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Abstract: Closed analytical formulas are derived for the differential and total cross sections of the non-
relativistic photoelectric effect in the three main classes of few-electron atomic systems: (a) neutral
atoms and positively charged atomic ions which contain more than one bound electron, (b) negatively
charged atomic ions, and (c) one-electron atoms and ions. Our procedure developed in this study is a
combination of QED methods and results of the density functional theory obtained for atoms and
ions. In all these systems the photoelectric effect is considered as photodetachment of the outer-most
electron and our analysis is based on the results of density functional theory obtained for the electron
density (radial) distribution in these atomic systems. Analytical formulas (similar to ours) for the
differential and total cross sections of photoelectric effect for atomic systems from classes (a) and (b)
contribute to our understanding of these systems and have not appeared in the literature, to the best
of our knowledge.

Keywords: cross sections; photo-effect; photoionization; radial function; photodetachment

1. Introduction

In general, the photoelectric effect of atomic system is defined as the absorption of
radiation (or photon) by an atom in one of its bound states accompanied by the injection
of one of the atomic electrons into a state of unbound spectra. In other words, the bound
‘initial’ atomic electron makes a transition of into the final unbound state. This unbound
(or “free”) electron moves away from the parental atom/ion in the Coulomb field of
the final, positively charged atomic ion. In the case of negatively charged ions such an
unbound photo-electron moves in the field of a neutral atom. Theory of the non-relativistic
photoelectric effect (everywhere below, photoeffect, for short), or theory of photoionization
of light atoms and ions is a well developed chapter of Quantum Electrodynamics, or QED,
for short (see, e.g., [1,2]). In particular, the closed formula for the photoionization cross
section of one-electron atoms and ions was produced by Stobbe [3], but it was restricted
to the case of ground states in these atomic systems. Since the 1930s, Stobbe’s formula
was extensively used to explain and describe many actual processes in various physical
systems and devices where atomic photoionization plays a crucial role. Twenty years later
analogous formula has been derived for the photoionization cross sections from the excited
states in one-electron atoms and ions (see, discussion in [4] and references therein). It is a
goal of the current paper to show that, within reasonable approximations, quite general
formulas can also be derived for the photo-elecric effects in few-electron atomic systems.

In this communication based on a combination of QED approach and results of the
density functional theory we report progress toward the solution of these long-standing
“unsolvable” problems of atomic photoionization and photodetachment anddescribe the
corresponding analytical solutions. Our main goal in this study is to obtain the closed,
analytical formulas for the both differential dσ

do and total σ cross sections of photoionization
and/or photodetachment of few- and many-electron atoms and ions. All these cross
sections must be derived as the explicit functions of the atomic ionization potential I(Q, Ne)
and ω is the cyclic frequency of the incident light. The atomic ionization potential I(Q, Ne)
is the function of the total number of bounded electrons Ne in the initial atom/ion and
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electrical charge Q of the atomic nucleus. To achieve this goal we investigate photoeffect
for the outer-most atomic electron, or in other words, photodetachment of the outer-
most electron(s) in atomic systems which include few- and many-electron atoms and ions.
Below, we shall not consider photoionization of electrons from internal electron shells,
double photoionization, photodetachment with instantaneous excitations of other electron
transitions and other similar processes. Instead, we will focus on the usual photoionization
of that electron which is least weakly bound to the central nucleus. Investigation of such
processes is reduced to the analysis of photodetachment of the outer-most electron(s)
in atomic system. It is clear that the photodetachment cross sections of the outer-most
electron(s) in few-electron atomic systems coincide with the corresponding cross sections of
photoionization and/or photodetachment of the whole atom/ion. Expressed concisely, by
considering photodetachment of the outer-most electrons in different atomicsystems we can
quite accurately describe the regular (or thermal) photoionization and photodetachment in
arbitrary few- and many-electron atomic systems.

2. Differential Cross Section and Wave Functions

According to the rules of Quantum Electrodynamics (see, e.g., [1,2]) the differential
cross section of the non-relativistic photoeffect for an arbitrary atomic system is written in
the following form [2]

dσ =
e2m | p |

2πω
| e · v f i |2 do =

p
2πωa0

| e · v f i |2 do (1)

where m ≈ 9.1093837015 × 10−28g is the rest mass of electron, while −e is its electric
charge. Additionally, in this equation a0 ≈ 5.29177210903 × 10−9 cm is the Bohr radius
and e is the vector which describes the actual polarization of initial photon. Furthermore,
in this formula p =| p | is the momentum of the final (or free) photo-electron, ω is
the cyclic frequency of the incident light quanta, while v f i is the matrix element of the
‘transition’ velocity v f i between initial |i〉 and final 〈 f | states. For this matrix element
we can write v f i = − ı

m 〈ψ f |∇|ψi〉, where the notation ψ designates the wave functions,
while the indexes f and i in this equation and in all formulas below stand for the final and
initial states, respectively. The formula, Equation (1), is written in the relativistic units,
where h̄ = 1, c = 1, e2 = α and α ≈ 7.2973525693 × 10−3 (≈ 1

137 ) is the dimensionless fine-
structure constant. These relativistic units are convenient to perform analytical calculations
in Quantum Electrodynamics (below QED, for short). However, in order to determine the
non-relativistic cross-sections it is better to apply either the usual units, e.g., CGS units, or
atomic units in which h̄ = 1, me = 1 and e = 1. In atomic units the formula, Equation (1),
takes the form

dσ =
αa2

0 p
2πω

| e · 〈ψ f |∇|ψi〉 |2 do , (2)

where a0 = h̄2

me2 is the Bohr radius and α = e2

h̄c is the dimensionless fine-structure constant.
In atomic units we have a0 = 1 and α = 1

c (≈
1

137 ). Let us assume that initial electron was
bound to some atomic system, i.e., to a neutral atom, negatively and/or positively charged
ion. The energy of this bound state (or discrete level) is ε = −I, where I is the atomic
ionization potential. It is clear that the condition ω ≥ I which must be obeyed to make
photoeffect possible. In fact, for atomic photoeffect we always have the following relation
ω = I + 1

2 p2 between ω, I and p, where p is the momentum of the final photo-electron.
This equation is also written in the form p =

√
2(ω− I).

2.1. Wave Functions of the Final and Initial States

Now, we need to develop some logically closed procedure to calculate the matrix ele-
ment (or transition amplitude) 〈ψ f |∇|ψi〉 which is included in the formulas,
Equations (1) and (2). Everywhere below in this study, we shall assume that the origi-
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nal (or incident) atomic system was in its lowest-energy ground (bound) state which is
usually S(L = 0)−state. For one-electron atomic system this state is always the doublet
12s(` = 0)−state. Then, in the lowest order dipole approximation [1] the outgoing (or final)
photo-electron will move in the p(` = 1)−wave. By using this fact we can write the wave
function of the final electron

ψ f (r) =
2`+ 1

2p
P`(nn1) ψ`;p(r) = (nn1)

3
2p

ψ1;p(r) = (nn1)R1;p(r) , (3)

where ` = 1, P`(x) is the Legendre polynomial (see, e.g., [5]) and R`=1;p(r) = R1;p(r) is
the corresponding radial function which depends upon the explicit form of the interaction
potential between outgoing photo-electron and remaining atomic system. Furthermore, in
this formula the unit vectors n and n1 are: n = p

p and n1 = r
r . The unit vector n determines

the direction of outgoing (or final) photo-electron, or p−direction, for short.
If the interaction potential between outgoing photo-electron and remaining atomic

system is described by a Coulomb potential, then the radial function ψ`;p(r) in Equation (3)
is the normalized Coulomb function of the first kind (see, e.g., [6]) which is

ψ`;p(r) =
2`Z

(2`+ 1)!

√
8π

ν[1− exp(−2πν)]

`

∏
s=1

√
s2 + ν2 (pr)` exp(−ıpr) ×

1F1(`+ 1 + ıν, 2`+ 2; 2ıpr) , (4)

where 1F1(a, b; z) is the confluent hypergeometric function defined exactly as in [5,6],
ν = Z

p = Q−Ne+1
p and Z = Q− Ne + 1 is the electric charge of the final atomic fragment.

From this equation one finds the wave function of an electron which moves in a central
Coulomb field in the p−wave (i.e., for ` = 1)

ψ1;p(r) =
2Zp
3!

√
8π(1 + ν2)

ν[1− exp(−2πν)]
r exp(−ıpr) 1F1(2 + ıν, 4; 2ıpr) . (5)

By multiplying this formula by the additional factor 3
2p from Equation (3), we can

write for this wave function with ` = 1 (in atomic units)

R1;p(r) = Z

√√√√ 2π(1 + ν2)

ν
(

1− exp(−2πν)
) r exp(−ıpr) 1F1(2 + ıν; 4; 2ıpr)

= p

√
2πν(1 + ν2)

1− exp(−2πν)
r exp(−ıpr) 1F1(2 + ıν; 4; 2ıpr) , (6)

where the electric charge Z of the remaining atomic system is an increasing function of
the nuclear charge Q, but it also depends upon the total number of bound electrons Ne.
All phases and normalization factors in this formula coincide exactly with their values
presented in [7].

For the non-Coulomb (or short-range) interaction potentials between outgoing photo-
electron and remaining atomic core, the normalized radial wave function of the continuous
spectra is written as a product of the spherical Bessel function j`(pr) and a factor which
equals 2p, i.e., ψ`;p(r) = 2pj`(pr) (see, e.g., [7], $ 33). For ` = 1 one finds ψ1;p(r) = 2pj1(pr).
This means that the function ψ`=1;p(r) is regular at r = 0. From here for the radial function
R1;p(r) = 3

2p ψ`=1;p(r) we obtain

R1;p(r) =
3

2p

[
2pj`=1(pr)

]
= 3j`=1(pr) = 3

√
π

2pr
J 3

2
(pr) , (7)
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where j1(x) = sinx
x2 − cosx

x and J 3
2
(x) is the Bessel function which is regular at the origin

(at r = 0) and defined exactly as in [5]. These two radial wave functions of an unbound
photo-electron, Equations (6) and (7), are used in our calculations below.

Now, let us discuss the wave functions of the initial atomic system which has one
nucleus with the electric charge Q and Ne bound electrons. By analyzing the current
experimental data it is easy to understand that the non-relativistic photodetachment of the
outer-most electrons in a few- and many-electron atomic systems is produced by photons
with large and very large wavelengths λ. In reality, the wavelengths λ of incident light
quanta substantially exceed the actual sizes of atoms and ions which are included in this
process. For instance, the wavelengths λ of photons that produce photodetachment of the
negatively charged hydrogen ions H− in Solar photosphere exceed 7000 Å ≈ 13,232 a.u.,
while the spatial radius R of this ion equals ≈ 2.710 a0 = 2.710 a.u., i.e., R� λ. In fact, for
the H− ion its spatial radius R is smaller than the wavelengths λ of incident light quanta in
thousands times. In other words, photodetachment of the outer-most electron in the H−

ion is produced at large and very large distances from the central atomic nucleus and from
the second atomic electron. Such asymptotic spatial areas in the H− ion are very important
to determine photodetachment cross sections, since only in these spatial areas one finds a
relatively large overlap between the electron and photon wave functions.

Similar situations can be found in other atomic systems considered in this study,
e.g., for all neutral atoms and positively charged ions. In each of these Coulomb systems
photodetachment of the outer-most electron(s) mainly occurs in the asymptotic areas of
their wave functions. These asymptotic areas are located far and very far form the central
atomic nucleus and other internal atomic electrons. Therefore, in our analysis of non-
relativistic photodetachment of the outer-most electron(s) we can restrict ourselves to
large spatial areas and consider only the long-range asymptotic of these wave functions.
Moreover, it seems very tempting to neglect the small area of electron-electron correlations
around the central nucleus (R ≤ a0) and consider the long-range asymptotics of atomic
wave functions as the ‘new’ wave functions for our problem. Briefly, in this procedure
we replace the actual wave functions for each of these atomic systems by their long-range
radial asymptotics. It is clear that the ‘new’ bound state wave function is one-electron
function and it has a different normalization constant. Obviously, this is an approximation,
but as follows from our results the overall accuracy of our approximation is very good and
sufficient to describe photodetachment of the outer most-electrons in all atomic systems
discussed in this study.

In this study, we consider the photoeffect in the three different classes of atomic
systems: (a) atom/ion which initially contains Ne bound electrons, while its nuclear charge
Q (Q ≥ Ne) is arbitrary, (b) one-electron atom/ion, where Ne = 1 and Q is arbitrary, and
(c) negatively charged ion where Q = Ne − 1 and the both Q and Ne are arbitrary. As
is well known (see, e.g., Equations (3.12) and (3.13) in Ref. [8] and references therein) in
arbitrary atomic (Q, Ne)-system the radial wave function of the ground S(L = 0)-states has
the following long-distance (radial) asymptotics

Ri(r) = C(b; I)rb−1 exp(−
√

2Ir) =
(2
√

2I)b+ 1
2

2
√

πΓ(2b + 1)
rb−1 exp(−

√
2Ir)

=
(2
√

2I)b+ 1
2

2
√

πΓ(2b + 1)
r

Q−Ne+1√
2I
−1 exp(−

√
2Ir) (8)

where b = Q−Ne+1√
2I

= Z√
2I

, I(≥ 0) is the atomic ionization potential and Z = Q− Ne + 1 is
the electric charge of the remaining atom/ion. In Equation (8) and everywhere below the
notation Γ(x) denotes the Euler’s gamma-function Γ(1 + x) = xΓ(x), which is often called
the Euler’s integral of the second kind [5]. This important result of the Density Functional
Theory (or DFT, for short) plays a crucial role in this study. Here we have to emphasize the
following fundamental fact: the formula, Equation (8), is the exact long-range asymptotic
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of the truly correlated, Ne-electron wave function of an actual atom/ion. The derivation
of this formula is not based on any approximation. In other words, by choosing the wave
function Ri(r) in the form of Equation (8) we do not neglect any of the electron-electron
correlations in atomic wave function.

However, since photodetachment of the outer-most electrons mainly occurs at large
and very large distances from the atomic nucleus, then it will be a very good approximation
to describe this phenomenon, if we continue the radial Ri(r) function, Equation (8), on
the whole real r-axis, including the radial origin, i.e., the point r = 0. This allows us to
determine the factor C(b; I) in Equation (8) which is the normalization constant of the
radial Ri(r) function, which now continues on the whole real r-axis, including the radial
origin, i.e., the point r = 0. Namely, after this step our analysis becomes approximate.
Nevertheless, we can determine the normalization constant C(b; I) for this radial Ri(r)
function, Equation (8) where 0 ≤ r < +∞. It equals

C(b; I) =
(2
√

2I)b+ 1
2

2
√

πΓ(2b + 1)
(9)

where the atomic ionization potential I and parameter b are the two real, non-negative
numbers. In some equations below the

√
2I value is also designated as B. In the general

case, the atomic ionization potential I is an unknown function of Q and Ne.
For the negatively charged (atomic) ions we always have b = Q−Ne+1√

2I
= 0. The long-

distance asymptotic of the radial wave function of an arbitrary negatively charged ion is

always written in the form: R(r) ∼ C
r exp(−

√
2Ir), where C = 4

√
I

2π2 is the normalization
constant and I is an unknown function of Q and Ne. In contrast with this, for one-electron
atoms and ions we have Ne = 1 and 2I = Q2 and ionization potential I is the uniform
function of the nuclear charge Q only. For one-electron atomic systems we also have
b = 1 and the exact wave function is written in the form R(r; Q) = A exp(−

√
2Ir), where

2I = Q2, and A = Q
√

Q√
π

is the normalization constant.

2.2. Gradient Operator and Its Matrix Elements

Let us derive some useful formulas for the matrix element 〈ψ f |∇|ψi〉which is included
in Equation (2) and plays a central role in this study. It is clear that we need to determine
the vector-derivative (or gradient) of the initial wave function, which is a scalar function.
In general, for the interparticle (or relative) vector rij = rj − ri the corresponding gradient
operator in spherical coordinates takes the form (see, e.g., [9])

∇ij =
d

drij
=

rij

rij

∂

∂rij
+

1
rij
∇ij(Ω) = er;ij

∂

∂rij
+ eθ;ij

1
rij

∂

∂θij
+ eφ;ij

1
rij sin θij

∂

∂φij
, (10)

where ∇ij(Ω) is the angular part of the gradient vector which depends upon angular
variables (θ and φ) only, while er;ij =

rij
rij

= nij, eθ;ij and eφ;ij are the three unit vectors in
spherical coordinates which are defined by the rj and ri vectors, where rj 6= ri.

If the radial part of the initial wave function depends upon the scalar radial variable
only, then all derivatives in respect to the both angular variables θ and φ equal zero
identically and we can write

∇ijR(r) =
rij

rij

∂R(rij)

∂rij
=

rij

rij

dR(rij)

drij
= nij

dR(rij)

drij
, (11)

where nij is the unit vector in the direction of interparticle rij variable. For one-center atomic
systems we can determine r1j = rj, and for one-electron systems r12 = r1 = r. In this case,



Atoms 2022, 10, 126 6 of 17

the formula, Equation (11), is written in the form: ∇R(r) = n1
dR(r)

dr , where n1 = r1
r1

. In this
notation the radial matrix element is

e〈ψ f |∇|ψi〉 =
∫ +∞

0

{∮
(n · n1)(e · n1)do1

}(
R1;p(r)

dRi(r)
dr

)
r2dr

=
4π

3
(e · n)

∫ +∞

0

(
R1;p(r)

dRi(r)
dr

)
r2dr =

4π

3
(e · n)Ird , (12)

where n is the unit vector which determines the direction of propagation of the final electron,
while R1;p(r) and Ri(r) are the radial functions of the final and initial states, respectively.
The notation Ird in this formula, Equation (12), stands for the following auxiliary radial
integral

Ird =
∫ +∞

0

(
R1;p(r)

dRi(r)
dr

)
r2dr = −

∫ +∞

0

(
Ri(r)

dR1;p(r)
dr

)
r2dr , (13)

where we used the so-called ‘transfer of the derivative’ (or partial integration) which often
helps to simplify analytical calculations of this radial integral.

By substituting the expression, Equation (12), into the formula, Equation (2), one
finds the following ‘final’ formula for the differential cross section of the non-relativistic
photodetachment of an arbitrary atomic system

dσ =
16π2αa2

0 p
18πω

(e · n)2 | Ird |2 do =
8παa2

0 p
9ω

(e · n)2 | Ird |2 do . (14)

As follows from this formula the angular distribution of photo-electrons is determined
by the ‘angular’ factor (e · n)2. This cross section of photodetachment corresponds to the
truly (or 100 %) polarized light. However, in many actual applications the incident beam of
photons is unpolarized and we deal with the natural (or white) light. If the incident beam of
photons was unpolarized, then we need to apply the formula (e · n)2 = 1

2 (nl × n)2, where
nl is the unit vector which describes the direction of incident light propagation and n is
the unit vector which determines the direction of propagation of the final photo-electron.
In this study, the notation (a× b) denotes the vector product of the two vectors a and b.
Finally, the differential cross section of photodetachment is written in the form

dσ =
(4παa2

0 p
9ω

)
(nl × n)2 | Ird |2 do =

4π

9
αa2

0

( p
ω

)
sin2 Θ | Ird |2 do , (15)

where Θ is the angle between two unit vectors nl and n. The presence of vector product
(nl × n)2 in Equation (15) is typical for the dipole approximation. As follows from the
formula, Equation (15), analytical and numerical calculations of the differential cross section
of photodetachment are now reduced to analytical computations of the auxiliary radial
integral Ird, Equation (13). The total cross section of photodetachment is

σ =
(32π2αa2

0 p
27ω

)
| Ird |2=

32π2αa2
0

27

( p
ω

)
| Ird |2 . (16)

By using different expressions for the initial and final wave functions we can determine
the differential and total cross sections of photodetachment of the outer most electrons
in various few- and many-electron atoms and ions. The corresponding formulas are
presented below.

3. Few-Electron Neutral Atoms and Positively Charged Ions

First, let us consider photodetachment of the outer-most electron(s) in few-electron
neutral atoms, where Q = Ne and Ne ≥ 2, and in positively charged atomic ions, where
Q > Ne and Ne ≥ 2. In both these cases the final sub-systems, i.e., outgoing photo-electron
and remaining positively charged ion, interact with each other by an attractive Coulomb
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potential. For atoms and positively charged ions this process obviously coincides with
atomic photoionization. The wave function of outgoing photo-electron must be taken in
the form of Equation (6), while the wave function of the initial atomic state is chosen in the
form of Equation (8). The radial derivative of this initial wave function is

d
dr

[
rb−1 exp(−Br)

]
= (b− 1)rb−2 exp(−Br)− Brb−1 exp(−Br) , (17)

where b = Q−Ne+1√
2I

= Z√
2I

= Z
B , Z = Q− Ne + 1 and B =

√
2I. Therefore, the formula

for our auxiliary radial integral Ird, Equation (13), includes the two terms Ird = I(1)rd + I(2)rd ,
where

I(1)rd = p

√
2πν(1 + ν2)

1− exp(−2πν)
C(b; B)(b− 1)

∫ +∞

0
r(b+2)−1 exp(−Br− ıpr)1F1(2 + ıν; 4;

2ıpr)dr = p

√
2πν(1 + ν2)

1− exp(−2πν)
C(b; B)

(b− 1)Γ(b + 2)
(B + ıp)b+2 2F1

(
2 + ıν; b + 2; 4;

2ıp
B + ıp

)
(18)

= p

√
2πν(1 + ν2)

1− exp(−2πν)
C(b; B)

(b− 1)Γ(b + 2)
(B + ıp)b+2

(B + ıp
B− ıp

)ıν+b
2F1

(
2− ıν; 2− b; 4;

B− ıp
B + ıp

)
,

where 2F1(a, b; c; z) is the (2,1)-hypergeometric function defined exactly as in [5], ν = Z
p

and Z = Q− Ne + 1, while C(b; B) is the normalization constant of the bound state radial
function (see, Equation (9)). The explicit formula for the second radial integral I(2)rd is

I(2)rd = −p

√
2πν(1 + ν2)

1− exp(−2πν)
C(b; B) B

∫ +∞

0
r(b+3)−1 exp(−Br− ıpr)1F1(2 + ıν; 4;

ı2pr)dr = −p

√
2πν(1 + ν2)

1− exp(−2πν)
C(b; B)

B Γ(b + 3)
(B + ıp)b+3 2F1

(
2 + ıν; b + 3; 4;

2ıp
B + ıp

)
(19)

= −p

√
2πν(1 + ν2)

1− exp(−2πν)
C(b; B)

B Γ(b + 3)
(B + ıp)b+3

(B + ıp
B− ıp

)ıν+b+1
2F1

(
2− ıν, 1− b; 4;

B− ıp
B + ıp

)
.

where C(b; B) is the normalization constant, Equation (9), and B =
√

2I, where I is the
ionization potential of the initial atomic systems. To simplify the two last formulas we
note that (B + ıp

B− ıp

)ıν
=
[( ν

b + ı
ν
b − ı

)ı ν
b
]b

= exp
[
−2ν arccot

(ν

b

)]
(20)

where ν = Z
p = Q−Ne+1

p and b = Q−Ne+1√
2I

(here Z = Q− Ne + 1, see above) and B
p = ν

b ,

or ν = bB
p . The function arccot x is the inverse cotangent function which is also equals

arccot x = arccos( x√
1+x2 ) (this formula is used in numerical calculations).

After a few additional, relatively simple transformations we derive to the following
expression for the total radial integral Ird = I(1)rd + I(2)rd :

Ird =
p2

b

√
ν(1 + ν2)

1− exp(−2πν)

2bBb
√

BΓ(b + 2)(B− ıp)1−b√
Γ(2b + 1)(B2 + p2)2

exp
[
−2ν arccot

(ν

b

)][
(b− 1)×

(ν− ıb) 2F1

(
2− ıν; 2− b; 4;

ν− ıb
ν + ıb

)
− ν (b + 2) 2F1

(
2− ıν, 1− b; 4;

ν− ıb
ν + ıb

)]
. (21)

From this expression one easily finds the following formula for the | Ird |2 value
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| Ird |2=
4b ν2b+2(1 + ν2)Γ2(b + 2)

p(ν2 + b2)b+3(1− exp(−2πν))Γ(2b + 1)
exp

[
−4ν arccot

(ν

b

)] ∣∣∣(b− 1)×

(ν− ıb) 2F1

(
2− ıν; 2− b; 4;

ν− ıb
ν + ıb

)
− ν (b + 2) 2F1

(
2− ıν, 1− b; 4;

ν− ıb
ν + ıb

)∣∣∣2 . (22)

By multiplying this expression by the
(

8παa2
0 p

9ω

)
(n · e)2 factor one finds the final

formula for the differential cross section of photoionization of few- and many-electron
neutral atoms and/or positively charged ions each of which contains Ne bound electrons
(Ne ≥ 2) and one central atomic nucleus with the electrical charge Q

dσ =
(8παa2

0
9ω

) 4b ν2b+2(1 + ν2)Γ2(b + 2)
(ν2 + b2)b+3(1− exp(−2πν))Γ(2b + 1)

exp
[
−4ν arccot

(ν

b

)]∣∣∣(b− 1)×

(ν− ıb) 2F1

(
2− ıν; 2− b; 4;

ν− ıb
ν + ıb

)
− ν (b + 2) 2F1

(
2− ıν, 1− b; 4;

ν− ıb
ν + ıb

)∣∣∣2 (23)

(n · e)2do ,

where the incident beam of light is completely polarized. For natural light we obtain the
following formula

dσ =
(4παa2

0
9ω

) 4b ν2b+2(1 + ν2)Γ2(b + 2)
(ν2 + b2)b+3(1− exp(−2πν))Γ(2b + 1)

exp
[
−4ν arccot

(ν

b

)]∣∣∣(b− 1)×

(ν− ıb) 2F1

(
2− ıν; 2− b; 4;

ν− ıb
ν + ıb

)
− ν (b + 2) 2F1

(
2− ıν, 1− b; 4;

ν− ıb
ν + ıb

)∣∣∣2 × (24)

(nl × n)2do .

Finally, the corresponding formula for the total cross section of photoionization of the
(Q, Ne)−atomic system, where Ne ≥ 2, takes the form

σ =
(32π2αa2

0
27ω

) 4b ν2b+2(1 + ν2)Γ2(b + 2)
(ν2 + b2)b+3(1− exp(−2πν))Γ(2b + 1)

exp
[
−4ν arccot

(ν

b

)]
× (25)∣∣∣(b− 1)(ν− ıb) 2F1

(
2− ıν; 2− b; 4;

ν− ıb
ν + ıb

)
− ν (b + 2) 2F1

(
2− ıν, 1− b; 4;

ν− ıb
ν + ıb

)∣∣∣2 .

Note that the parameter b in these formulas is a real number, which is usually bounded
between 0 and 2, i.e., 0 < b < 2. This means that the hypergeometric functions in
Equations (18) and (19) can be determined only numerically (two exceptional cases when
b = 1 and b = 0 are considered in the next two Sections). Recently, a number of fast, reliable
and numerically stable algorithms have been developed and tested for accurate calculations
of the hypergeometric functions. Our final formula can be simplified even further, if one
applies the following relation (see, e.g., Eq.15.2.3 in [6]) between two hypergeometric
functions which are included in our Equation (22):

2F1

(
2− ıν, 2− b; 4;

ν− ıb
ν + ıb

)
= 2F1

(
2− ıν, 1− b; 4;

ν− ıb
ν + ıb

)
+

1
1− b

(ν− ıb
ν + ıb

) d
dz

[
2F1(2− ıν, 1− b; 4; z)

]
, (26)

where z = ν−ıb
ν+ıb . This formula allows one to operate with one hypergeometric function only.

All formulas derived and presented in this Section can directly be used to determine
the both differential and total cross sections of photodetachment of the outer-most electrons
in few- and many-electron neutral atoms and positively charged ions which contains Ne
bound electron, where Ne ≥ 2. Note also that the total cross section of photoionization of the
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(Q, Ne)−atomic system, Equation (25) can be re-written in a slightly different form σ(ω) =
σ(ω; I, b) which shows the explicit dependence of the photoionization cross section upon
the cyclic frequency of incident light ω. Such explicit formulas are very popular among
people which conduct experiments and those theorists who calculate the convolution of
various energy spectra, e.g., thermal spectra, and photodetachment cross sections. To
achieve this goal one needs to replace variables in Equation (25) by using the following

(equivalent) expression for ν written in terms of I, ω and b: ν = b
√

I
ω−I . Finally, one finds

the following formula for the total cross section σ = σ(ω, I, b) of photodetachment of the
outer-most electrons in few-electron neutral atoms and positively charged ions

σ =
(32π2αa2

0
27

) 4b Ib+2
[
1 + (b2 − 1) I

ω

]
Γ2(b + 3)

b4ωb+3 [1− exp
(
−2πb

√
I

ω−I

)]
Γ(2b + 1)

exp
[
−4b

√
I

ω− I
arccot

(√ I
ω− I

)]

×
∣∣∣ b− 1
b + 2

(
1− ıb

√
ω− I

I

)
2F1

(
2− ıb

√
I

ω− I
, 2− b; 4;

√
I − ı
√

ω− I√
I + ı
√

ω− I

)
− 2F1

(
2− ıb

√
I

ω− I
, 1− b; 4;

√
I − ı
√

ω− I√
I + ı
√

ω− I

)∣∣∣2 . (27)

This formula is one of the main results of this study. For one-electron atomic systems,
when b = 1, the last formula, Equation (27), takes a familiar form:

σ =
(32π2αa2

0
27

) 4 I3 Γ2(4)

ω4
[
1− exp

(
−2π

√
I

ω−I

)]
Γ(3)

exp
[
−4

√
I

ω− I
arccot

(√ I
ω− I

)]

=
256π2αa2

0
3

I3

ω4
[
1− exp

(
−2π

√
I

ω−I

)] exp
[
−4

√
I

ω− I
arccot

(√ I
ω− I

)]
, (28)

which exactly coincides with another our formula, Equation (39), derived below (Stobbe’s
formula). Indeed, for one-electron atomic systems we have b = 1 and I = Q2

2 , and

therefore, I3

ω4 =
(

I
ω

)4
2

Q2 . This is the first known derivation of the formula, Equation (39),
(or Stobbe’s formula) for one-electron atom and ions from our much more general and
universal expression, Equation (28), which is also applicable for arbitrary few- and many-
electron atoms and positively charged ions. Earlier studies on related problems (see Ref. [4]
and earlier references therein) did not result in general closed analytical expression for the
photoionization cross sections in few- and many-electron atoms/ions; Equation (28) reports
progress in this direction.

The both formulas, Equations (24) and (27), can be re-written in slightly different
forms, if we introduce the universal photoionization function F+(b, x) = F+(b, I

ω ), which
is defined for few- and many-electron atoms and positively charged atomic ions by the
equation:

F+(b, x) =
4bΓ(b + 3)
b4Γ(2b + 1)

xb+3[1 + (b2 − 1)x]
1− exp(−2πby)

×∣∣∣ b− 1
b + 2

(
1− ı

b
y

)
2F1

(
2− ı

b
y

, 2− b; 4;
y− ı
y + ı

)
− 2F1

(
2− ı

b
y

, 1− b; 4;
y− ı
y + ı

)∣∣∣2 , (29)



Atoms 2022, 10, 126 10 of 17

where x = I
ω , y =

√
x

1−x and b = Q−Ne+1√
2I

. By using this universal photoionization function

F+(b, x) we can write the following, compact expressions for the differential and total cross
sections

dσ

do
=
(4παa2

0
9

)
F+
(

b,
I
ω

)
(nl × n)2 and σ(ω) =

(32π2αa2
0

27

)
F+
(

b,
I
ω

)
. (30)

4. One-Electron Atoms and Ions

Photoionization of one-electron atomic systems is significantly simpler than pho-
todetachment of the outer-most electrons in a few- and many-electron atomic systems
considered above. Indeed, in this case we have the atomic ionization potential I which
depends upon the nuclear charge Q only, i.e., I = I(Q). Furthermore, for the ground
(bound) state in one-electron atoms and ions we always have 2I = Q2, and therefore,
in the both formulas, Equations (18) and (19) the parameter b = 1 and the first term in
Equation (17) equals zero identically. Furthermore, for b = 1 the hypergeometric functions
2F1(2− ıν, 0; 4; z), which is included in the second term, equals unity. This means that
for one-electron atoms/ions (or for b = 1) we can express the both differential and total
cross sections of photoionization in terms of elementary functions only. The normalization
constant of the incident wave function equals C(b; B) = C(1; Q) = Q

√
Q√

π
and the two

parameters ν and ν
b are now identical. This means that for any one-electron atom and/or

ion the long-range asymptotics of its actual wave function always coincides with the wave
function itself, and for ground states it is also coincides with the formula, Equation (8). In
other words, by applying our method to the ground states in one-electron atomic systems
we obtain the exact solution which correctly describes the non-relativistic photoionization
(or photoeffect).

First, we note that for one-electron atoms and ions the explicit formula for the auxiliary
radial integral Ird in Equation (12) (or I(2)rd in Equation (17)) takes the form

Ird = −pQ2 Q
√

Q√
π

√
2π(1 + ν2)

ν(1− exp(−2πν))

∫ +∞

0
r(4−1) exp(−Qr− ıpr)1F1(2 + ıν; 4; 2ıpr)dr

= −pQ3
√

Q

√
2(1 + ν2)

ν(1− exp(−2πν))

Γ(4)
(Q + ıp)4 2F1

(
2 + ıν; 4; 4;

2ıp
Q + ıp

)
, (31)

where ν = Q
p and Γ(4) = 3 · 2 · 1 = 6. The hypergeometric function in the last equation can

be transformed to the form

2F1

(
2 + ıν; 4; 4;

2ıp
Q + ıp

)
=
(

1− 2ıp
Q + ıp

)4−4−2−ıν
2F1

(
2− ıν; 0; 4;

2ıp
Q + ıp

)
=
(Q + ıp

Q− ıp

)2+ıν
, (32)

where we applied the formula 2F1(α, β; γ; z) = (1− z)γ−α−β
2F1(γ − α, γ − β; γ; z) (see,

Equation (9.131) in [5]). Another way to obtain the same formula, Equation (32), is to apply
the following expression for the integral in Equation (31) with the confluent hypergeometric
function(s) (see, e.g., [5,7])∫ +∞

0
exp(−λz)zγ−1

1F1(α; γ; bz)dz =
Γ(γ)
λγ

( λ

λ− b

)α
. (33)
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Finally, we obtain

Ird = −6Q3
√

Q

√
2(1 + ν2)

ν(1− exp(−2πν))

1
(Q2 + p2)2

(ν + ı
ν− ı

)ıν

= −6Q3√Q
p4

√
2

ν(1− exp(−2πν)) (1 + ν2)3
exp(−2ν arccot ν)

(1 + ν2)2 . (34)

By using the notation ν = Q
p and multiplying the radial integral Ird by the factor

4π
3 (n · e) we derive the following formula

4π

3
(n · e)Ird = − 8π

√
p

√
2ν6

[1− exp(−2πν)](1 + ν2)3 exp(−2ν arccot ν)(n · e) . (35)

Now, the explicit formula for the pαa2
0

2πω | Ird |2 factor in Equation (2) takes the form

pαa2
0

2πω
| Ird |2=

64παa2
0

ω

( ν2

1 + ν2

)3 exp(−4ν arccot ν)

1− exp(−2πν)
. (36)

The final formula for the differential cross sections of photoionization of one-electron
atom/ion by a completely polarized light is written in the form

dσ =
64παa2

0
ω

( ν2

1 + ν2

)3 exp(−4ν arccot ν)

1− exp(−2πν)
(n · e)2do

=
128παa2

0
Q2

( I
ω

)4 exp(−4ν arccot ν)

1− exp(−2πν)
(n · e)2do , (37)

where we also used the following relation 1 = Q2

Q2 = 2
(

Q2

2

)
1

Q2 = 2I
Q2 . For the natural (or

unpolarized) light the differential cross section of photoionization is written in the form

dσ =
64παa2

0
Q2

( I
ω

)4 exp(−4ν arccot ν)

1− exp(−2πν)
(n× nl)

2do . (38)

The total cross section of photoionization for one-electron atom/ion with the nuclear
charge Q is

σ = 512π2α
( a2

0
Q2

) ( I
ω

)4 exp(−4ν arccot ν)

1− exp(−2πν)

= 512π2α
( a2

0
Q2

) ( I
ω

)4 exp
(
−4
√

I
ω−I arccot

√
I

ω−I

)
1− exp

(
−2π

√
I

ω−I

) . (39)

This formula can also be re-written in the form

σ =
256π2αa2

0
I

[ x4 exp(−4 y arccot y)
1− exp(−2π y)

]
=

256π2αa2
0

I
FQ(x) , (40)

where x = I
ω , y =

√
x

1−x and FQ(x) is the universal photoionization function defined for
one-electron atom(s) and positively charged ions in which the nuclear charge of the central
nucleus equals Q.

Our formulas, Equations (38)–(40), exactly coincide with the formula obtained by
Stobbe in [3] and with the analogous formulas derived in $ 56 from [2]. Note also that the last
formulas, Equations (37)–(40), have directly been derived from our formula, Equation (27),
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obtained in the previous Section for b = 1, but here we wanted to derive and check them
by using an independent approach. As mentioned above for one-electron atoms and ions
its ionization potential I is the explicit (and simple) function of the nuclear charge Q only.
Generalization of our formulas to photodetachment of the outer-most electron from the
excited atomic states is also simple and transparent, but it cannot be done directly with the
use of DFT theory, since Equation (8) does not work for the excited states. Derivation of the
explicit formulas for photoionization cross sections of the excited one-electron atoms and
ions also requires additional explanations, extra notations and extensive analytical work.

5. Negatively Charged Ions

Investigation of the non-relativistic photoeffect in the negatively charged ions is re-
duced to the analysis of photodetachment of the outer-most electron in similar atomic
systems. Note that photodetachment of the negatively charged atomic ions is of great
interest in numerous applications. In general, there is a fundamental difference in pho-
todetachment of the negatively charged ions and photoionization of the positively charged
atomic ions and neutral atoms. In particular, for all negatively charged ions the electrical
charge of the final atom Z = Q− Ne + 1 equals zero identically. Therefore, in this case
we cannot introduce the parameter ν = Z

p , which was very helpful in the two previous
Sections. This means that all our formulas, derived for the photodetachment cross sections
(see below), contain only the momentum of photo-electron p and ionization potential I, or
parameter B =

√
2I. These two variables p and I (or B) are crucial for theoretical analysis

of the non-relativistic photoeffect in the negatively charged ions, or their photodetachment.
Such a photodetachment of the negatively charged, two-electron H− ion is of great interest
for our understanding of all details in actual visible and infrared spectra of many stars,
including our Sun. Photodetachment of the four-electron negatively charged Li− ion plays
some role in developing of very compact and reliable photo-elements and recharged batter-
ies. Therefore, it is important to produce some universal formula for the photodetachment
cross sections of the negatively charged ions.

For the negatively charged atomic ions the derivative of the radial wave function of
the initial state, Equation (8), is written in the form

d
dr

[C
r

exp(−Br)
]
= −Cr−2 exp(−Br)− CBr−1 exp(−Br) , (41)

where C is the normalization constant which equals 4
√

I
2π2 as follows from Equation (9) for

b = 0. Therefore, the formula for our auxiliary radial integral Ird, Equation (13), will also

include two different terms, i.e., Ird = 3
(

J(1)rd + J(2)rd

)
, where

J(1)rd = C
√

π

2p

∫ +∞

0
drJ 3

2
(pr)r

1
2−1 exp(−Br) = C

√
π

2p

( p
2

) 3
2 Γ(2)

Γ
(

5
2

)
(B2 + p2)

× (42)

2F1

(
1, 1;

5
2

;
p2

B2 + p2

)
=

Cp
3(B2 + p2)

2F1

(3
2

,
3
2

;
5
2

;
p2

B2 + p2

)
.

The hypergeometric function in the last equation can be reduced to some combination
of elementary functions. To show this explicitly let us apply the following formula

d
dz

[
2F1(α, β; γ; z)

]
=

αβ

γ
2F1(α + 1, β + 1; γ + 1; z) , (43)

where in our case α = 1
2 , β = 1

2 and γ = 3
2 . For these values of α, β and γ the last formula

takes the form

d
dz

[
2F1

(1
2

,
1
2

;
3
2

; z
)]

=
1
6 2F1

(3
2

,
3
2

;
5
2

; z
)

, (44)
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where the argument z varies between zero and unity, i.e., 0 ≤ z < 1. In our case this is true,

since z = p2

B2+p2 . Now, we can write

2F1

(3
2

,
3
2

;
5
2

; z
)
= 6

d
dz

[
2F1

(1
2

;
1
2

;
3
2

; z
)]

= 6
d
dz

(arcsin
√

z√
z

)
= 3
√

z−
√

1− z arcsin
√

z
z
√

z(1− z)
, (45)

where we used the formula Equation (15.1.6) from [6] for the 2F1(
1
2 ; 1

2 ; 3
2 ; z) hypergeometric

function, i.e., 2F1(
1
2 ; 1

2 ; 3
2 ; z) = arcsin

√
z√

z . The analytical formula, Equation (45), derived for

this 2F1

(
3
2 , 3

2 ; 5
2 ; z
)

function is our original result which cannot be found directly neither

in [5], nor in [6]. In our case z = p2

B2+p2 ,
√

1− z = B√
B2+p2

and
√

z = p√
B2+p2

and the final

formula for the J(1)rd integral takes the form

J(1)rd =
C√

B2 + p2

√
z−
√

1− z arcsin
√

z
z
√

1− z
. (46)

The expression in the right-hand side of this equation is not singular when z→ 0 (or
p→ 0), since

lim
z→0

√
z−
√

1− z arcsin
√

z
z
√

1− z
=

1
6

lim
z→0

√
z = 0 .

Analogous formula for the second radial integral J(2)rd is

J(2)rd = C B
√

π

2p

∫ +∞

0
drJ 3

2
(pr)r

3
2−1 exp(−Br) =

C√
2p

( p
2

) 3
2 B Γ(3)

Γ
(

5
2

)
(B2 + p2)

3
2

×

2F1

(3
2

;
1
2

;
5
2

;
p2

B2 + p2

)
=

2 C B p

3(B2 + p2)
3
2

2F1

(3
2

;
1
2

;
5
2

;
p2

B2 + p2

)
. (47)

It is possible to obtain the explicit expression for the 2F1

(
3
2 ; 1

2 ; 5
2 ; z
)

hypergeometric
function in terms of some elementary functions. For this purpose we need to use the known

analytical formula for the 2F1

(
1
2 , 1

2 ; 3
2 ; z
)

function (which equals arcsin
√

z√
z , see, Equation (45))

and apply the formula Equation (15.2.7) from [6] for n = 1 which takes the form

d
dz

[
(1− z)a

2F1(a, b; c; z)
]
= − a(c− b)

c
(1− z)a−1

2F1(a + 1, b; c + 1; z) , (48)

where a = 1
2 , b = 1

2 and c = 3
2 . Now, for the 2F1

(
1
2 , 1

2 ; 3
2 ; z) function one finds

d
dz

[
(1− z)

1
2 2F1

(1
2

,
1
2

;
3
2

; z
)]

= −1
3
(1− z)−

1
2 2F1

(3
2

,
1
2

;
5
2

; z
)

. (49)

From this equation we derive

2F1

(3
2

,
1
2

;
5
2

; z
)
= −3

√
1− z

d
dz

[√
1− z

(arcsin
√

z√
z

)]
=

3
2

(arcsin
√

z√
z

−
√

1− z
z

+
1− z
z
√

z
arcsin

√
z
)
=

3
2
√

z

(arcsin
√

z
z

−
√

z(1− z)
z

)
, (50)

where z = p2

B2+p2 < 1 and z ≥ 0. This analytical formula for the 2F1

(
3
2 , 1

2 ; 5
2 ; z
)

function
is another original result which cannot be found neither in [5], nor in [6]. Note also that
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analytical formula for the integral in Equation (47) can also be derived as a partial derivative
of the J(1)rd in respect to the parameter B. Thus, the both auxiliary radial integrals J(1)rd and

J(2)rd are expressed in terms of the elementary functions. In particular, the final formula for

the J(2)rd integral is

J(2)rd =
C√

B2 + p2

√
1− z

[arcsin
√

z
z

−
√

1− z
z

]
, (51)

where z = p2

B2+p2 ,
√

z = p√
B2+p2

and
√

1− z = B√
B2+p2

. Again, by using the formula,

Equation (1.641) from [5] for the arcsin x one can easily show that

lim
z→0

(arcsin
√

z
z

−
√

1− z
z

)
= 0 ,

which means that our formula for the J(2)rd integral is not singular at z → 0 (or at p → 0).
Note that the formula Equation (2) for the differential cross section of photodetachment
always contains an additional factor p in its numerator. Therefore, such a cross-section
for an arbitrary negatively charged ion always approaches zero when p → 0. The same
statement is true for the total cross sections of photodetachment of the negatively charged
ions. In contrast with this, analogous cross sections (differential and total) of atomic systems
considered in the two previous Sections approach (when p→ 0) some final limits which
are not equal zero. All these features of photoionization cross sections of the neutral atoms
and positively charged ions are well known from numerous experiments and theoretical
calculations (see, e.g., [4,10] and references therein).

Analytical computations of the total auxiliary Ird = 3
(

J(1)rd + J(2)rd

)
integral and the

both differential and total cross sections are simple and straightforward. The final formula,
Equation (15), for the differential cross section of photodetachment of the negatively
charged atomic ions takes the form

dσ =
(8παa2

0 p
9ω

)
(n · e)2 | Ird |2 do =

8αa2
0

ω

[ pB
ω(B2 + p2)

]
| J(1)rd + J(2)rd |

2 (n · e)2do (52)

for completely polarized light. Analogous formula for unpolarized light is

dσ =
4αa2

0
ω

√
1− z

z

[
(
√

1− z− 1)
arcsin(

√
z)√

z
+

1√
1− z

− 1 + z
]2
(nl × n)2do, (53)

where z = p2

B2+p2 ,
√

z = p√
B2+p2

,
√

1− z = B√
B2+p2

and B2 = 2I. The formula for the total

cross section is written in the form

σ =
32παa2

0
3ω

√
1− z

z

[
(
√

1− z− 1)
arcsin(

√
z)√

z
+

1√
1− z

− 1 + z
]2

=
32παa2

0
3I

√
x

1− x

[
(
√

x(1− x)− 1)
arcsin

√
1− x√

1− x
+ 1− x

√
x
]2

=
32παa2

0
3I

F−(x) (54)

where z = 1− I
ω , x = 1− z = I

ω and 0 ≤ x < 1. The function F−(x) = F−
(

I
ω

)
defined in

this equation is the universal photodetachment function which is applied to an arbitrary
negatively charged ion. Derivation of the formulas for the differential and total cross
sections of photodetachment of the negatively charged atomic ions is one of the main
results of this study. The F−(x) function defined in Equation (54) is the same for all
negatively charged ions which means that the cross sections of photodetachment for all
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negatively charged ions are similar (in this sense) to each other. Briefly, this means that
there is no principal difference between photodetachment cross sections of the H−, Li−

and O− ions. It can be shown that the F−(x) function has one maximum in the area of
our interest, i.e., for 0 ≤ x < 1. The both amplitude and location of this maximum on
the ω axis depend upon the ionization potential I only. The differential cross section of
photodetachment of an arbitrary negatively charged ion is also represented in a simple

analytical form with the universal F−(x) = F−
(

I
ω

)
function.

The formulas presented in this Section allow one to describe (completely and accu-
rately) photoeffect in the negatively charged atomic ions. Derivation of our formulas for
the differential and total cross sections of photodetachment of the negatively charged
atomic ions is one of the main results of this study. All these formulas contain only ele-
mentary functions, and this was a real scientific surprise. Note also that our formula,
Equation (54), for the σ = σ(ω, I) dependence allows one to check and mainly con-
firm some earlier predictions made by Chandrasekhar in their papers about photode-
tachment cross-section of the negatively charged H− ion [11,12] (see also discussion in
Section 74 of [4,13,14] and references therein). The formulas derived above can also be used
to describe photodetachment of the weakly-bound deuterium nucleus [15].

6. Discussion and Conclusions

In this study, by using the methods of quantum electrodynamics, we have developed
the closed analytical procedure to describe the photoelectric effect in few-electron atoms
and positively charged ions, as well as in the negatively charged atomic ions. The electron
density distributions in the incident atoms/ions have been taken from DFT [8]. Based
on this procedure we have studied the non-relativistic photoeffect in different atomic
systems including the neutral atoms and positively charged atomic ions which contain
Ne bound electrons (Ne ≥ 2) in an atom/ion with the nuclear charge Q. Photoionization
of one-electron atoms/ions and photodetachment of the negatively charged atomic ions,
where Ne = Q + 1 (or Q = Ne − 1), are also investigated. In each of these cases we have
derived the closed analytical formulas for the both differential and total cross sections of
photoionization and/or photodetachment (see, Equations (23), (25), (53) and (54) above)
of the corresponding atoms and ions. Note that each of these formulas contains only a
few basic parameters of the original problem, e.g., the cyclic frequency of incident light ω,
atomic ionization potential I, the total number of initially bound electrons Ne and electrical
charge of atomic nucleus Q. These and some other formulas are the main results of this
study. For neutral atoms and positively charged atomic ions with Ne ≥ 2 and for negatively
charged atomic ions similar formulas have never been produced in earlier papers. Our
procedure developed here allows one to determine (both analytically and numerically)
the differential and total cross sections of thermal photoionization of arbitrary few- and
many-electron atomic systems. Our results obtained for the neutral He atom and Li+ ion
agree very well with the results of previous numerical calculations [16,17] of these systems.
Maximal deviations of our total cross sections of photoeffect for these two systems and
similar cross sections obtained in [16,17] do not exceed 8–10%.

Our formulas derived for few-electron atoms and positively charged ions have been
tested in applications to one-electron atoms and ions. Note that our analytical expressions
for the differential and total cross sections of one-electron atomic systems have been derived
in the both ways, i.e., directly and as a limit (when Ne → 1) of the formulas obtained for
photoionization of neutral atoms and positively charged ions. Remarkably, but all these
formulas coincide with each other and with the well known formulas obtained earlier
in [2,3]. Furthermore, our analytical formulas derived for the photodetachment cross
sections (differential and total) of the negatively charged ions are original and include only
elementary functions. None of these formulas has ever been produced in earlier studies.
By using our formulas we have determined the differential and total cross sections of the
negatively charged H− ion which are in good agreement with fundamental calculations
performed in [10] (see, also [16] and references therein). For the negatively charged ions
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our differential and total cross sections for the negatively charged ions deviate from the
results of numerical computations [10] does not exceed 18%.

Thus, the qualitative and quantitative agreement of our formulas with the known
computational results for differential and total cross sections confirms the consistency of our
approach. This is true for all three classes of few-electron atomic systems, i.e., for all few-
electron neutral atoms and ions, for the negatively charged ions and for one-electron atoms
and ions. Currently, similar cross sections are determined either in numerical computations,
or experimentally. However, from the columns of numbers with many digits in each it is
very hard (even impossible) to derive the corresponding analytical formulas which produce
these results.

Recently, there is an increasing interest to perform highly accurate computations of the
both photoionization and photodetachment cross sections for the light few-electron atoms
and ions. Probably, very soon similar calculations of the cross sections will be performed
by taking into account the lowest order relativistic and QED corrections. In general, the
knowledge of differential and total ionization cross sections is crucial for the description of
the quantum dynamics (line shape) in high-precision atomic experiments (see, e.g., [18,19]).
Typically, some of the sophisticated techniques employed in recent experiments, such as
two-photon spectroscopy, can lead to transitions into the continuum, which need to be
taken into account in the analysis of the experiments. Results of such experiments can be
used to improve the numerical values of some fundamental atomic constants, including the
fine-structure constant, Rydberg constant, etc. Based on these results we can also determine
some crucial components of the lowest order QED correction(s), e.g., the Lamb shifts, for
those atomic systems [18] where alternative methods do not work properly.
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