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Abstract: We study the time degradation of quantum information stored in a quantum memory
device under a dissipative environment in a parameter range which is experimentally relevant. The
quantum memory under consideration is comprised of an optomechanical system with additional
Kerr nonlinearity in the optical mode and an anharmonic mechanical oscillator with quadratic
nonlinearity. Time degradation is monitored, both in terms of loss of coherence, which is analyzed
with the help of Wigner functions, as well as in terms of loss of amplitude of the original state,
studied as a function of time. While our time trajectories explore the degree to which the stored
information degrades depending upon the variation in values of various parameters involved, we
suggest a set of parameters for which the original information can be retrieved without degradation.
We identify a very interesting situation where the role played by the nonlinearity is insignificant, and
the system behaves as if the information is stored in a linear medium. For this case, the information
retrieval is independent of the coherence revival time and can be retrieved at any instant during the
time evolution.

Keywords: quantum memory; optomechanical system; quantum master equation; Wigner function;
coherence revival time

1. Introduction

Quantum memory is a device that stores quantum information in the form of quantum
states for later retrieval [1,2]. Due to an upsurge in the field of quantum computation and
quantum communication, there is an increasing demand for devices that can store quantum
information. However, the storage of quantum information is a challenging task due to
the presence of quantum decoherences effects. These effects render the stored information
unsuitable for further use. The need of the hour is to devise quantum memories that can not
only preserve coherence, but can also store the information for longer durations. Criteria
for assessing the performance of quantum memory include fidelity [3], efficiency [4],
transfer coefficient [5], conditional variance [6], multimode capacity [7,8] and storage
time [9]. Optomechanical systems are highly recommended to store and retrieve quantum
states. They provide a promising mechanism for a high-fidelity quantum memory that
is faithful to a given temporal mode structure, and can be recovered synchronously. The
low dissipation rate of a mechanical oscillator allows the optomechanical oscillator to be
used as a good quantum memory device. Teh et al. [10] carried out quantum simulations
using a nonlinear optomechanical system to give a complete model for the storage of
a coherent state and to increase the fidelity beyond the quantum threshold. Recently,
quantum memory protocol for the creation, storage and retrieval of Schrödinger cat states
in optomechanical system was proposed by Teh et al. [11]. Quantum state formation
through system anharmonicities, as well as decoherence due to interactions with the
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environment in terms of a Wigner current, was studied by Braasch et al. [12]. Chakraborty
et al. [13] presented a scheme to enhance the steady-state quantum correlations in an
optomechanical system by incorporating an additional cross-Kerr-type coupling between
the optical and the mechanical modes. He et al. [14] proposed a dynamical approach for
quantum memories using an oscillator-cavity model to overcome the known difficulties of
achieving high quantum input–output fidelity with long storage times.

Quantum memories are an indispensable part of quantum information processing and
long-distance communication, where the long distance is divided into shorter elementary
links and the quantum state is stored independently for each link. It finds numerous
applications in quantum networks [15], quantum repeaters [16,17] and linear quantum
computing [18,19]. Quantum memory can be used to enhance the sensitivity of preci-
sion measurements where the sensitivity is limited by the time over which phase can be
accumulated, and hence storage of quantum states is required [20].

In the present work, we study an optomechanical system with nonlinearities to make
it useful for the purpose of a quantum memory. Standard quantum optical techniques make
it easy to generate quantum states of light which can be stored in optical oscillator, but
high dissipation rates for optical oscillators make the storage time very small. Mechanical
oscillators, on the other hand, have very small dissipation rates, which make them ideal
system for storage of quantum information. An optomechanical oscillator has advantage of
both; the optical part of the optomechanical oscillator generates the quantum states, which
can be stored in the mechanical part of it for a longer period of time.

Motivated by this fact, we consider that the quantum information is stored in the
long-lived mechanical mode of the optomechanical system as a quantum state. As proposed
in this work, the stored quantum state is initially chosen to be a coherent state obtained by
displacing the vacuum state by a certain amount [11]. The mechanical mode interacts with
the optical mode through radiation pressure in such a way that state transfer between both
the modes is achievable [21–23]. We study the time evolution of our quantum state under
the combined effect of nonlinearity and dissipation using the Master equation method. The
dissipation is modeled by assuming that the system interacts with a constant temperature
bath. During the evolution, highly non-classical superpositions of coherent states, i.e.,
multi-component Schrödinger cat states (Kitten states) are formed [24]. Revival of an initial
quantum state occurs when it evolves over time to a state that reproduces its original
coherent form. The characteristic time scale over which this phenomenon happens is called
the coherence revival time [25]. The periodic revival of coherence at the coherence revival
times makes retrieval of the quantum information possible at these times.

We use the Wigner function in our analysis, which provides a particularly useful geo-
metric representation of quantum states as a real valued function in the two-dimensional
system phase space [12,26–29]. The time evolution of the Wigner function gives us quantum
phase space dynamics. In phase space, the classical state (coherent state) is marked by
positive value of probability density, while the non-classical states formed by superposition
of two or more coherent states (Schrödinger cat states or Kitten states) possess the nega-
tive value of probability density. We notice that the presence of nonlinearity causes the
initial coherent state with associated positive Wigner functions to evolve into non-classical
states associated with negative Wigner functions [12,30]. As expected, the coherent state
resurrects itself, maintaining its coherence at coherence revival time with certain amount of
degradation due to the presence of the environmental effects caused by the bath.

Further, since quantum information is stored in the form of a coherent state with
certain amplitude that should be maintained at coherence revival time, we compute the
amplitude of the coherent state as a function of time and study the effect of decoherence on
the amplitude at different periods of time during the evolution. On varying the values of
bath temperature, dissipation and nonlinearity, we gain insight into the extent to which
coherences for the evolved quantum state can be sustained. In addition, we propose the
optimum parameters for an optomechanical system which can be used to retrieve quantum
information at longer times, with minimum loss.
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The paper is organized as follows: In Section 2, we present the theory and the model
used in our calculations, with the Hamiltonian and relevant quantum states and their
dynamics defended in Section 2.1, the Master equation and phase space dynamics described
in Section 2.2 and the numerical simulation techniques described in Section 2.3. In Section 3,
we discuss our results. The results are first presented in terms of Wigner function to study
the effect of decoherence on the quantum information at different periods of time during
evolution; thereafter, temporal evolution of the amplitude is presented as a function of
dissipation, nonlinearity, bath temperature and initial amplitude. Section 4 contains some
concluding remarks.

2. Quantum Memory Model

A typical quantum optomechanical system as represented by Figure 1 consists of a
Fabry–Perot cavity with one of the movable mirrors acting as a mechanical oscillator [10].
The optical mode trapped inside the Fabry–Perot cavity is coupled with the mechanical
mode via a generic coupling represented by g0 [13]. The optical mode and the mechanical
mode have the frequencies ωc and ωm, respectively. Additionally, Kerr nonlinearity of
strength kc is present in the optical mode, and km is the strength of the quadratic nonlin-
earity in the anharmonic mechanical oscillator. Practically, the optomechanical system
always interacts with its environment, resulting in decoherence through damping and
fluctuations [10]. While interacting with their corresponding reservoirs, the cavity decay
rate is represented by γc and the mechanical damping rate is given by γm. As a result
of such dissipation, the quantum information begins to lose its quality during the time
evolution.

Figure 1. Schematic diagram of optomechanical system taken as quantum memory model. An optical
mode (with frequency ωc) couples with the mechanical mode (with frequency ωm) via the radiation–
pressure coupling g0. Additionally, Kerr nonlinearity of strength kc and quadratic nonlinearity of
strength km are included in optical and mechanical modes, respectively. Here, γc is the optical decay
rate and γm is the mechanical damping rate of the respective modes.

2.1. Hamiltonian for Quantum Information Dynamics

With the above considerations, the total Hamiltonian of the optomechanical system
can be written as

Htotal = Hc + Hm + Hcoupling (1)
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where Hc, Hm and Hcoupling are the Hamiltonian corresponding to the cavity, the mechanical
oscillator and the coupling between them, respectively, and are given by the following
expressions:

Hc = h̄ωca†a + h̄kc(a†a)2

Hm = h̄ωmb†b + h̄km(b†b)2

Hcoupling = −h̄g0a†a(b + b†). (2)

Here, a(a†) and b(b†) are the annihilation(creation) operators for optical and mechanical
modes, respectively. The terms h̄ωca†a and h̄ωmb†b correspond to the energy of the optical
cavity with frequency ωc and mechanical oscillator with frequency ωm [10]. Hcoupling de-
scribes the interaction between the optical mode and the mechanical mode, while h̄kc(a†a)2

and h̄km(b†b)2 are the nonlinear terms present in the optical mode and the mechanical
oscillator, respectively.

In quantum information processing, quantum states are prepared, stored and retrieved
on demand using certain protocols. A unitary displacement operatorD generates a coherent
state |α〉 via phase space displacement of the vacuum state |0〉 [31,32] as

|α〉 = D(α)|0〉, (3)

where α is a complex parameter and the Displacement operator is given by

D(α) = exp(αa† − α∗a) (4)

and |α〉 can be expanded in terms Fock or number states as [28,33]:

|α〉 = e−
|α|2

2

∞

∑
n=0

αn
√

n!
|n〉. (5)

This initially prepared quantum coherent state is then allowed to evolve under system–
environment dynamics to study the effect of dissipation and nonlinearity on the stored
information. For nonlinear oscillators, after few cycles, quantum interference takes over,
leading to a significant spread of the coherent state. The original state is no longer recog-
nizable, and is said to have “collapsed”. As time advances, it resurrects itself, leading to
its “revival”. The time at which this revival takes place and the initial coherent state also
regains its coherence is referred to as ‘coherence revival time’ Trev [34]. In the optomechani-
cal system, we have two modes each with nonlinearity such that both the modes behave
as nonlinear harmonic oscillators coupled with one another. Instead of considering these
nonlinear modes individually, we work with the combined system as a whole. Therefore,
the collapses and revivals occur for the two-mode system as a whole [34]. Consequently,
we define coherence revival time for our system as a whole

Trev =
2π

kc + km
. (6)

The entire numerical simulations under system–environment dynamics are performed
to bring forth the retrieval phenomenon of stored quantum information at coherence revival
time in the presence of environmental interactions.

2.2. Master Equation and Phase Space Representation of Quantum States

We develop the theoretical description to model the decoherence effects on our two-
mode open system. The environment–system interactions are assumed to be Markovian. In
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this formalism, the time derivative of the density operator ρ describing the quantum state
of the nonlinear optomechanical system is given by the Master equation

dρ

dt
= Lρ (7)

where L is the Lindblad operator acting on the density matrix ρ. It is convenient to
decompose L into

L = Lc + Lm + Lint, (8)

where the operators Lc and Lm act on the optical mode and mechanical mode, respectively,
while the operator Lint describes coupling in the optomechanical system.

On the account of Hc in Equation (2), the total Lindblad operator for the optical cavity
is given as:

Lcρ = − ι

h̄
[ωca†a + kc(a†a)2, ρ] + Lcρ, (9)

where Lc describes the collapse operator as

Lcρ = γc(nc + 1)(aρa† − 1
2
(a†aρ + ρa†a))

+γc(nc)(a†ρa− 1
2
(aρa† + ρaa†)).

(10)

Here, nc is the mean photon occupation number of the surrounding thermal reservoir
kept at temperature T associated with optical mode, and is given by

nc =
1

exp( h̄wc
KBT )− 1

. (11)

In analogy to Equation (9), for the mechanical mode b associated with the mechanical
oscillator, the total Lindblad operator is given by

Lmρ = − ι

h̄
[ωmb†b + km(b†b)2, ρ] + Lmρ, (12)

where

Lmρ = γm(nm + 1)(bρb† − 1
2
(b†bρ + ρb†b))

+γm(nm)(b†ρb− 1
2
(bρb† + ρbb†))

(13)

and the mean thermal phonon occupation number of the bath (at temperature T) corre-
sponding to mechanical mode is

nm =
1

exp( h̄wm
KBT )− 1

. (14)

Eventually, the coupling Hamiltonian Hcoupling in Equation (2) couples the number of
photons n̂ = a†a of the optical mode with the position x̂ = b + b† of the mechanical mode.
Its Lindblad operator is denoted as

Lintρ = − ι

h̄
[−g0a†a(b† + b), ρ]. (15)

As the Lindblad Master equation (Equation (7)) describes the quantum dynamics
of the system state characterized by density operator ρ(t), we use the Wigner function
to describe the quantum state in phase space [10]. Wigner function is a phase space
representation whose integration with respect to the system position coordinate x gives
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the marginal probability density in the momentum coordinate p (and vice versa) [12].
The Wigner function representation of the quantum state ρ(t) on phase space is defined
as [12,26,27,29,35]

W(x, p, t) =
1

πh̄

∫ +∞

−∞
dy e−2ipy/h̄〈x + y|ρ(t)|x− y〉

=
1

πh̄

∫ +∞

−∞
dp′ e+2ip′x/h̄〈p + p′|ρ(t)|p− p′〉,

(16)

where the normalized wave function in momentum space is proportional to Fourier trans-
form of the wave function in position space.

Further, to locate the time instant at which it is most appropriate to retrieve the stored
information, we would like to calculate the expectation values of amplitude 〈a(t)〉 for the
stored coherent states as a function of time. The solution of Equation (7) for optomechanical
system can be written as

ρ(t) = exp[L(t)]ρ(t0). (17)

From the above equation, one can compute the time-evolved density operator ρ(t),
which is further used to calculate the expectation value of the amplitude via the relation
given by

〈a(t)〉 = 〈a|ρ(t)|a〉 (18)

We calculate and display the snapshots of Wigner function at different times and plots
of the expectation of the amplitude as two indicators in our analysis.

2.3. Details of Numerical Simulations

All numerical simulations were carried out using QuTiP [36], which is an open source
software package written in Python. The numerical results are obtained by solving the
Lindblad master equation (Equation (7)) to get the time-evolved coherent state density ma-
trix. The density evolution is further extended to Wigner function evolution after adopting
the complete parameters of the corresponding phase space. Further, the expectation value
of the amplitude, representing quantum information is obtained by solving Equation (18).
The evolution of the stored information was observed until 2Trev, where Trev is given by
Equation (6).

To choose the parameters for our system that show experimental consistency, we
follow the work carried out by [13]. They numerically illustrated the effect of cross-
Kerr coupling on the steady-state behavior and stability condition of the optomechanical
system by considering the experimentally accessible frequencies of optical and mechanical
modes as ωc = 2π × 370 THz and ωm = 2π × 10 MHz, respectively. To embody the
strong coupling regime between the two modes, the value of g0 is taken as 1.347 kHz. All
the physical quantities are evaluated in atomic units (a.u.) by substituting h̄ and KB
equal to 1. Accordingly, our corresponding parameters in a.u. are ωc = 2π × 0.056233,
ωm = 2π × 0.151983× 10−8 and g0 = 0.20472× 10−2.

3. Results and Discussion
3.1. Visualization of the Time Evolution through Wigner Representation

We plot the Wigner function corresponding to the quantum state at different times
in order to see the transformations caused in the state due to nonlinearity and system–
environment coupling. We consider an initial bit of quantum information embedded
in a coherent state of amplitude α = 1.5. The effective nonlinearity of both the optical
and mechanical modes is taken as 0.01 a.u. The bath is maintained at 0K, such that
nc = nm = 0. The overall dissipation resulting from this system–bath interaction is selected
to be γc = γm = 0.00001 a.u. It is observed that during the time evolution, the coherent
state undergoes a series of alterations, as is obvious in the contour plots of the Wigner
function displayed at different times in Figure 2. In these plots, (Figure 2a–o) regions
color coded blue depict a positive Wigner function, which corresponds to conventional
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probability density, while red regions depict a negative Wigner function, which corresponds
to a non-classical states. [12].

(a) t = 0 (initial) (b) t = 10 (c) t = 30

(d) t = 50 (e) t = 79 (f) t = 100

(g) t = 125 (h) t = 150 (i) t = 157

(j) t = 237 (k) t = 314 (l) t = 395

Figure 2. Cont.
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(m) t = 471 (n) t = 553 (o) t = 628

Figure 2. Snapshots in term of contour plot of the Wigner function of the evolving coherent state
prepared inside optomechanical quantum memory for N = 10. The optical cavity decay rate γc and
the mechanical damping rate γm = 0.00001 a.u. where the bath temperature corresponding to each
mode is T = 0. Nonlinearities present in both the modes take the value kc = km = 0.01 a.u.

The Wigner plot for the initial coherent state at t = 0 a.u., an elliptical blue region, is
shown in Figure 2a. As time advances, the coherent state loses its classicality and the non-
classical red regions appear. The resulting state is marked by a tail of interference fringes
as portrayed by snapshot at t = 10 a.u. (Figure 2b). Further evolution is marked by the
appearance of highly non-classical, multi-component Schrödinger cat states, which are also
called kitten states, as shown in Figure 2c,d. Two component Schrödinger cat states are also
observed at t = Trev

4 = 79 a.u. as depicted in Figure 2e. During the evolution, appearance
of non-classicality in an evolving coherent state is due to natural dispersion. However, the
presence of nonlinearities compensates the dispersion and leads to the revival of coherent
state. Eventually, the initial classical coherent state reappears at t = Trev

2 = 157 a.u. given in
Figure 2i, with nonclassicality disappearing! As we further observe the time evolution of
the Wigner function, we notice that the coherence revival states (coherent states) arise at
multiples of Trev

2 time, as illustrated by Figure 2i,k,m,o. The analysis above shows that the
coherences underlying the coherent state collapse and revive periodically, which plays an
important role in deciding when to retrieve the information.

3.2. Evolution of the Expectation Value of the Amplitude

In order to elucidate the loss of amplitude at coherence collapse time (cat states) and
regained amplitude at coherence revival time (coherent states), we calculate the expectation
value of coherent state amplitude using the Master equation. The time evolution of 〈a(t)〉
shown in Figure 3 endorses that collapsed state presents loss in amplitude at odd multiples
of Trev

4 time, while the revived state presents regain in amplitude at multiples of Trev
2 . A

similar time evolution plot was generated only for an optical and a mechanical oscillator.
Since the revival time is inversely proportional to the nonlinearity, it was found that the
stored quantum state revives after a longer period of time if only an optical or mechanical
oscillator is used in comparison to using an optimechanical oscillator. This implies that the
quantum memory can be retrieved at more number of revival times within a given period
of real time scale for an optomechanical oscillator.

Further. to study the extent of degradation of quantum information, we extend our
results to find the evolution of the expectation value of the amplitude under various
circumstances. In particular, we study (1) The effect of environment; (2) The effect of
nonlinearities in the system; (3) The effect of bath temperature; (4) The effect of the initial
amplitude of the coherent state. After this study, we will be able to draw out the best-suited
combinations for information retrieval.
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Figure 3. The expectation value 〈a(t)〉 plotted as a function of time for coherent quantum state in
the presence of dissipation γc = γm = 0.00001 a.u. and nonlinearities kc = km = 0.01 a.u. The bath
temperature corresponding to each mode is T = 0.

3.2.1. The Effect of Environment

We begin with a coherent quantum state and study the effect of the environment on
the expectation value of its amplitude as a function of time in the presence of nonlinearity.
We analyze the system in the parameter region, in which the strength of nonlinearity
in the optical mode (kc) as well as mechanical mode (km) is 0.01 a.u. The results are
displayed in Figure 4, where we have plotted 〈a(t)〉 as a function of time and the effect
of the environment is studied for different values of dissipation, denoted in terms of γc
and γm values, which are 0.00001 a.u., 0.0001 a.u., 0.001 a.u. and 0.01 a.u. The dissipation
caused by the environment is evident through the damping and ultimate decay of the
expectation value of amplitude 〈a(t)〉 as time evolves. As we scan through different values
of γs, we find there is a threshold value of dissipation up to which revivals survive, as
illustrated below.

(a) Dissipation = 0.00001, Nonlinearity = 0.01 (b) Dissipation = 0.0001, Nonlinearity = 0.01

(c) Dissipation = 0.001, Nonlinearity = 0.01 (d) Dissipation = 0.01, Nonlinearity = 0.01

Figure 4. Collapse and revival of a coherent quantum state inside an optomechanical oscillator with
nonlinearities kc = km = 0.01 a.u. for four different values of dissipation. (a) γc = γm = 0.00001 a.u.,
(b) γc = γm = 0.0001 a.u., (c) γc = γm = 0.001 a.u. and (d) γc = γm = 0.01 a.u.
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As shown in Figure 4a, for finite but small γc and γm values (both equal to 0.00001 a.u.),
revivals are clearly noticeable, although, due to dissipation, a reduction in revived ampli-
tude does take place. Hence, although the revivals are never complete in the presence of
dissipation, their signatures are present, and can be experimentally identified. As the value
of γc and γm increases, the revivals become weaker and weaker, as seen in Figure 4b,c.
From Figure 4d, one can conclude that for a certain value of γc and γm equal to 0.01 a.u.,
the revivals disappear altogether. Hence, beyond this threshold value we do not expect to
see revivals in our quantum state.

3.2.2. The Effect of Nonlinearity in System

Next, we study the effect of strong and weak nonlinearity of the revival behavior
of the quantum state. In this case, the dissipation parameters γc and γm for optical and
mechanical modes are chosen to be 0.00001 a.u., and the magnitude of Kerr nonlinearity
kc of the optical mode, as well as quadratic anharmonicity km of the mechanical mode,
is varied. For Figure 5a, the value of the nonlinearity parameter is chosen to be large
(kc = km = 0.5 a.u.). The value of revival time for this nonlinearity, as calculated from
Equation (6), is 6.4 a.u., and indicates that revivals should appear at these times. However,
from Figure 5a, one can notice that the revival of quantum state is absent at this value of
nonlinearity, and the pattern is irregular. Similar behavior is observed for nonlinearity
values of 0.05 a.u. (Figure 5b). Hence, we conclude that high values of nonlinearity do not
support the phenomenon of collapse and revival of a quantum state. For a comparatively
smaller value of nonlinearity, 0.005 a.u. (Figure 5c), the constructive and destructive
interference among multi-component Schrödinger cat states make the collapse and revival
occur at a fixed time, without irregularities. A further decrease in nonlinearity value
by a factor of 10 (Figure 5d) decreases the successive amplitude of revived states. This
happens due to the large value of revival time, i.e., 6400 a.u., which slows down the
process of collapse and revival. As a consequence, the interaction time with the dissipative
environment increases, leading to a substantial decrease in amplitude. Hence, we conclude
that information can be successfully retrieved when the nonlinearities in both the modes are
of the order of 10−3 a.u.

(a) Nonlinearity = 0.5 (b) Nonlinearity = 0.05

(c) Nonlinearity = 0.005 (d) Nonlinearity = 0.0005

Figure 5. Effect of strong and weak nonlinearities in the optical and mechanical mode represented
by kc and km, respectively, on the revival behavior for a coherent quantum state. The dissipations
inside the optomechanical oscillator are γc = γm = 0.00001 a.u. The values of nonlinearity are
(a) kc = km = 0.5 a.u., (b) kc = km = 0.05 a.u., (c) kc = km = 0.005 a.u. and (d) kc = km = 0.0005 a.u.
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3.2.3. The Effect of Bath Temperature

The fact that collapse and revival of a quantum state show dependence on bath
temperature (Equations (11) and (14)) provides an opportunity to explore the revival pattern
for various values of T. The results of this study are shown in Figure 6a–d. Temperatures
in the µK and mK range are insignificant for optical mode; however, these temperature
ranges are notable for the mechanical mode of the optomechanical system. These very
small temperatures affect the collapse, and a revival pattern arises from the mechanical
mode due to variation in the number of phonons involved in the interaction. As shown in
Figure 6a, at µK range, the system behaves in a similar manner as it does at 0 K (Figure 3).
At mK range (Figure 6b), the revival amplitude starts decreasing, with a subsequent revival
period. This successive decrease in revival amplitude is due to the increase in the mean
thermal phonon number of the bath, which creates a hindrance for complete a revival of
amplitude while interacting with the system. A further increase in the value of temperature
to 0.3 K, as indicated in Figure 6c, shows exceedingly large dissipation of the amplitude of
quantum state. At 3 K, collapses and revivals in the quantum state disappear entirely due
to noticeable effects of the bath temperature.

(a) T = 30 µK (b) T = 30 mK

(c) T = 0.3 K (d) T = 3 K

Figure 6. Effect of bath temperature on quantum state stored inside optomechanical oscillator with
nonlinearities kc = km = 0.01 a.u. and dissipation γc = γm = 0.00001 a.u. The amplitudes of revived
states at their revival time are recorded for various values of bath temperature T.

3.2.4. The Effect of Initial Amplitude of Coherent State

The initial amplitude of coherent state measures the extent to which the displacement
operator displaces the vacuum state while constructing the initial coherent state. Our
findings highlight the effect of initial amplitude on the behavior of collapses and revivals in
Figure 7a–d. Here, the value of nonlinearities in both the modes is 0.01 a.u. and dissipation
is 0.00001 a.u. The bath temperature is maintained at 0K. The behavior of the quantum
information is studied at various values of initial amplitude, taken as approximately 0.1, 0.5,
1.0, and 2.0. For very small values of amplitude, there is no perceptible effect on the pattern,
as seen in Figure 7a, where we have chosen the amplitude to be 0.1. For such a small
amplitude, the system–environment interaction and nonlinearity do not affect the quantum
state inside the optomechanical system, and its time evolution is harmonic in nature. We
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note that the revival behavior of the quantum state in this situation is similar to the revival
behavior of a simple harmonic oscillator without dissipation. We term such revivals as
perfect revivals, which support retrieval of quantum state without any loss of amplitude.
As the value of amplitude increases to 0.5 (Figure 7b), the process of collapses and revivals
is seen in its budding state. A further surge in the amplitude to 1.0 (Figure 7c) results in an
erratic energy spectrum, leading to well-distinguished collapse and subsequent revival of
the quantum state. At an amplitude of 1.5 (Figure 3), the collapses are pre-eminent. With a
further increase in amplitude, the collapses and revivals are accompanied by a widened
collapsed phase, as shown by a loss in amplitude of the quantum state for a longer period
of time(Figure 7d). Thus, the retrieval of the information must be carried out at the time
instant where revivals are prominent.

(a) Initial amplitude = 0.1 (b) Initial amplitude = 0.5

(c) Initial amplitude = 1.0 (d) Initial amplitude = 2.0

Figure 7. Collapse and revival pattern of 〈a(t)〉 of quantum state being plotted as a function of time
with nonlinearities (kc and km) and dissipation (γc and γm) of optical and mechanical modes equal
to 0.01 a.u. and 0.00001 a.u., respectively. The pattern is shown for states with initial amplitude =
0.1, 0.5, 1.0 and 2.0.

4. Conclusions

We considered a quantum memory device comprising of an optical mode interacting
with a mechanical oscillator, with nonlinearities present both in the optical as well the
mechanical mode. The time degradation of quantum information stored in this quantum
memory device was studied under a dissipative environment and with respect to non-
linearity parameters. The quantum master equation approach was used to analyze the
dissipative dynamics of coherent quantum states which were used for information storage.
The parameters chosen to monitor the time degradation of the quantum states were the loss
of coherence, as well as the loss of amplitude in an originally coherent quantum state with a
well-defined amplitude. The nature of coherence was analyzed in terms of Wigner function,
which yields useful visual insights into the progression of quantum states through system
nonlinearities, as well as decoherences due to interaction with the environment. We further
evaluated the expectation value of the amplitude of the stored quantum information as
a function of time to mark the extent of overall sustainability of information. The time
evolution of amplitude was studied for a wide range of parameters. The effects of the
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environment, nonlinearity, bath temperature and initial amplitude on the revival behavior
of the quantum state were determined. We also presented the most suitable parameters
for quantum state retrieval. It was found that for a system to revive completely at certain
periods of time, the strength of dissipation should be of the order of 10−5 a.u. at 0 K
temperature of the bath. Information can be successfully retrieved when the nonlinearity in
both the modes is of the order of 10−3. The amplitude of 1.5 and 2.0 shows perfect collapses
and revivals, where the amplitude during evolution entirely reduces to zero, and thereafter
it completely revives at revival time. This work has potential applications in quantum
information processing and long-distance communication.
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