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Abstract: In the case of the one-electron Dirac equation with a point nucleus, the virial theorem
(VT) states that the ratio of the kinetic energy to potential energy is exactly −1, a ratio that can be an
independent test of the accuracy of a computed solution. This paper studies the virial theorem for
subshells of equivalent electrons and their interactions in many-electron atoms. This shows that the
linear scaling of the dilation is achieved through the balancing of the contributions to the potential of
an electron from inner and outer regions that some Slater integrals impose conditions on a single
subshell, but others impose conditions between subshells. The latter slows the rate of convergence of
the self-consistent field process in which radial functions are updated one at a time. Several cases are
considered. Results are also extended to the nonrelativistic case.
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1. Introduction

In classical mechanics, the virial theorem (VT) is well-known [1]. It relates the total
kinetic energy of a stable system of discrete particles bound by potential forces with that
of the total potential energy of the system. The validity of this theorem for atoms was
proven by Finkelstein [2] for the Schrödinger equation in 1928. Fock [3,4], who used the
variational method to derive the Hartree–Fock method for atoms, was the first to derive the
theorem for the Dirac equations using a stretching method also referred to as a “scaling” [5]
or “dilation” procedure [6].

The nonrelativistic wave equation for an N-electron atomic system,HΨ = EΨ, is often
expressed in Cartesian coordinates along with approximate solutions, ΨHF, obtained with
the variational Hartree–Fock method [7]. In this approximation, the multielectron wave
function is expressed as a determinant of one-electron wave functions or more generally as
a linear combination of antisymmetrized products of orbitals, one for each electron, of the
same form as wave functions of the one-electron case. As illustrated below, replacing 1/rij
with an expansion in terms of Legendre polynomials, namely,

1
rij

=
∞

∑
k=0

rk
<

rk+1
>

Pk(cos θ), (1)

where r< = min(ri, rj) and r> = max(ri, rj), introduces Slater integrals into the energy
expression [8,9].

The virial theorem is a special test of the wave function. When the spatial variables
of a normalized wave function are inflated or scaled by the transformation r → λr for all
electrons, then for a stationary solution, the energy is still stationary, namely,

∂(〈Ψ(λ)|H|Ψ(λ)〉)/∂λ = 0. (2)

This stationary condition holds for the exact solution of the wave equations, but it also
holds for a solution of the variational equation itself. This stationary condition that leads to
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the virial theorem (VT) ratio. Thus, it is a property of a stationary solution along with other
theorems such as Brillouin’s [10,11].

In atomic calculations, ΨHF is expressed in spherical coordinates as a vector-coupled
configuration state function (CSF) for groups of equivalent electrons with given total spin-
angular quantum numbers and parity in nonrelativistic theory or total J and parity in
relativistic theory, where equivalent electrons have the same radial functions. In spherical
coordinates, the wave function for a group of equivalent electrons is a product of radial
and spin-angular factors. In nonrelativistic theory, the radial factor is simply ΠiPa(ri)/ri,
i = 1, wa, where a identifies the group of equivalent electrons through the nl quantum
numbers, and wa is the occupation number of the subshell. In Dirac theory, the radial factor
is a 2× 2 matrix with diagonal elements that are similar products of large (Pa(ri)) and small
(Qa(ri)) components, along with a two-component vector of spin-angular components ,
where a refers to the nκ quantum numbers, with κ = −(l + 1) and +l for j = l + 1/2 and
j = l − 1/2, respectively [12]. Multiplying the wave equation by Ψ† and integrating over
all coordinates, we obtain an energy functional (expression) in terms of the unknown radial
functions. In both approximations, the energy functional for Ψ(D)HF is a list of one-electron
integrals (I(a, a)) and two-electron Slater integrals, so that

E = ∑
a

wa I(a, a) + ∑
a≤b,k

{
fab,kFk(a, b) + gab,kGk(a, b)

}
(3)

where a refers to a subshell of wa equivalent electrons, and b also refers to a subshell. The
direct Fk(a, b) and exchange Gk(a, b) integral are particular cases of the generalized Slater
integral Rk(ab, cd) defined in Section 6.1

Fk(a, b) = Rk(ab, ab) ; Gk(a, b) = Rk(ab, ba) . (4)

Coefficients fab,k and gab,k of the direct and exchange radial integrals, respectively,
result from the integration of Coulomb Operator (1) over spin-angular coordinates. This
integration is highly selective [13] and limits the value of k that defines the Slater integrals
for a given state.

In this section, we only consider the Dirac–Hartree–Fock (DHF) case. In multiconfig-
uration expansions where Ψ is a linear combination of CSFs, Slater integrals of different
symmetries also appear. Scaling affects only the radial factor of the CSF wave function and
not the spin-angular factors.

For multielectron atoms, the variational method for relativistic orbitals leads to a
system of equations, one for each orbital a with quantum numbers nκ, whose radial
functions are varied. In the numerical multiconfiguration Dirac–Hartree–Fock method
(MCDHF), these equations have the following form: V(r) −c

[
d
dr −

κ
r

]
c
[

d
dr +

κ
r

]
V(r)− 2c2

 + εaS

ua(r) +

[
X(1)(r)
X(2)(r)

]
= 0. (5)

where c is the constant used for the speed of light, ua is a two-component vector of large
(Pa(r)) and small (Qa(r)) components of the radial functions, i.e., ua(r) = (Pa(r), Qa(r))t,
V(r) is the potential, εa is the orbital energy, and S is a 2 × 2 identity matrix in the r
variable. In numerical methods, for cases with two or more electrons, potential V(r)
includes only the direct interactions, whereas the exchange contributions are included in
the two-component functions X(r) along with contributions of the type εabub(r)δκa ,κb from
off-diagonal Lagrange multipliers that ensure the orthogonality of orbitals of the same κ
symmetry. The numerical solution of these equations involves the matching of outward
and inward integration procedures. For more details, see [6,12,14,15].

In B-spline methods in which the radial functions for large and small components
of one-electron spinors are expanded in B-spline bases, all variational contributions to
the energy expression are included in a matrix, orbitals rotated for stationary energy, and
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Lagrangian multipliers eliminated through the use projection operators [16,17]. Orbital
energy εa is then an eigenvalue of an interaction matrix.

It is not obvious from the form of Equation (5) that, as c→ ∞, the solution approaches
the nonrelativistic limit with Qa(r) → 0. This is clearer if factor c is included in the
definition of the orbital, i.e., if Qa(r) was replaced by cQa(r), so that the second column
of the matrix was divided by c and the second equation was also divided by c. In the
nonrelativistic limit, the equation becomes the radial Schödinger equation but with the
difference that the Dirac equation includes a “mass energy” correction. Thus, the virial
theorem (VT) ratio is 〈V〉/〈T〉 = −1, in the relativistic case, and −2 in the nonrelativistic
case for exact solutions of the variational equations, where V is the potential energy, and T
the kinetic energy.

The virial theorem (VT) is a special test of the computed wave function involving the
scaling of the radial functions. When numerical methods are used, the tests simply regard
how well the differential equations are solved, but they are also a test of how accurately
the algorithms have determined Lagrangian multipliers, and with which assumptions
or simplifications. There are cases where Lagrangian multipliers can be set to zero, the
wave function remains unchanged, and energy is stationary. At the same time, there are
cases where Lagrangian multipliers are sufficiently large so that radial functions have extra
nodes making node counting an art. A good case for study are VT results from the B-spline
Dirac–Hartree–Fock program DBSR_HF [16] and the nonrelativistic B-spline Hartree–Fock
SPHF code [18] for the 1s2s 1S case shown in Table 1. Orthogonal transformations can
be expressed as orbital rotations. In the DBSR_HF code, the default is no rotations and
off-diagonal Lagrangian multipliers set to zero; however, as seen in Table 1, this result
has a rather poor ratio, indicating 2–3 digits of accuracy, whereas with rotation, the same
numerical methods are almost as accurate as those for the nonrelativistic B-spline method.

Table 1. Results from different codes and methods applied to He 1s2s 1S.

Code Rotation Total Energy (au) VT Ratio

Relativistic DBSR_HF [16] No −2.154947842645840 −1.017947704158358
Yes −2.169969075490195 −1.000000005394232

Nonrelativistic SPHF [18] Yes −2.169854456993817 −2.000000000881986

Table 2 reports the total energy (E) in units of Eh along with the VT sum (〈V〉+ 〈T〉)
and VT ratio for the neutral atoms, He 1s2, Be [He] 2s2, Ne [He] 2s22p6, Ar [Ne] 3s23p6,
Kr [Ar] 3d104s24p6, and Rn [Xe] 4 f 145d106s26p6 using the DBSR_HF program to high
precision. To improve accuracy, the first nonzero grid point was set to be 0.00001/Z, the
exponential grid-step parameter was reduced to he=0.125, and the convergence for the
energy was set to scf_tol=1.d-16, the change in the largest value of the radial function
to orb_tol=1.d-10, and the tolerance for the tail region to end_tol=1.d-10. The first two
tolerances were for a relative change. The entire calculation was performed in double
precision arithmetic with 15–16 digits of numerical accuracy. In other words, the requested
accuracy was machine precision for the total energy. We see immediately that the VT
sum grew in magnitude as the number of shells and total energy increased, except for
the value for Kr with the 3d10 subshell where the value was especially large. In atomic
spectroscopy, the digits after the decimal point are important, as wavelengths depend on
energy differences that are usually a fraction of the Eh unit. The DBSR_HF also reports the
VT ratio that is related to the accuracy of the total energy, which was small for Rn because
the total energy was large.

Both Kim [19], and Lindgren and Rosén [20], used the rk
</rk+1

> operator and associated
Slater integrals in their analysis of the relativistic Hartree–Fock equations, but relied on the
1/rij operator for deriving the VT theorem. In this paper, we explore scaling to see how the
VT results are achieved when Slater integrals are used. We first consider the scaling of the
radial equations of associated subshells of equivalent electrons, including the scaling of
Slater integrals, and then relate the sum of these equations to the scaling of the total energy.
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We refer to the stationary condition for the orbital equation as VTa, whereas VT refers to
that of the total energy.

Table 2. Total energies, VT sum, all in Eh, and VT ratio for point-nucleus calculations of neutral atoms
using the DBSR_HF [16] program (see text for the grid and convergence parameters).

Atom Configuration Total Energy (E) VT Sum VT Ratio

He 1s2 −2.861813342212 −0.000000000118 −1.000000000021
Be [He] 2s2 −14.575892266403 0.000000001419 −0.999999999951
Ne [He] 2s22p6 −128.691969446591 −0.000000106271 −1.000000000412
Ar [Ne] 3s23p6 −528.684450275764 0.000000632318 −0.999999999404
Kr [Ar] 3d104s24p6 −2788.884833711547 −0.000006752662 −1.000000001194
Rn [Xe] 4 f 145d106s26p6 −23611.192499805627 −0.000001513603 −1.000000000029

2. General Theory

In order to analyze the effect on the energy of a single electron in a potential from
the scaling of the radial function, it is convenient to write Equation (5) in operator form,
namely, (

T(r) + V(r) + M + εa S
)

ua(r) = 0, (6)

where

T(r) = c

[
0 −

(
d
dr −

κ
r

)
d
dr +

κ
r 0

]
, V(r) =

[
V(r) 0

0 V(r)

]
,

(7)

M = −2c2
[

0 0
0 1

]
, S =

[
1 0
0 1

]
.

where T(r) is the kinetic energy operator, V(r) the potential energy operator, M is a constant
matrix referred to as the mass operator, and S is the identity matrix.

Consider scaling perturbation r → λr of the radial function, so that Equation (6)
becomes (

T(r) + V(r) + M + εa(λ) S
)

ua(λr) = 0, (8)

where εa is now a function of λ. Before deriving an expression for the energy parameter, let
us descale the entire radial equation by replacing r by r/λ, so that the equation becomes(

T(r/λ) + V(r/λ) + M + εa(λ) S
)

ua(r) = 0. (9)

The scaled radial function went back to the original function, whereas the operators in
the radial equation changed.

In Equation (9), function ua(r) is normalized; so, by multiplying on the left by ut
a(r)

and integrating, it follows that

− εa(λ) =
∫ ∞

0
ut

a(r)
(

T(r/λ) + V(r/λ) + M
)

ua(r)dr . (10)

For a stationary solution ua(r) with respect to scaling parameter λ, the energy satisfies
variational condition (d ε(λ)

dλ

)
λ=1

= 0. (11)

In order to continue the analysis, let us consider a continuous operator O(r) and define
the expectation value of the operator to be

〈O〉a(λ) =
∫ ∞

0
ut

a(r)O(r/λ) ua(r)dr (12)
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and 〈O〉a ≡ 〈O〉a(λ = 1). Then, according to Equations (8) and (10),

〈T〉a + 〈V〉a + 〈M〉a + εa = 0, (13)

and the variational condition of Equation (11):(d〈T〉a(λ)
dλ

+
d〈V〉a(λ)

dλ

)
λ=1

= 0. (14)

Thus, we show that the scaling of the energy depends only on the scaling of T(r) and
V(r).

The scaling of T(r) is simple. Clearly κ/r → λ κ/r as r → r/λ. Operator d/dr scales
in the same manner, so that

T(r/λ) = λ T(r), ∀ r. (15)

Hence, (d〈T〉a(λ)
dλ

)
λ=1

= 〈T〉a. (16)

However, the scaling of V(r) is more complicated. In general, since the differentiation
with respect to λ and the integration with respect to r commute, we know that(d〈V〉a(λ)

dλ

)
λ=1

=
∫ ∞

0
ut

a(r)
(∂V(r/λ)

∂λ

)
λ=1

ua(r)dr . (17)

Now let r̃ = r/λ. Then,(∂V(r/λ)

∂λ

)
λ=1

=
(dV(r̃)

dr̃
× dr̃

dλ

)
λ=1

= −r
d
dr

V(r). (18)

Hence, with expectation values,

〈
(∂V(r/λ)

∂λ

)
λ=1
〉a = 〈−r

d
dr

V(r)〉a ≡ 〈V〉a + 〈W〉a, (19)

where we express the final scaling as 〈V〉a and a correction, 〈W〉a, the deviation from linear
scaling. The above −rd/dr operator was first introduced by Fock [3,4], and we refer to it as
the Fock rule. This rule is useful when scaling is not straightforward.

The discussion has so far assumed a single electron in a potential. We extend this to a
single electron in a Hartree potential for equivalent electrons in a given subshell, and lastly
an orbital in a Hartree–Fock potential for multiple subshells of equivalent electrons, all of
which are scaled. We show that, in general, the scaling condition of Equation (14) resulting
from the stationary condition of orbital energy Equation (11) with respect to the variation
of λ (at λ = 1)) has the form

〈T〉a + 〈V〉a + 〈W〉a = 〈R〉a , (20)

where 〈R〉a may be zero for exact solutions in the case of a single orbital, but may not be zero
in the case where the variation includes multiple subshells. Expressions for 〈W〉a appearing
in Equation (20) are determined as a correction arising from the nonhydrogenic potential.
We refer to this equation as the virial theorem of an orbital (VTa) to distinguish it from the
VT for the total energy for systems with multiple orbitals and show that ∑a wa〈R〉a = 0 for
a solution that satisfies the virial theorem. Here, wa is the occupation number of shell a.
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Nonrelativistic Case

In nonrelativistic theory, small component Qa(r) = 0. Consequently, 〈M〉 = 0 and can
be omitted. Though the values of Slater integrals are different, the scaling is the same. The
nonrelativistic equation for an electron in a potential is(

−1
2

d2

dr2 +
l(l + 1)

2r2 + Va(r) + εa

)
Pa(r) = 0 . (21)

Thus, the kinetic energy operator is

T(r) = −1
2

d2

dr2 +
l(l + 1)

2r2 , (22)

for which
T(r/λ) = λ2 T(r), ∀ r. (23)

As a result, the energy equation and the stationary condition for the dilation

〈T〉a + 〈V〉a + εa = 0

2〈T〉a + 〈V〉a + 〈W〉a = 〈R〉a (24)

are the equivalent of Equations (13) and (20), respectively. For the total energy, the VT is
usually written as

2〈T〉+ 〈V〉 = 0 or 〈V〉/〈T〉 = −2 . (25)

3. Point Nucleus: V(r) = −Z/r

In the special case of a single electron in a potential of an atom or ion with a point
nucleus, V(r) = −Z/r, where Z is a constant representing the nuclear charge. Hence, like
the kinetic energy in the relativistic case (see Equation (15)), 〈V〉a(λ) = λ〈V〉a. Taking
the partial derivative with respect to λ and then setting λ = 1 and R(r) = 0 for an exact
solution for a single electron, Fock [3,4] obtained the following VTa,

〈T〉a + 〈V〉a = 0 or 〈T〉a/〈V〉a = −1 . (26)

Essentially, the kinetic energy and the potential energy are equal in magnitude but
opposite in sign, with the kinetic energy being positive, and with the sum being a test of
accuracy of the computed solution. In this case, the potential function is homogeneous of
degree −1 (i.e., scales as λ) [19] and 〈W〉a = 0.

Consider some examples. The recently proposed integration method for the Dirac
equation [15] based on Simpson’s rules solves the hydrogenic equation for a point nucleus
to almost machine precision for high Z, as shown in Table 3. There are two more significant
digits for hydrogen-like fermium, Z = 100, than there are for the neutral hydrogen atom,
which suggests that the sum represents an absolute rather than relative error.

Table 3. Comparison of kinetic 〈T〉1s and potential 〈V〉1s energies for a 1s electron for Z = 1
and Z = 100 hydrogen-like atoms. For an exact solution, 〈T〉1s + 〈V〉1s = 0 but computationally
〈T〉1s + 〈V〉1s = 〈R〉1s.

Type Z = 1 Z = 100

〈T〉1s 1.0000266267326230 14,625.659855116470
〈V〉1s −1.0000266267322626 −14,625.659855116446
〈R〉1s 0.0000000000003604 0.000000000024

4. General Case: V(r) = −Z(r)/r

In the case of multiple equivalent electrons, the effective nuclear charge varies as a
function of r as in the Hartree-potential for a subshell or in the case of a finite nucleus
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where the potential near the nucleus is modified. For such a situation, where the potential
can be represented as V(r) = −Z(r)/r, the Fock rule yields(

d〈V〉a(λ)
dλ

)
λ=1

=

〈
−r

dV(r)
dr

〉
a
= 〈V(r)〉a +

〈
dZ(r)

dr

〉
a

. (27)

Thus, the scaling of this potential introduces a new type of term:

〈W〉a = 〈dZ(r)/dr〉a = 〈Z′(r)〉a. (28)

This depends on a derivative of Z(r). Therefore, it is not affected by adding or
subtracting a constant. If Z(r) = Z− s(r), then 〈W〉a = −〈s′(r)〉a, where s(r)/r represents
the deviation of V(r) from the Coulomb potential −Z/r.

Given these quantities, the virial theorem of an electron in a potential remains that of
Equation (20), but now 〈W〉a is not zero. Adding and subtracting 〈W〉a to orbital energy
Equation (13), we obtain

〈T〉a + 〈V〉a + 〈W〉a + 〈M〉a − 〈W〉a + εa = 0 . (29)

With Equation (20), the sum of the first three terms is 〈R〉a, and we obtain the second
orbital virial relationship, namely,

〈M〉a + 〈R〉a − 〈W〉a + εa = 0. (30)

Let us now consider two typical examples of potentials for a single subshell.

4.1. Finite Volume Nucleus

In the case of a finite nucleus, Matsuoka and Koga [21] took a slightly different point
of view. Their interest was primarily in the effect of a finite nucleus on the virial theorem
for the total energy of many-electron systems as a correction to energy. In relativistic
calculations for heavy elements, variational calculations need to treat the finite volume as a
correction that modifies the potential for all electrons [22,23].

Traditionally, for a finite nucleus, the potential is defined as follows:

V(r) = −Znuc(r), r < RN

−Z/r r > RN , (31)

where RN is the nuclear radius. Hence, function Z′(r) would be nonzero only in the
region r < RN . Their formula for the correction to the virial theorem was equivalent to
〈W〉a = −〈s′(r)〉 using the uniform model, integrating over (0, RN).

In the case of a Fermi nucleus [24], the potential and low-order derivatives are continu-
ous at r = RN . In particular, −s′(r)→ 0 as r → RN and differentiation and/or integration
can be over the range (0, ∞). This form is useful when both one-electron and many-body
effects are included in the potential.

4.2. The 1s2 1S0 Case

As in the hydrogenic case, the variational equation for this two-equivalent-electron
system is homogeneous, in that there is no exchange contribution in Equation (5). Unlike
the finite-nucleus effect that modifies only part of the orbital range, the potential for the 1s
orbital is modified over the entire range by a contribution from the Slater integral F0(1s, 1s)
in the energy expression, but the virial equations have exactly the same form. The related
contribution to 〈W〉1s can be computed directly by differentiating the potential for the 1s
orbital. There is only one orbital, and in this case, 〈R〉1s = 0 to numerical accuracy.

Table 4 shows the various contributions to the energy and the VT equations for these
two cases – the 1s potential of hydrogen-like fermium with a Fermi nucleus, and the
heliumlike fermium 1s2 case with a point nucleus. The very common Fermi nucleus [22,24]
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used in GRASP [25] was used in the first case since unlike uniform distribution, the potential
has continuous derivatives. The results here were obtained using the recently developed
numerical procedures [15]. For completeness, we also report the total energy

E(1s2) = −2 ε1s − F0(1s, 1s).

These two cases are important test cases for any code of relativistic, computational,
and atomic structures. There is only one orbital and the energy expression includes no
exchange contributions. For a system with one orbital, 〈R〉a = 0 for an exact solution.

Table 4. Energy contributions (in Eh) to virial theorems for hydrogen-like (1-electron, Fermi nucleus)
and heliumlike (2-electron, point nucleus) fermium (Z = 100, A = 257) ground states. Parameters
for the Fermi nuclear charge distribution, ρ(r) = ρ0/(1 + e(r−b)/a), were rrms = 5.8756 fm, a =

0.523387555 fm, b = 7.170561722 fm. All quantities are for a single 1s orbital.

Type 1s 1s2

〈T〉1s 14,431.431739850053 14,512.968453372794
〈V〉1s −14,453.622410065407 −14,472.308294232836
〈M〉1s −5900.425512587179 −5898.429859105305
〈W〉1s 22.190670173520 −40.660159132020

ε1s 5922.616182802533 5857.769699965348
E(1s2) −11,796.859719783146
〈R〉1s 0.000000000001 0.000000000001

〈M〉1s − 〈W〉1s + ε1s 0.000000000000 −0.000000000000

5. DHF Equation for Equivalent Electrons

The presented theory has so far been discussed strictly as an electron (a) in a potential,
but it can readily be extended to a subshell (e.g., α) of wa-equivalent electrons by multi-
plying the orbital properties by the occupation number. For example, for the 1s2 subshell
containing two 1s electrons, we have

〈T〉1s2 = 2〈T〉1s, 〈V〉1s2 = 2〈V〉1s, 〈W〉1s2 = 2〈W〉1s, 〈R〉1s2 = 2〈R〉1s. (32)

Multiplying Equation (20) by w1s = 2, we obtain the VTα for the 1s2 subshell, namely,

〈T〉1s2 + 〈V〉1s2 + 〈W〉1s2 = 〈R〉1s2 . (33)

In this form, the radial equations for the orbitals are derived from the variation of a
specific orbital without dividing by the occupation number for the subshell, as is often
performed for the derivation of the Hartree–Fock equations for multisubshell atoms.

6. Multielectron Systems with Two or More Subshells

In order to derive expressions for the various kinetic, potential, and other properties
of subshells, let us now individually consider the scaling of each of the contributions
from radial integrals and their coefficients that appear in the energy functional of a state,
and their contribution to the radial equations, and then derive the scaling equation for
the total energy by summing over all subshells. This approach includes both direct and
exchange contributions to the potential. For an exact (self-consistent) solution for which
∑a wa〈R〉a = 0, we now have ∑α〈R〉α = 0 by Equation (32).

In our analysis, we consider Dirac–Hartree–Fock energy expressions that include only
one-electron integrals

I(a, a) = 〈T〉a + 〈V1〉a + 〈M〉a
and Slater integrals Fk(a, b) or Gk(a, b) that are 2-electron contributions to 〈V2〉α where

〈V〉α = 〈V1〉α + 〈V2〉α.
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Given an orbital basis and an energy expression, the kinetic and potential energies for
subshells can readily be computed directly without considering orbital potentials.

The one-electron integrals I(a, a) multiplied by their coefficients contribute directly to
〈T〉α, 〈V〉α, and 〈M〉α, whereas Slater integrals contribute to two subshells, when β 6= α or
twice to subshell α when β = α.

6.1. Slater Integrals

The relativistic Slater integral, usually denoted as Rk(ab, cd), is a two-dimensional
integral with two coordinates, e.g., (r, s). Let us denote radial factors in terms of vector
products of large and small components

ρ(ac; r) = ut
a(r)uc(r), and ρ(bd; s) = ut

b(s)ud(s).

In this definition, ρ is defined by the orbitals of the first coordinate and the contribu-
tion to the potential by the orbital of the second coordinate. Slater integrals have many
symmetries arising from the symmetry of a product and the symmetry of the coordinate
system. In the canonical form, orbitals are in a designated order, such that a <= c, b <= d,
a <= b and, if a = b, then also c <= d. Consequently, a typical canonical integral is

Rk(ab, cd) =
∫ ∞

0

(
ρ(ac; r)

Yk(bd; r)
r

)
dr ≡

∫ ∞

0

(
Yk(ac; r)

r
ρ(bd; r)

)
dr (34)

by the symmetry of the coordinate system. Because of this symmetry, we consider only the
first case in our study.

Each Yk function itself is the sum of two integrals. In particular,

Yk(bd; r) = Yk
<(bd; r) + Yk

>(bd; r) (35)

where one is integrated over s < r and one over s > r as indicated below:

Yk
<(bd; r) = r−kX<(bd; r) where X<(bd; r) =

∫ r

0
skρ(bd; s)ds ,

Yk
>(bd; r) = r(k+1)X>(bd; r) where X>(bd; r) =

∫ ∞

r
s−(k+1)ρ(bd; s)ds .

Because variable r only defines the range of integration of the X integrals, the sum of
derivatives of Xk

< and Xk
> obeys a useful relation

r−kX′<(bd; r) + rk+1X′>(bd; r) = 0 . (36)

6.2. Scaling of the Vk(bd; r) Operator

For the variation of a contribution to the potential from orbitals of the second co-
ordinate, we need to consider the contribution to a potential , for example, Vk(bd; r) ≡
Yk(bd; r)/r where

Vk(bd; r) = Vk
<(bd; r) + Vk(>(bd; r)

= r−(k+1)X<(bd; r) + rkX>(bd; r)

Factors r−(k+1) and rk scale respectively as λ(k+1) and λ−k, and given Equation (36),
direct differentiation is more straightforward than the Fock rule (18) and yields

(∂Vk(bd; r/λ)

∂λ

)
λ=1

= Vk(bd; r) + Wk(bd; r) by definition

= (k + 1)r−(k+1)X<(bd; r)− krkX>(bd; r)

= (k + 1)Vk
<(bd; r)− kVk

>(bd; r) (37)
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Then, it follows that

Wk(bd; r) = kVk
<(bd; r)− (k + 1)Vk

>(bd; r) (38)

6.3. Symmetry of Slater Integrals in DHF Energy Expressions

The above derivation was a general derivation for any combination of orbitals. In
DHF calculations, only Rk(ab, ab) or Rk(ab, ba) symmetries occur. Then, if d = b and c = a,
the contribution to scaling 〈W〉α would be

〈Wk(bb; r)〉aa =
∫ ∞

0
ρ(aa; r)Wk(bb; r)dr. (39)

Here, we introduce subscript aa to denote the ρ(r) function required for the calculation
of the expectation value. Scaling in the other coordinate yields a contribution to 〈W〉β

〈Wk(aa; r)〉bb =
∫ ∞

0
ρ(bb; r)Wk(aa; r)dr. (40)

In the case of a Gk(ab) Slater integral, there is only one possibility: Yk(ab; r) and
ρ(ab; r), and integral

〈Wk(ab; r)〉ab =
∫ ∞

0
ρ(ab; r)Wk(ab; r)dr, (41)

would contribute to both 〈W〉α and 〈W〉β, multiplied by the coefficient of the Slater integral.
In this notation, a Slater integral can be expressed as an expectation value of a potential

function, namely,

Rk(ab, cd) = 〈Vk
<(bd; r) + Vk

>(bd; r)〉ac or 〈Vk
<(ac; r) + Vk

>(ac; r)〉bd. (42)

6.4. Total Energy Virial Equation

Computationally, the list of one-electron integrals and Slater integrals along with their
coefficients defines the total energy of a state and also determines the subshell quantities
〈T〉α, 〈V〉α, 〈M〉α, and 〈W〉α. Then,

〈T〉 = ∑
α

〈T〉α, 〈M〉 = ∑
α

〈M〉α, 〈W〉 = ∑
α

〈W〉α, 〈R〉 = ∑
α

〈R〉α (43)

are total values that contribute directly to the total energy and its dilation equation. How-
ever, the sum of potential energies of subshells is different. Because the Slater integrals
with orbitals a, b from subshells α, β contribute to both 〈V〉α and 〈V〉β (or twice to 〈V〉α
when b = a), we have

∑
α

〈V〉α = 〈V〉+ 〈V2〉 (44)

where 〈V〉 is the potential energy for the total energy and in both coordinates, and 〈V2〉
represents the contribution from the 2-body Slater integrals. Then, we have two equations:

〈T〉+ 〈V〉+ 〈M〉 = E , (45)

〈T〉+ 〈V〉+ 〈U〉 = 〈R〉 where 〈U〉 = 〈V2〉+ 〈W〉. (46)

Consequently, 〈T〉+ 〈V〉 = 〈R〉 − 〈U〉. Substituting into Energy Equation (45), we
obtain mass dilation condition

〈M〉+ 〈R〉 − 〈U〉 = E. (47)

Thus, an exact solution requires that 〈R〉 = 〈U〉 = 0, in which case there are two virial
conditions, namely, 〈T〉+ 〈V〉 = 0 and 〈M〉 = E.
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6.5. Slater Integral Scaling Condition

Condition 〈U〉 = 0 is satisfied if for each Slater integral the dilation contributions
from both coordinates, and the Slater integral is zero. There are three cases that need to be
considered:

1. Fk(a, a): In Equation (38) the scaling is the same in both cooordinates and expressing
F0(a, a) in terms of potentials; then, it follows that

2〈Wk(aa; r)〉aa + Fk(a, a) = (2k + 1)〈Vk
<(aa; r)−Vk

>(aa; r)〉aa = 0 (48)

by Equation (38).

2. Gk(a, b): In this case, the contribution is also the same for each coordinate, and the
sum (involving both subshells) is

2〈Wk(ab; r)〉ab + Gk(a, b) = (2k + 1)〈Vk
<(ab; r)−Vk

>(ab; r)〉ab = 0. (49)

3. F0(a, b): In this case, the scaling depends on the coordinate, and the effect of scaling
for orbital a differs from that for orbital b. However, the combined contribution to the
dilation equation for the total energy should still be zero, namely,

〈W0(bb; r)〉aa + 〈W0(aa; r)〉bb + F0(a, b) =

(k + 1/2)
(
〈Vk

<(bb; r)−Vk
>(bb; r)〉aa + 〈Vk

<(aa; r)−Vk
>(aa; r)〉bb

)
= 0 (50)

In this case, the scaling within a given coordinate does not need to be zero, although
the sum for the two coordinates should be zero.

In summary, the scaling or dilation conditions for (Dirac)–Hartree–Fock calculations
for the three types of Slater integrals are:

Fk(a, a) : 〈Vk
<(aa; r)〉aa = 〈Vk

>(aa; r)〉aa
Gk(a, b) : 〈Vk

<(ab; r)〉ab = 〈Vk
>(ab; r)〉ab

Fk(a, b) : 〈Vk
<(bb; r)−Vk

>(bb; r)〉aa = −〈Vk
<(aa; r)−Vk

>(aa; r)〉bb

(51)

Thus, the stationary conditions for dilation require a balance of the contributions to
the potential from the inner (s < r) and outer (s > r) regions. Particularly intricate is the
condition for the Fk(a, b), b 6= a condition, involving two different charge densities.

7. Results and Analysis

Traditionally, the virial theorem for the total energy is computed (in sum form) simply
as 〈T〉+ 〈V〉, which would be 〈R〉 − 〈U〉 in the formalism of Equation (46). In order to gain
insight into how the Slater integral method achieved linear scaling, we predicted the scaling
contribution to the stationary condition of each integral and computed 〈T〉+ 〈V〉+ 〈U〉,
which showed the extensive balancing of contributions of an orbital potential from the
charge distribution. However, the most extensive analysis of the orbital equations for an
atomic system is the study of the scaling of orbital equations leading to the calculation of
the total energy.

Table 5 shows results for the ground states of ions of Fm (Z = 100) as more closed
shells are added with values for He-like, Be-like, and Ne-like studies using radial functions
from DBSR_HF [16] for standard (not high-precision) calculations, and Ar-like with radial
functions from GRASP [25]. In each case, radial functions were transformed to the numerical
grid of the revised procedures [15], and the various components were computed and
analyzed. Displayed is information about the scaling of each individual orbital subshells,
the most important being 〈R〉α. For He-like, the value is small but somewhat larger than
the value reported in Table 4 because the present values are not high-precision results.
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Table 5. Trends in dilation data (all in Eh) for the ground state of ions of Fm (Z = 100) with increasing
number of closed shells obtained using DBSR_HF (Ref. ([16])) or GRASP (Ref.([25])). We report
residuals for subshell equations, 〈R〉α = 〈T + V + W〉α, the dilation correction for the total energy
〈U〉, and 〈R〉, the residual of the dilation equation for the total energy. See text for details.

〈T〉α 〈V〉α 〈W〉α 〈R〉α 〈U〉 〈R〉
He-like fermium, Ref. ([16]) 0.0000015974 −0.0001437723

1s 29,025.9667069950 −28,944.6465327985 −81.3203179688 −0.00014377231

Be-like fermium, Ref. ([16]) −0.0000004704 −0.0001861707
1s 29,002.8729873817 −28,825.0962333553 −169.6017382566 8.17501576976
2s 7639.5438558036 −7611.0901830102 −36.6288747339 −8.17520194041

Ne-like fermium, Ref. ([16]) −0.0066586823 −0.0046480020
1s 28,887.5200623142 −28,428.3210384095 −468.7333821954 −9.53435829067
2s 7355.6539876266 −7224.0189346195 −130.1606742682 1.47437873888

2p− 7279.6944610751 −7093.9299579689 −187.5822025200 −1.81769941386
2p 9758.9822408182 −9511.5495258556 −237.5596839990 9.87303096364

Ar-like fermium, Ref.([25]) −0.0082541861 −0.0058322935
1s 28,853.8688681747 −28,228.5467404879 −636.52909212681 −11.2069644401
2s 7288.4050654392 −7033.9196432434 −249.87424551899 4.6111766768

2p− 7215.9989758875 −6898.1971349928 −315.58078033595 2.2210605587
2p 9641.7441568130 −9154.8935703478 −473.15022927091 13.7003571942
3s 2646.6802467869 −2572.8874558901 −77.91413433931 −4.1213434425

3p− 2604.0632334467 −2513.5288661661 −95.15214537503 −4.6177780945
3p 3932.1056407442 −3792.1568515901 −140.54112990026 −0.5923407462

Let us confirm some results for the first case of 1s2. The formula for the energy is

E = 2
(
〈T〉1s + 〈V1〉1s + 〈M〉1s

)
+ F0(1s, 1s).

Then, the orbital subshell equations for the energy and dilation are, respectively,

2〈T〉1s + 2〈V1〉1s + 2F0(1s, 1s) + 2〈M〉1s + 2ε(1s) = 0,

2〈T〉1s + 2〈V1〉1s + 2F0(1s, 1s) + 2〈W〉1s = 2〈R〉1s. (52)

and
〈U〉 = F0(1s, 1s) + 〈W〉1s2 = F0(1s, 1s) + 2〈W〉1s

with
〈W〉1s2 = 2〈W0(1s, 1s; r)〉1s1s = −2〈V0

>(1s1s; r)〉1s1s

by Equation (38). As a result, for an exact solution of 1s2, where 〈U〉 = 0 and 〈R〉 = 0, we
have conditions

〈T〉+ 〈V〉 = 0

〈V0
<(1s1s; r)−V0

>(1s1s; r)〉1s1s = 0 (53)

from which it follows that

〈V0
<(1s1s; r)〉1s1s = 〈V0

>(1s1s; r)〉1s1s = (1/2)F0(1s, 1s). (54)

Here, ρ(1s, 1s; r) is both a weighting factor for the expectation value and the charge density
function that determines a contribution to the potential as a function of r.

Another interesting case is Be-like 1s22s2 1S. The F0(1s, 2s) Slater integral connects two
different orbital equations and the dilation conditions (Equation (51) are distributed to both
equal size and opposite sign. When summed for the total energy, these contributions are
cancelled out. In larger systems with multiple subshells, similar cancellations are involved.
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Frequently, when spectral calculations are performed for multiple levels, a fixed core
approximation is used where the orbitals for the core are not varied. Table 6 shows high-
precision virial results for the case where the 1s orbital is fixed at the value for the Be+2

1s2, and only the 2s orbital is varied. In this fixed core approximation, the 〈R〉α values no
longer cancel. The fixed core approximation is often desirable in the case of heavy elements.
Codes such as DBSR-HF should report the virial theorem results only for the orbitals that are
varied, which means that the interaction of varied subshells with the fixed core subshells
needs to be omitted in analysis.

Table 6. Comparison of virial theorem analysis for a fully variational calculation for Be 1s22s2 and a
fixed core calculation where the 1s orbital is from the ion Be+2 1s2.

(i) Fully Variational E = −14.5758922675

α 〈T〉α 〈V〉α 〈W〉α 〈R〉α
1s2 27.1522686546 −23.0458277992 −4.0523847421 0.0540561132
2s2 2.0052562788 −1.6214451720 −0.4378672909 −0.0540561841

〈T〉 〈V〉 〈U〉 〈R〉

1s22s2 29.1575249333 −29.1575250573 −0.0000000531 −0.0000000709

(ii) Fixed 1s from Be+2 1s2 core. E = −14.5758644561

α 〈T〉α 〈V〉α 〈W〉α 〈R〉α
1s2 27.2334088761 −23.0833644426 −4.0568852083 0.0931592252
2s2 1.9893037589 −1.6134422475 −0.4364030288 −0.0605415172

〈T〉 〈V〉 〈U〉 〈R〉

1s22s2 29.2227126349 −29.1900949804 0.0000000535 0.0326177080

Some spline methods for nonrelativistic variational equations, updating a few or all
orbitals simultaneously, were investigated by Froese Fischer et al. [26]. This is a quadrati-
cally convergent Newton–Raphson method that has achieved better performance. In their
study, the calculation for Be 1s22s2 converged in 4 iterations with a virial theorem deviating
from −2 by 10−13, considerably fewer than the typical 12 SCF iterations. Newton–Raphson
methods have not yet been applied to atomic relativistic equations1 but are expected to
perform similarly.

8. Concluding Remarks

Our study of the virial theorem shows how extensively the variational method relies
on cancellation in computation. For the orbital equation, the positive kinetic energy and the
negative potential energy representing the interaction between an electron and the nucleus
are the largest contributors to the total energy, yet they nearly cancel, particularly as the
nuclear charge increases. All calculations for this study were performed in the double
precision of about 15 significant digits. What is important is the accuracy of the sum of
one-electron integrals, 〈T〉 + 〈V1〉. These two quantities should possibly be computed
in quadruple precision. THe deviation of the dilation from linear scaling for the pairs
of orbitals also needed to be balanced between contributions from an inner and outer
region. Thus, the simultaneous updates of orbitals are better able to balance virial theorem
conditions that accurate solutions of the variational problem need to accomplish. The
performance of these methods as implemented in an SPHF [18] program was better for the
Newton–Raphson method when orbital rotation is included as part of the simultaneous
update process [28]. However, most tests focused on light atoms; what are needed are
stable and accurate multiconfiguration methods for systems with several open shells, such
as some cases found in the lanthanides and actinides. The virial theorem could be a useful
tool for confirming a stationary solution for a case with off-diagonal Lagrangian multipliers
in both nonrelativistic and relativistic frameworks.
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Lastly, Slater integrals in Cartesian coordinates contain a singularity in the integrand
when rij = 0, whereas no such singularity occurs in spherical coordinates. Integrating over
spin-angular coordinates to determine an energy functional by using Equation (1) limits
the value of k that defines the Slater integrals for a state [13].
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Note
1 2nd-order optimization, using both gradient and Hessian information, is implemented in the Quantum Chemistry relativistic

package DIRAC [27] and activated in case the regular SCF does not converge, but is so far available for closed-shell calculations.
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Comput. Phys. Commun. 2019, 235, 433. [CrossRef]
24. Parpia F.A.; Mohanty, A.K. Relativistic basis-set calculations for atoms with Fermi nuclei. Phys. Rev. A 1992, 46, 3735–3745.

[CrossRef] [PubMed]

http://doi.org/10.1007/BF01328871
http://dx.doi.org/10.1007/BF01339281
http://dx.doi.org/10.1016/0022-2852(59)90006-2
http://dx.doi.org/10.1088/0022-3700/20/14/004
http://dx.doi.org/10.1088/0953-4075/49/18/182004
http://dx.doi.org/10.1088/0953-4075/29/15/007
http://dx.doi.org/10.1016/0010-4655(80)90041-7
http://dx.doi.org/10.3390/atoms8040085
http://dx.doi.org/10.1016/j.cpc.2015.12.023
http://dx.doi.org/10.1016/j.cpc.2011.01.012
http://dx.doi.org/10.1103/PhysRev.154.17
http://dx.doi.org/10.1007/s002140000257
http://dx.doi.org/10.1016/0010-4655(95)00136-0
http://dx.doi.org/10.1016/j.cpc.2018.08.017
http://dx.doi.org/10.1103/PhysRevA.46.3735
http://www.ncbi.nlm.nih.gov/pubmed/9908564


Atoms 2022, 10, 110 15 of 15
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