purpose design of GRASP later helped expand this code
towards the generation of continuum orbitals [35], the electron-impact ionization with dis-
torted waves [36] and the computation of various excitation and ionization properties [37],
the incorporation of simple plasma models [38], and up to a relativistic version of the
R-matrix method [39]. It also helped incorporate the rearrangement of the electron density
in course of particle emission and absorption processes, and which typically results into sets
of not quite orthogonal orbital functions for the representation of the initial and final states.
In practice, this non-orthogonality can be accounted for in the evaluation of many-electron
matrix elements (2)–(3) by either implementing a biorthonormal transformation of the two
orbital sets [40] or by an expansion of the atomic states into Slater determinants [41].

Sure, the success of GRASP and its large number of applications are unquestionable.
During the last two decades, much emphasis in developing these tools was placed especially
upon the systematic improvement of the level energies and eigenvectors for quite general
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open-shell atoms. In particular, the convergence of energies and transition rates have
been improved and monitored in good detail [20]. By clearly distinguishing between the
spectroscopically occupied and (so-called) correlation orbitals, the electron density near
to the nucleus can often be refined considerably, which is in contrast to what is feasible
with node counting and the orthogonality of the spectroscopic orbitals alone. Moreover,
a parallelized computation of the angular coefficients and the Hamiltonian matrix now
facilitates the use of much larger restricted-active spaces (RAS) in the ab initio representation
of individual ASF. All these upgrades have sizeably enlarged the domain of the atomic
computations and enables one today to provide, at least for selected properties, predictions
with spectroscopic accuracy [42–44]. When compared with other advanced many-electron
techniques [45], such as RMBPT or the coupled-cluster approach, the MCDHF method has
the advantage that it can be quite readily applied also to (highly) excited and open-shell
structures across the whole periodic table.

The present GRASP code [7] is an updated Fortran-95 version, based on blocks of CSF
with well-defined symmetry J ≡ JP , and where the rearrangement of the electron density
is partly kept for levels with different symmetry. Moreover, a number of message-passing-
interface (MPI) programs were designed to execute all major parts in the calculation of SCF
by using parallel computers. These developments have moved GRASP towards a more
object-oriented design, while the data types and encapsulation as well as the hierarchy
and dynamic use of code have not (yet) changed a lot. However, several tools have been
added that now simplify the generation of CSF lists for using, for instance, multireference
computational models with single and double excitations [46–48].

To reduce the computational effort, the decomposition of most (reduced) matrix
elements is made, and often stored, in GRASP separately from their subsequent application.
Indeed, this prior decomposition of the many-electron matrix elements requires to control
and perform a good number of steps, usually by using or modifying available scripts. For
the calculation of level energies, for example, one first needs to generate a CSF basis, a set of
starting orbitals, the angular coefficients for the given basis and inter-electronic interaction
as well as to run the SCF iteration, and all this before the energies and wave functions
{Eα, cr(α)} can be finally obtained by setting-up and diagonalizing the Hamiltonian matrix.
In practice, these steps often obscure the modeling of the properties and behavior that the
user may have in mind, and this limitation applies quite regularly, if free electrons are
to be involved into the computations. Since many processes are associated with two or
more atomic bound states (levels), more often than not, different charge states of the atom
need to be generated. Because of these individual steps also, which need to be carried
out in rather fixed sequence, little effort has been spent so far to deal with the electron
continuum in GRASP, not to mention the interplay or perhaps the modeling of a whole
“chain” of elementary processes. In contrast to the bound orbitals, which are generated
self-consistently, the continuum orbitals are typically solved within a static potential of the
associated ionic core as well as for fixed energies, as obtained from energy-conservation
arguments or the integration over the electron continuum.

The present version of GRASP has been found to be limited also by its static design
and the quite technical language in its implementation, as perhaps typical for most Fortran
and C codes. This basic design has hampered to extend the code towards new applications
or the use of graphical interfaces as we shall described below. This design often hinders
a transparent communication with and within the code that should be independent of
the shell structure of the atoms or any particular application. From a physics viewpoint,
furthermore, energies and wave functions usually just occur as an intermediate outcome in
order to express cross sections, rates, rate coefficients or, more generally, to even synthesize
spectra that are directly comparable with experiment. These practical demands also suggest
that we deal with only those sub-spaces of the many-electron Hilbert space that need to
be taken into account for a particular application, whereas the selection and construction
of these sub-spaces requires physical understanding of the underlying atomic processes
and much of this computational work should be automated and supported by a deliberate
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language design in order to eventually apply the most specialized code for a given task. To
make these limitations of GRASP perhaps even more explicit, let us next summarize a few
recently emerging demands to atomic theory.

2.3. Recent Demands on Relativistic Atomic Theory

During the past decades, the demands to atomic structure and collision theory have
greatly been enlarged from the accurate computation of a few low-lying level energies and
properties towards quite massive applications in astro, plasma and technical physics, and
at various places elsewhere. The recent advancements in developing new light sources, the
research with free-electron lasers (FEL) at different wavelengths or the triumph with atomic
clocks are just a few examples, where further progress will critically depend on atomic
theory and our abilities to model atomic behavior. Obviously, however, these fields require
atomic computations of quite different size and complexity, from simple estimates, to a
fast modeling of atomic processes, to highly correlated computations of selected frequency
shifts or cross sections, and sometimes even to generating rather large sets of atomic data.
For one or a few inner-shell holes in any many-electron configuration, for example, the
multiple release of Auger electrons quickly leads to very complex shell structures with tens
or more fine-structure levels for each single configuration.

Clearly, this complexity of many atomic computations requires a concise language
in order to readily distinguish and specify different models, to combine different steps
in the computation and to eventually keep track and utilize all the generated data, while
most atomic behavior can be naturally formulated by means of many-electron amplitudes
(matrix elements), their explicit combination is often sophisticated and requires additional
knowledge from collision and density matrix theory or about the electron dynamics in
strong laser fields. In practice, therefore, these distinct requirements from different fields
gave rise to developing specialized code, but which are often less available to the commu-
nity. Or, if seen the other way around, these demands and their typical complexity may
just illustrate that GRASP and all presently available codes still need further developments
to make them ready for future use.

From the viewpoint of recent case studies, in particular the following demands to
atomic theory have emerged and should be likely considered by general-purpose codes:

• Since most atomic behavior is qualitatively well understood (and is often readily
distinguishable from each other) within the atomic shell model and its underlying
electron configurations, this “shell-model view” need to be recognized and, possibly,
re-adjusted by the user during various steps of (complex) computations. This need
arises especially for processes with free electrons in either the initial and/or final
(scattering) state of the atoms. Apart from the set of reference configurations and from
specifying the virtual excitation in the construction of restricted active spaces (RAS),
the set-up of atomic computations should therefore enable one to readily reconstruct
the underlying shell occupation at quite different level of the computations. The
reconstruction and analysis of the important shells during the modeling then help
determine and adapt the subspaces that are (to be) taken into account into the quantum
representation of the atomic states. In fact, the simple control of the computations by
means of selecting and discarding (groups of) electron configurations can hardly be
overrated for atoms with multiple inner-shell holes.

• A more flexible treatment of the electron continuum will enable one to model reso-
nances embedded into the continuum, as well as the ionization, recombination and
decay dynamics of free atoms and ions. It will help also to incorporate the continuum
(interchannel) interactions in the construction of scattering states [49] or to construct
approximate atomic Green functions [50], cf. Section 3.1.

• The increasing complexity of atomic computations suggests to perform many, if not
most, of its steps automatically, based on a set of well-chosen default parameters.
Apart from the incorporation of relativistic corrections, this refers not only to the
generation of the (mean-field) SCF but also to calculating the symmetry-adapted
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amplitudes (2)–(3) themselves, if the computational model and approximations can
be expressed concisely enough. The simple use and overwriting of defaults values
also determines the rate with which complex computations can be realized.

• Quite different observations are typically recorded by different spectroscopic commu-
nities owing to the—individual or coincident—measurement of photons, electrons
and/or ions. The large number of experimental setups and scenarios then require a
proper classification of atomic properties and processes as well as a language, close to
the underlying physics, in order to avoid duplication and inhomogeneity of code, or
the implementation of overly specific features.

• Recent advancements in short- and strong-field physics make it possible today to
explore the electron dynamics of atoms under extreme conditions, and which clearly
differ from standard (spectroscopic) measurements. Apart from a remarkable increase
in the intensity of light pulses by six orders of magnitude or even more, the time struc-
ture of these pulses can be currently controlled down to a few cycles and help studying
non-linear photoprocesses [51]. Moreover, the interaction of such pulses with atoms
and ions often enforces (relativistic) theory to deal with time- and spatially-structured
vector potentials A(r, t) , well beyond the typical electric-dipole approximation or the
incorporation of additional multipoles. Still, these interactions can be expressed by
symmetry-adapted many-electron amplitudes [52] and should therefore be handled
by modern codes.

All these contemporary demands to atomic theory, and likely several more, underline the
need for establishing a language that can be adapted to different communities and which can
be shaped (and learned by the users) gradually. Moreover, since many researchers perform
atomic computations just as part of their—theoretical or experimental—daily work, a simple
communication and control of the program is mandatory for any general-purpose code.

3. Access to and Application of Symmetry-Adapted Amplitudes
3.1. Towards Current Fields of Research and Applications

The reduced many-electron amplitudes (2)–(3) are central to atomic theory, from
the setup and diagonalization of the Hamiltonian matrix up to a large class of transition
properties that just occur from first- or higher-order perturbation theory onwards. These
amplitudes characterize individual interactions among the electrons or with external par-
ticles and fields and, altogether, determine the atomic behavior. These many-electron
amplitudes generally combine two atomic (bound) states of either the same or two different
charge states, and often also include free electrons in the continuum. The consequent use
of these amplitudes in a given frame therefore enables us to formulate (and implement) all
atomic computations in a language that remains close to the formal theory. Despite of this
common knowledge, however, codes are still based on a quick and often ad hoc chosen
decomposition of these many-electron amplitudes into one- and two-particle reduced ma-
trix elements, or even into radial integrals, well before any implementation or coding is
conducted. Such a decomposition then dismembers the quantum-mechanical expressions
and make their use difficult in other, though perhaps closely related, tasks.

In practice, there are just six types of these many-electron amplitudes which fre-
quently occur in computations and which refer to different (inner-)atomic interactions.
Apart from the well-known electron–electron and electron–photon interaction amplitudes,
the (hyperfine) interaction with the nuclear moments [43,53], the mass- and field-shift
amplitudes [54,55], or the Coulomb excitation by charged particles [56] determine most
spectroscopic observations. Indeed, all these reduced amplitudes can be written in the
compact form (2)–(3).

Electron–electron interaction amplitude: The amplitudes 〈α J‖V ‖β J′〉 = 〈α J‖V ‖β J〉 δJ J′
often refer to the scalar interaction operator

V ≡ V (Coulomb) + V (Breit) = ∑
i<j

(
1
rij

+ bij

)
, (4)
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as it occurs in the Dirac–Coulomb–Breit Hamiltonian HDCB = ∑i hD(ri) + V . These
amplitudes are of course frequently needed for the computation of the level structure itself,
but also for (Auger) electron emission and capture processes, electron-impact excitation
and scattering processes, and at many places elsewhere. Typically, the particular form of the
electron–electron interaction, i.e., of either applying V = V (Coulomb) or V = V (Coulomb) +
V (Breit) , or even some further approximation to the electron–electron interaction, is usually
based upon physical arguments, such as the nuclear charge, the charge state of the ion, the
shell structure of the atomic states of interest, or any practical arguments.

Electron–photon amplitudes
〈

α f J f

∥∥∥O (M)
∥∥∥αiJi

〉
: This interaction amplitude can be

handled separately for the different multipole components M ∈ {E1, M1, E2, . . .} of the
radiation field but requires to carefully distinguish between absorption and emission
processes,

〈
α f J f

∥∥∥O (M, absorption)
∥∥∥αiJi

〉
≡

〈
α f J f

∥∥∥∥∥
N

∑
k=1

a (M)
k

∥∥∥∥∥αiJi

〉
=
〈

αiJi

∥∥∥O (M, emission)
∥∥∥α f J f

〉∗

as well as between bound–bound, bound–free and free–free amplitudes, if some of the elec-
tron(s) appear in the continuum. This distinction is necessary also in order to ensure the
correct phase relation between different multipole components, especially if different inter-
action amplitudes need to be combined. Here, a (M)

k denotes the electron–photon interaction
operator for the annihilation of a photon with multipolarity M ≡ (L, p), and where p = 0
refers to the magnetic and p = 1 to the electric multipoles of rank L. Electron–photon
interaction amplitudes frequently arise in all photoexcitation, ionization and capture pro-
cesses as well as for the computation of transition probabilities, dielectronic recombination
strength, multi-photon processes, atomic cascades, etc.

While we shall not discuss details of the underlying relativistic theory, let us outline
the remarkable role of the many-electron amplitudes (2)–(3) and how they help to make
atomic theory ready for contemporary appliance. We here assemble a few selected and
desirable extensions which have been suggested by current experiments but were not
considered (yet) by general-purpose atomic structure codes.

(a) Excitation schemes based on the atomic shell model: Many atomic computations
start from a given set of reference (electron) configurations in order to generate rele-
vant subspaces of the many-electron Hilbert space. This is accomplished by specifying
virtual excitations of (so-called) active electrons, while the selection of these subspaces
certainly require a good physical understanding, there explicit setup is usually per-
formed automatically. To support well-chosen subspaces for different applications, a
proper notion need to be developed and implemented to readily manipulate ‘lists’ of
electron configurations and configuration schemes. For the dielectronic recombination
(DR) of a multiply-charged ion, for example, all configurations with a single (sub-)
valence excitation as well as the capture of an additional electron into any valence
shell, taken from a given list of such shells, contribute to some resonance strength
and, hence, to the DR plasma rate coefficients, provided that the energy difference
of the doubly-excited resonance and the initial level is positive, Ed − Ei = ε > 0 .
For rate coefficients, in particular, the setup of the computations can be simplified
considerably if such an excite-by-capture scheme is established and readily applied to
the given set of reference configurations. The associated list of configurations is then
generated automatically. There are many other applications of atomic structure theory
which can be made much simpler by establishing the notion of proper excitation and
de-excitation schemes, and which are all based on the shell model.

(b) Coupling of atoms to the free-electron continuum: If atoms or ions are resonantly
excited into the continuum of the next higher charge state, they are inherently coupled
to this “infinity of states” owing to the (non-local) electron–electron interaction. In
atomic theory, this coupling is often expressed by means of photo- and autoionization
amplitudes, and with the electron–photon and electron–electron interaction matrix
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elements from above. Hereby, different ionization channels need to be distinguished
due to the coupling of the —partial waves of—free electron with energy ε to the
bound state of the remaining ion:

∣∣∣(α f J f , ε κ) Jt

〉
as well as due to the selection

rules of the considered process. Any successful implementation of ionization (and
recombination) processes therefore needs a straight and quick access to these many-
electron amplitudes, including one or several free electron waves |ε κ〉 .

(c) Modeling of atomic cascades: Such cascades typically arise when inner-shell electrons
are excited, or ionized, and subsequently lead to the emission of two or more electrons
and/or photons. Indeed, atomic cascades are quite ubiquitous in nature and have
therefore been explored for different scenarios, from precision measurements to the
modeling of astrophysical spectra, and up to the search for exotic particles. Until the
present, however, no quantitative analysis of such decay cascades appear often to be
feasible owing to the large, or even huge, number of decay pathways which the atoms
can undertake. Since most, if not all, of these cascades can normally be traced back to
a proper combination of different symmetry-adapted amplitudes, they are suitable
for general-purpose codes if the computation of these amplitudes is separated from
the subsequent simulation of the associated ion, photon or electron distribution, or
any other wanted information. In order to deal with different excitation and decay
scenarios, Ref. [57] suggests a number of (cascade) schemes and approaches that are
clearly discernible with regard to their complexity and computational costs. Typical
schemes refer to the decay of inner-shell holes, including the prior excitation or
ionization of electrons [58], the radiative or dielectronic capture of electrons [59], or the
formation and photoemission from hollow ions. Many observations in astrophysics
will be understood better, or still at all, if the interplay between the radiative and
nonradiative decay pattern can be modeled with sufficient detail.

(d) Request of atomic Green functions: In atomic and many-particle physics, Green
functions often occur as propagators to formally represent the (integration over the)
complete spectrum of the underlying Hamiltonian. Since such an integration over
the complete spectrum is crucial also to many second- and higher-order perturbation
processes, approximate atomic Green functions need to be developed and accessible
rather similar to how the ASF can be applied.
A simple access to approximate Green functions requires however a decomposition
into building blocks that are suitable for atomic structure theory [50]. By making use of
the rotational symmetry and parity of the ASF |αν Jν Mν〉 , each Green function can be
split into separate channels (continua) of well-defined symmetry J ≡ JP , quite similar
to the one-electron Coulomb–Green function [60]. Within a finite basis, these channels
then simply refer to a set of atomic levels {E(J)

ν ,
∣∣∣α(J)ν M(J)

〉
, ν = 1, . . . , ν (J) } , all of

the same total symmetry J. Using this notation, an approximate atomic Green function
is given by an array (list) of k such channels and is formally written as

[{
E (J1)

ν ,
∣∣∣α(J1)

ν M(J1)
〉

, ν = 1, . . . , ν(J1)
}

,
{

E (J2)
ν ,

∣∣∣α(J2)
ν M(J2)

〉
, ν = 1, . . . , ν(J2)

}
, . . .

]

⇐⇒ GE = ∑
ν

∫ |αν Jν Mν〉 〈αν Jν Mν|
Eν − E

≡
Jk

∑
J

J

∑
M=−J

ν (J)

∑
ν

|αν JM〉 〈αν JM|
E (J)

ν − E
(5)

or, in other words, the k-th channel of an approximate Green function is represented by
a finite list of many-electron (pseudo-)levels

{
E (Jk)

ν ,
∣∣∣α(Jk)

ν M(Jk)
〉

, ν = 1, . . . , ν (Jk)
}

.
As for the ASF (1), these pseudo-levels are obtained by diagonalizing the associated
Hamiltonian matrix, though care has to be taken about the levels within the continuum.
This is particularly true, if some atomic process leads to a multiple ionization (or
capture) of electrons, such as the double Auger emission.
While, formally, each Green function is built from an infinite number of such channels,
and including both parities P = ± 1 , only a few of these channels (continua) are in
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practice relevant for any non-linear interaction process, either because of the symmetry
of the underlying interaction operators or due to further insights into the physics.

(e) Nonlinear atomic processes: The explicit use of the many-electron interaction ampli-
tudes from above also facilitates the implementation of nonlinear, e.g., second- and
higher-order processes, once an appropriate Green function has been constructed for
some given property or process of interest. Well-known second-order processes are
the two-photon absorption and emission, the resonant and two-photon ionization,
the radiative and double Auger emission of atoms, or the (single-photon) double
ionization, to just recall a few of them. For each of these processes, different selection
rules apply and help to restrict the number of Green function channels with total
symmetry J1, J2, . . . , that need to be generated. In these computations, the summa-
tion (integration) remains the most challenging part of all numerical computations
owing to number of terms in the representation of the Green function (5). Further
difficulties may arise from the free-free matrix elements that occur in all ionization and
capture processes. However, the recent interest and observation of multi-photon or
multi-electron processes make the calculation of such nonlinear processes by general-
purpose codes such as GRASP for sure highly desirable.

(f) Different representation of atomic states: In the MCDHF method, the representation
{cr(α)} of the ASF is fully determined by choosing the energy functional of the
SCF and the CSF basis in terms of virtual excitations with regard to a set of (bound)
reference configurations. These atomic states can then be directly applied also to
evaluate the interaction amplitudes and, hence, the observables of interest. Other
representations are obtained by adopting the functional of the underlying mean
field or by treating certain classes of excitation perturbatively. Again, many of these
possible extensions of atomic theory are formulated in terms of the electron–electron
interaction amplitudes from above. Moreover, rather similar amplitudes arise if the
dominant QED corrections are to be taken into account by an single-electron model
Hamiltonian [61]

H (QED) = H (SE) + H (VP) = ∑
j

h (QED)
j = ∑

j

(
h (SE)

j + h (VP)
j

)
,

that comprises the effective self-energy (SE) and vacuum-polarization (VP) terms.
When compared to missing electronic correlations, these QED corrections are often
less relevant as long as no inner-shell excitation are involved in any computed property
or process [62].
Apart from such ‘traditional’ many-body techniques, the qubit representation of the
atomic Hamiltonian and the use of quantum hardware has attracted much recent
interest. Different transformations, such as the Jordan–Wigner or Bravyi–Kitaev trans-
formation, aim to map the electronic structure of indistinguishable fermions upon
distinguishable qubits and to use algorithms that are exponentially faster than the
best-known classical algorithms. Up to the present, however, no efficient algorithm is
known to solve electronic-structure problems in a fully general form [63]. It will there-
fore be beneficial to explore how the symmetry-adapted amplitudes from above can
be transformed and evaluated by means of qubit Hamiltonians and quantum circuits.

These and several other applications may become indeed realistic within the near
future if a proper set of symmetry-adapted atomic amplitudes are accessible and used in
order to built up features of higher complexity. Apart from a descriptive language for
specifying individual steps of the computations and a flexible user interface, this requires
an efficient computational framework, such as GRASP, in order to support most atoms and
ions across the periodic table.
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3.2. A Descriptive Language for Atomic Computations

While the methods and numerical algorithms in atomic structure theory are usually ex-
plained by using a rather compact and well-established notation, suitable for the symmetry
of free atoms and ions, their employment often suffers from a—more or less—sophisticated
implementation and interface. The implemented jargon and data flow then hinder the
extension of code towards emerging applications, which were not in mind right from the
beginning of the code design.

These technical obstacles can be substantially lowered by using a descriptive atomic
language that reflects the underlying formalism and that avoids most technical slang. Of
course, such a language should be based on well-chosen data types which help express the
common atomic structure and collision theory and which facilitate the communication with
and within the program. Moreover, such a language should be suitable for interactive work
and simple enough for both, seldom as well as more frequent use of the code. Figure 1
displays a few of the requirements for establishing a domain-specific and descriptive atomic
language. Obviously, all these features are also relevant for a code such as GRASP.

Figure 1. Requirements for establishing a domain-specific and descriptive atomic language.

Apart from a concise syntax, such a language and computational frame should:

(1) Provide an intuitive user interface in which all computations can be expressed quite
similar to the user’s research work;

(2) Supply features for dealing with general open-shell configurations and applications
in atomic physics and elsewhere; such features refer for instance to a self-acting
generation of (lists of) configurations or Green function channels by just selecting
suitable classes of virtual excitations;

(3) Help redefine the physical units to the needs of the user, both at input and out-
put time;

(4) Give access to different models and approximations as well as the decomposition
of a given task into well-designed steps, rather similar to writing pseudo-code;

(5) Resort to default values whenever feasible; indeed, all parameters, which can be
derived from other input or which is irrelevant for a given computation, should
be based on default values, though with keeping the user informed. On the other
hand, it must be quite easy to overwrite these defaults for selected applications;

(6) Enable the user to redefine physical constants or default settings;
(7) Support a transparent data flow with and within the program, independent of the

shell structure of the atoms or any particular application;
(8) Help visualize large data sets as often required for the analysis of results and

for debugging;
(9) Support the interactive use (test) of individual data types, functions or single lines

of the code.
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These requirements are quite opposite to most previous—either FORTRAN or C—codes,
for which simple extensions, a rapid prototyping or the use of graphical interfaces appear to
be cumbersome. Moreover, these requirements on a high-level language cannot be realized,
as outlined above, without a proper computational framework and programming language
that is fast enough to allow for quantum (many-electron) computations, and which easily
supports the implementation of all the necessary building blocks.

In contrast to earlier concepts, several programming languages are designed today
with a number of powerful features, such as dynamic types, type-specializing, dynamic
code loading or garbage collection, that are common to so-called productivity languages.
Julia is one of these programming languages that enables one to build-up new syntax
for domain-specific languages and that is fast enough for scientific computing [64,65].
This language also includes (i) an expressive type system that allows optional type anno-
tations to support an offensive code specialization against run-time types; (ii) multiple
dispatch to dynamically select the most suitable procedure for running the right code at the
right time; (iii) Just-In-Time compilation; (iv) features for parallelization; as well as (v) rich
metaprogramming facilities. It also provides “shared” arrays to distribute data to multiple
parallel processes for high-performance computing. Together with its deliberate language
design, all these technologies may help to realize a descriptive language that combines
high productivity in developing code with good performance.

3.3. Impact of Proper Data Types

A proper choice and hierarchy of data types are indeed crucial for setting-up such
a descriptive and domain-specific language which clearly reflects the formalism behind
the program [66]. A proper type hierarchy hereby helps to express relationships between
data types, while abstract data types are often utilized to model the behavior of the code
and to select the code dynamically, the actual data is kept by and always flow through
concrete data types. These concrete types usually exists either as primitive or composite
types. In Julia, moreover, all types are said to be first-class and are utilized to select the
code dynamically at run time. This is achieved by (so-called) multiple dispatch that refers
to the dynamic selection and execution of code, i.e., the choice of the most specific method
applicable to the types of its arguments. Multiple dispatch makes it easier to structure
the programs close to the underlying physics. In addition, it obviously reduces the needs
for argument checking at the begin of a function, sometimes also referred to as ad hoc
polymophism. In practice, Julia’s compiler automatically generates specialized functions
according to the type of its arguments.

For an “atomic language”, of course, the (notion of all) data types should be readily
understandable to any atomic physicist without much additional training. They need to
be based on useful and frequently recurring objects in the computation of atomic energies,
state vectors and processes, and they have to be independent from the particular shell
structure of the atoms or ions of interest. Examples may refer to a Shell, Configuration,
Orbital, Level, or even to a whole Multiplet of such levels. In practice, such a Level
should provide access to all details of the associated ASF: E, |α JM〉 , including its radial
wave functions, the values and coupling of the angular momenta as well as the (number
of and) mixing of CSF within the given basis, while most data types remain hidden to the
user, every new feature of the code typically requires a few data types that are particularly
suitable. Table 1 lists a few selected data types from the JAC toolbox, a general-purpose
code which will be briefly summarized in the next section.

General-purpose codes such as GRASP cannot be established without separating
its functionality into independent and partly interchangeable modules. In each of these
modules, an interface (should) expresses the elements that are provided and required
by the module and that enables one to generate re-usable code without enforcing the
user to take care about the name space and arguments of all subsequent calls. In atomic
theory, an independent module can be readily assigned to individual steps in solving the
MCDHF equations, such as the construction of the CSF basis or the SCF iteration, but also
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for each atomic property and process of interest. In dealing with excitation, ionization
and recombination processes, furthermore, the terms line and channel frequently occur in
order to distinguish between the observed spectral features and the (symmetry-adapted)
amplitudes that formally contribute to these features. For a photon emission process, for
example, different channels must distinguish between different multipole components (and
perhaps the gauge for the coupling of the radiation field), while a photoionization channel
needs to also account for the partial waves of the outgoing electron. The associated data
types Channel and Line will therefore occur in very different modules, though with slightly
altered specification and constructors, while a very few derived types have meanwhile been
introduced into GRASP, we expect that this and other general-purpose code will benefit
from the specification and consequent use of a more advanced data type hierarchy.

Table 1. Selected data types (struct) from the JAC toolbox [14] for representing important building blocks from
atomic structure theory. In total, there are at present about ∼250 of these data structures in JAC, though most of
them remain hidden to the user. A more detailed description of these data types can be obtained interactively, for
instance by ? Level, to recall the purpose of this struct and the definition of all subfields.

Struct Brief Explanation

AbstractEeInteraction Abstract type to distinguish between different electron–electron in-
teraction operators; it comprises the concrete (singleton) types
BreitInteraction, CoulombInteraction, CoulombBreit.

AbstractExcitationScheme Abstract type to support different excitation schemes,
such as DeExciteSingleElectron, DeExciteTwoElectrons,
ExciteByCapture, and several others.

AbstractGreenApproach Defines an abstract type for approximating a many-electron Green func-
tion expansion, and which comprises the concrete (singleton) types
SingleCSFwithoutCI and CoreSpaceCI.

AbstractScField Abstract type for dealing with different self-consistent-field (SCF) poten-
tials.

AsfSettings Settings to control the SCF and CI calculations for a given multiplet of
ASF.

Atomic.Computation An atomic computation of one or several multiplets, including the SCF
and CI calculations, as well as of selected properties or processes.

Basis
Relativistic atomic basis, including the full specification of the configura-
tion space and radial orbitals.

Configuration
Non-relativistic electron configuration in terms of its shell occupation.

ConfigurationR
Relativistic electron configuration in terms of its subshell occupation.

EmMultipole A multipole component of the electro-magnetic field, such as E1, M1, E2,
. . . and as specified by its parity and multipolarity.

GreenChannel A single approximate Green function channel with well-defined symme-
try J.

Level Atomic level in terms of its quantum numbers, symmetry, energy and its
(possibly full) representation.

LevelSelection List of levels that is specified by either the level numbers and/or level
symmetries.

LevelSymmetry J = JP specifies the total angular momentum and parity of a particular
level.
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Table 1. Cont.

Struct Brief Explanation

LSjjSettings Settings to control the jjJ − LSJ transformation of the selected many-
electron levels.

Multiplet An ordered list of atomic levels, often associated with one or several
configurations.

Nuclear.Model A nuclear model of an atom to keep all nuclear parameters together.

Orbital Relativistic radial orbital function that appears as ‘buildung block’ in
order to define the many-electron CSF; its is typically given on a (radial)
grid and comprises a large and small component.

Radial.Grid Radial grid to represent the (radial) orbitals and to perform all radial
integrations.

Radial.Potential Radial potential function.

Shell Non-relativistic shell, such as 1s, 2s, 2p, . . ..

Subshell Relativistic subshell, such as 1s1/2, 2s1/2, 2p1/2, 2p3/2, . . .

3.4. Jena Atomic Calculator

Several of the concepts, mentioned above, have been implemented and already utilized
in JAC, the Jena Atomic Calculator [14]. This toolbox help calculate symmetry-adapted in-
teraction amplitudes, properties as well as a large number of excitation and decay processes
for atoms and ions with complex shell structure. It can be applied quite readily without
much prior knowledge of the code. The (so-called) Atomic.Computation’s from this tool-
box [cf. Table 1] are based on explicitly specified electron configurations and provide level
energies, the representation of ASF or their classification within a LSJ-coupled basis. Since
JAC’s very first design in 2017, the number of atomic properties and processes, that can
be handled by this code, has steadily grown and now supports the generation of atomic
data for astro and plasma physics [59]. Little needs to be said about JAC that has already
been described elsewhere [14] and can readily be downloaded from the web [67]. However,
even if JAC provides a convenient and very flexible environment for code development,
verification and analysis, this toolbox still suffers from —more or less—severe efficiency
and memory issues, or the simple re-use of angular coefficients, when compared to the
GRASP program.

However, JAC already implements essential parts of a descriptive language by its careful
design (and interplay) of data types and generic functions. For instance, Figure 2 displays
the implementation of the electron–electron interaction amplitude

〈
(α f J f , ε κ) Ji‖V ‖αi Ji

〉

within the JAC toolbox for the autoionization of an atom that is initially found in the level
αi Ji, into the final level α f J f and with a free electron in the partial wave |ε κ〉 . This
symmetry-adapted amplitude refers to a single autoionization channel with the same total
symmetry Ji as given by the initial level. The two levels αi Ji and αc Jc = (α f J f , ε κ) Ji
enter the computations by the variables iLevel and cLevel and provide all information for
the evaluation of the amplitude, including a simple access to the associated CSF bases, the
electron orbitals, mixing coefficients and others. Moreover, while the spin-angular coeffi-
cients are calculated for a general symmetric (rank-0) two-particle operator, and separately
for each pair of CSF from the initial and continuum level, the kind of electron–electron
interaction is readily distinguished. The selection of the proper interaction operator makes
use of the abstract data type AbstractEeInteraction (cf. Table 1) in order to distinguish
between the V (Coulomb), V (Breit) or V = V (Coulomb) + V (Breit), respectively. Finally, the ma-
trix elements for a pair of CSF is weighted by the mixing coefficients of the initial and final
levels:

〈
(α f J f , ε κ) Ji‖V ‖αi Ji

〉
= ∑ ci cc(α f J f )

∗ · 〈CSFc‖V ‖CSFi〉 · ci(αi Ji). A similar
code applies for all other interaction amplitudes. Therefore, this example nicely shows how
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the formal notion of the many-electron matrix elements finds its simple (and easily read-
able) implementation into the code. It also demonstrates that all data should be articulated
in a form most natural for the programmer in order to enable future improvements. We
therefore belief that all general-purpose codes should be developed along these or similar
lines for using up the predictive power of relativistic atomic theory.

Version October 4, 2022 submitted to Atoms 13 of 17

# Autoionization (Auger) interaction amplitudes between two ASF
amplitude = complexF64(0.)
#
for r = 1:length(cLevel.basis.csfs)

for s = 1:length(iLevel.basis.csfs)
if iLevel.basis.csfs[s].J != iLevel.J || iLevel.basis.csfs[s].parity != iLevel.parity

continue # Proceed if selection rules are not fulfilled.
end
# Calculate the spin-angular coefficients
subshells = cLevel.basis.subshells
op = SpinAngular.TwoParticleOperator(0, plus, true)
wa = SpinAngular.computeCoefficients(op, cLevel.basis.csfs[r], iLevel.basis.csfs[s], subshells)
#
me = 0.
for co in wa # cycle over all spin-angular coefficients (co) of the given CSF pair

if kind in [ CoulombInteraction(), CoulombBreit()]
me = me + co.V * InteractionStrength.XL_Coulomb(co.nu,

cLevel.basis.orbitals[co.a], cLevel.basis.orbitals[co.b],
iLevel.basis.orbitals[co.c], iLevel.basis.orbitals[co.d], grid)

end
if kind in [ BreitInteraction(), CoulombBreit()]

me = me + co.V * InteractionStrength.XL_Breit(co.nu,
cLevel.basis.orbitals[co.a], cLevel.basis.orbitals[co.b],
iLevel.basis.orbitals[co.c], iLevel.basis.orbitals[co.d], grid)

end
end
amplitude = amplitude + cLevel.mc[r] * me * iLevel.mc[s]

end
end

Figure 2. Implementation of the electron-electron interaction amplitudes
〈
(α f J f , εκ) Ji ‖V ‖ αi Ji

〉
in

JAC for the autoionization of an atom, initially in the level αi Ji, into the final level α f J f and with a free
electron in the partial wave |ε κ〉 . This symmetry-adapted amplitude refers to a single autoionization
channel with the same total symmetry Ji as given by the initial level. Both the initial (iLevel) and
the continuum level (cLevel) provide simple access to their associated CSF bases, orbitals, mixing
coefficients and all other information which is needed in the evaluation of this matrix element. See text
for further explanations.

expresses the elements that are provided and required by the module and that enables one to generate477

re-usable code without enforcing the user to take care about the name space and arguments of all478
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Figure 2. Implementation of the electron–electron interaction amplitudes Please cite the figure in the
text and ensure the first citation of each figure appears in numerical order.

4. Summary and Conclusions

As argued and discussed above, the use of symmetry-adapted CSF with well-defined
(total) symmetry J = JP help more or less readily to decompose and compute (reduced)
amplitudes such as

〈
αJM

∣∣∣T (KQ)
∣∣∣βJ′M′

〉
and

〈
α J
∥∥∥T (K)

∥∥∥β J′
〉

for every operator T of
rank K. Indeed, these amplitudes are very central for describing the interaction among the
electrons or with external particles and fields and, hence, for expressing atomic behavior
in terms of (energy) shifts, rates, cross sections, angular distribution parameters and
many other properties which are accessible to experimentation. These amplitudes should
therefore always be smoothly accessible by any general-purpose code in order to apply
(relativistic) atomic theory to emerging fields.

A detailed computational procedure with systematically improved atomic states still
need to be worked out for many potential applications of (atomic) theory. Most of them
are associated with free electrons in the continuum and will benefit especially from a
consequent use of symmetry-adapted amplitudes. These applications also emphasize the
need for a descriptive and concise language close to the underlying formalism. Further
requests for developing general-purpose codes likely refer to a suitable categorization of
physical scenarios, a detailed documentation of the code as well as to features for integrated
testing. All these requirements are of present concern in developing GRASP and other codes
and will make them ready for future challenges.
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46. Bieroń, J.; Fischer, C.F.; Fritzsche, S.; Gaigalas, G.; Grant, I.P.; Indelicato, P.; Jönsson, P.; Pyykkö, P. Ab initio MCDHF calculations

of electron-nucleus interactions. Phys. Scr. 2015, 90, 054011. [CrossRef]
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