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Abstract: Turbulent radiation flow is ubiquitous in many physical systems where light–matter
interaction becomes relevant. Photon bubble instabilities, in particular, have been identified as a
possible source of turbulent radiation transport in astrophysical objects such as massive stars and
black hole accretion disks. Here, we report on the experimental observation of a photon bubble
instability in cold atomic gases, in the presence of multiple scattering of light. Two different regimes
are identified, namely, the growth and formation of quasi-static structures of depleted atom density
and increased photon number, akin to photon bubbles in astrophysical objects, and the destabilisation
of these structures in a second regime of photon bubble turbulence. A two-fluid theory is developed to
model the coupled atom–photon gas and to describe both the saturation of the instability in the regime
of quasi-static bubbles and the low-frequency turbulent phase associated with the growth and collapse
of photon bubbles inside the atomic sample. We also employ statistical dimensionality reduction
techniques to describe the low-dimensional nature of the turbulent regime. The experimental results
reported here, along with the theoretical model we have developed, may shed light on analogue
photon bubble instabilities in astrophysical scenarios. Our findings are consistent with recent analyses
based on spatially resolved pump–probe measurements.

Keywords: cold atoms; instabilities; photon bubble turbulence; magneto-optical traps; radiation
trapping; diffusive light transport

1. Introduction

Due to multiple scattering of light in dense astrophysical systems such as massive
stars [1], black hole accretion disks [2,3], or the atmosphere of neutron stars [4], light trans-
port is often diffusive instead of ballistic. In such optically thick media, photons exhibit high
residence times and can therefore be trapped. One interesting consequence of this diffusive
behaviour is the so-called photon bubbling effect, expected when matter strongly responds
to the propagation of light. Photon bubbling consists in the formation and growth of light
bubbles that eventually leave the medium or decay into smaller structures. This decay is at
the origin of a specific form of turbulence in optically thick media, photon bubble turbu-
lence (PBT). Novel forms of turbulence can therefore be investigated in systems with strong
light–matter coupling, where the turbulent character of light transport strongly depends on
the optical properties of the medium [5]. The observation of photon bubbling turbulence
in cold atomic gases has recently been reported by some of us [6]. The spatial pattern of
the complex turbulent dynamics has been investigated by means of a spatially resolved
pump–probe technique, which allows for the retrieval of an instantaneous direct image
of the atomic density distribution across the cold atom cloud. The measured atomic local
structure, averaged over numerous system realisations, is dominated by quasi-coherent
structures which have been associated to fully developed photon bubbles whose growth
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and subsequent collapse has been proposed as the driving mechanism of the identified
turbulent regime. In analogy to its astrophysical counterpart, PBT in cold atom gases arises
as radiation pressure becomes comparable to thermal pressure. The strength of the light–
matter interaction can be effectively increased by driving the cold atom cloud close to the
electronic resonance: as the atomic medium becomes optically thick, radiation propagation
turns diffusive, inducing a fluid-dynamic instability which is at the root of PBT.

Here, the atomic density distribution is probed by collecting the line-of-sight integrated
fluorescence signal, which allows for studying the real-time dynamical evolution of the
system [5,7,8]. We start by revising the theoretical model describing the dynamics of the
coupled atom–light gases and revealing the mechanism of the photon bubble instability.
The experimental results are then presented, with two distinct regimes being identified.
On the one hand, quasi-static radiation-filled regimes resulting from the saturation of
the instability are described; on the other hand, at higher values of optical thickness,
these structures tend to grow beyond the limit that the cold atomic gas is able to sustain,
causing the collapse (or burst) of the bubble and resulting in a distinct form of turbulence,
accurately described by the theoretical model in the form of dynamical spherical bubbles.
To further characterise the turbulent regime, we apply data-driven (model independent)
dimensionality reduction techniques—principal component analysis—in order to find a
low-dimensional representation of turbulence, whose results are shown to be in agreement
with the theoretical description in terms of the photon bubble mechanism.

2. Theoretical Model

Atomic clouds comprised of high numbers of atoms, and when driven close to elec-
tronic resonances, are optically thick. As a result, photons are scattered multiple times,
undergoing a random walk inside the cloud. Such processes are described by a diffusion
equation for the light intensity distribution I, namely [5,6,9,10]:

∂

∂t
I −∇ · (D∇I) = 0. (1)

The diffusion coefficient D = l2/τ quantifies photon transport, with l = 1/nσL
denoting the photon mean free path, n the atom density, and σL the photon absorption
cross-section. The interval between consecutive scattering events determines the photon
diffusion time τ. The latter is approximately given by the lifetime of the excited state,
τ ' 1/Γ, with Γ being the transition linewidth [7]. The coupling between the atom
dynamics and photon transport originates from the dependence of the diffusion coefficient
on the local density of atoms, namely, D ∝ n−2.

Assuming local hydrodynamical equilibrium, the atom density n and velocity field v
are modelled with the usual continuity and Navier–Stokes equations:

∂n
∂t

+∇ · (nv) = 0 and (2)

∂v
∂t

+ (v · ∇)v =
F
m
− ∇P

nm
− νv, (3)

with P = nkBT being the equation of state of an ideal gas, ν the optical damping rate
(optical molasses), and m the atom mass. The exchange of photons between nearby atoms
and the associated momentum recoil is also at the origin of a repulsive radiation pressure
force F, scaling as 1/r2 and determined by the mean-field Poisson equation:

∇ · F = Qn, (4)

where Q = (σR − σL)σL I/c is the effective charge, with σR denoting the absorption cross-
section for re-scattered photons [11,12]. An effective plasma frequency, ωp =

√
Qn0/m [13],

immediately follows and allows for analogies with one-component trapped plasmas [8].
In typical experimental conditions, the effective charge is of the order q =

√
ε0Q∼10−4e,
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with e being the electron charge, and n0∼1010 cm−3 the typical atom density, resulting
in a plasma frequency of ωp/2π∼50–200 Hz [14,15]. Notice that Q depends on the light
intensity I, providing additional coupling between the atom and photon dynamics.

The previous coupling can, in specific conditions, become unstable, leading to the
nucleation of photon bubbles—a local increase in the photon number accompanied by a
depletion in the atom density [5]. The linear growth rate of the instability is given by:

Γβ = −ν

2
− β

ω2(k)
. (5)

Here, ω2(k) = ω2
p + u2

s k2 + D2
0k4 is the dispersion relation of the coupled atom–light

gases, with k being the perturbation wavenumber. The coupling coefficient β = D0ω2
p
∇2 I0

I0
depends on both the initial (equilibrium) diffusion coefficient D0, and the light distribution
I0. The finite temperature of the atoms yields the thermal speed of sound us = kBT/m.
From the growth rate in Equation (5), the crossing of the instability threshold (Γβ > 0)
requires the following conditions to be satisfied:

β < 0 and
2|β|

ω2(k)
> ν, (6)

which, from the first relation, depend on initial local inhomogeneities in the photon dis-
tribution I0. Note that the photon bubble mechanism differs from the pattern formation
instability in cold atoms [16]. In the latter, optical dipole forces, originating from far-off-
resonant light and resulting from the conversion of light phase fluctuations into amplitude
modulations, act on the atoms and trigger an instability in the transverse plane of the
laser, whereas here we rely on quasi-resonant radiation pressure. Moreover, the pattern
formation instability results from coherent photon transport, while here light is in the
diffusive limit. Moreover, in contrast with the similar astrophysical instabilities, the photon
bubble mechanism reported here does not require the presence of magnetic fields.

3. Experimental Results

We prepare an atomic sample of cooled 85Rb atoms in a magneto-optical trap (MOT) [17].
In a typical sample, we obtain up to N∼109 atoms at T∼200 µK and a maximum density
n0∼1010 cm−3 in a near spherical cloud of about 4 mm in diameter. All the experiments are
conducted with a magnetic field gradient of ∇B∼9 G/cm. While the magnetic field has
no significant influence on the observed effects, the laser detuning δ strongly determines
the stability of the system through the cross-sections σL and σR [14]. Within the two-level
atom approximation, and in the high-intensity limit relevant for our experiments (I & Isat,
with Isat ' 1.4 mW/cm−2), the plasma frequency scales as ωp∼|δ|−2, away from the reso-
nance, |δ| � Γ [12,14]. However, close to the resonance, |δ|∼Γ, complications due to the
Zeeman splitting of the excited manifold arise, rendering the two-level atom approxima-
tion invalid. In any case, we use δ as the relevant experimental parameter, sweeping the
different regions of the stability diagram. In the first part of the experiment, the trap is
loaded by switching on the laser beams and the magnetic field gradient for a total duration
of 3 s, long enough to ensure a steady-state number of atoms. The laser detuning during the
loading step is fixed at δload = −3Γ. It is then shifted to a different value δexp for a duration
of 2 s, long enough so that the photon bubble instability is fully saturated and the density
reaches a steady-state distribution. We then release the trap by turning off the magnetic
field gradient and the trapping light. After a transient time of approximately 200 µs (to
ensure the absence of any residual B field during the imaging sequence), we illuminate the
trap with far-off-resonant light (δimag = −4Γ) and collect the atomic fluorescence signal
with a CCD camera during an exposure time of about 300 µs. As we shall demonstrate
later, with δimag = −4Γ, the imaging occurs in the single-scattering regime, thus ensuring
the correct retrieval of the column density distribution, a crucial feature for the subsequent
interpretation of the experimental results. For each value of δexp, we repeat the loading and
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imaging sequence 255 times. The entire process is then repeated for different values of δexp,
the parameter used to span the different instability regimes (for simplicity, the detuning δexp
will be referred to as δ from now on). Two additional CCD cameras, placed at orthogonal
directions, allow us to monitor the overall shape and symmetry of the atomic sample.

Starting from lower values of δ and going further into resonance, we observe the
transition from a stable phase, persistent for δ . −2Γ and previously investigated in [15],
into a regime where the photon bubble instability is triggered—see Figure 1. Note that,
while the use of the laser intensity as a control parameter is mainly relevant in setting
the number of atoms in the trap [11,15], the detuning from resonance is the appropriate
knob to probe the different dynamical regimes [14]. To diagnose the instability, we perform
fluorescence imaging on the atomic sample to retrieve the column density distribution
of the trap, which, in the case of near-spherical symmetry, contains the full information
about the real atom density profile. The latter is obtained by computing the inverse Abel
transform, as described in Appendix A.

(c)

(b)

(a)

Figure 1. (Colour online.) (a) Normalised column density profiles. The (x, y) coordinates define the
imaging plane, while the z direction coincides with the line of sight of the camera. The lower panel
depicts the radial-only column density distribution (grey dots) for different values of δ. The error
bars are obtained by making statistics over different sectional cuts in the xy plane, thus quantifying
deviations from pure spherical symmetry. The grey line depicts the real atom density profile, obtained
as the normalised inverse Abel transform of the column density distribution. The central feature
of depleted atom density emerging for higher values of δ results from the saturation of the photon
bubble instability and entails a local increase in the photon density. (b) Non-scaled atom density
profiles in different saturation regimes of the photon bubble instability (varying the laser detuning
δ). The definition of the atom depletion fraction δn/n0 is also depicted. (c) Phase diagram of the
photon bubble instability with the atom depletion fraction (grey dots) and the numerical fit to the
theoretical curve describing the saturation of the instability (dark line). Here, three different regimes
can be identified, namely, a stable region (I-S), an intermediate region of quasi-static photon bubbles
(II-QSB), and a final regime of photon bubble turbulence (III-PBT).

From the onset of the instability, a localised central region of strong radiation trapping
grows. At the same time, such an increase in the local photon density is responsible for
atom expulsion due to radiation pressure forces—a single photon bubble is formed at
the centre of the atomic sample. As the atoms are scattered away from the centre of the
bubble, the light diffusion coefficient increases due to a depleted medium. At some point,
the increased diffusion losses inhibit any further growth, corresponding to the saturation of
the instability as the photon bubble reaches its final state. We begin by noticing that, under
near-saturation conditions, the diffusion term D0k2 in Equation (5) dominates over both
the effective plasma frequency ωp and thermal dispersion usk. Saturation occurs when
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growth is no longer sustainable due to a depleted medium and the consequent increase
in photon losses, at which point the growth rate vanishes. This limit can be described as
ω2

pL2/Ds = ν/2, with Ds being the diffusion coefficient at saturation level. Here, we have

also defined
∣∣∣∇2 Is

Is

∣∣∣ ' k2 ' L−2, with Is and L being the final photon density distribution
and size of the bubble, respectively. The saturated diffusion coefficient can be written as a
correction to the initial value D0, due to a depletion of the atomic density δn (with δn > 0),

such that Ds =
D0n2

0
(n0−δn)2 . Putting all this together, we arrive at the atomic density depletion

fraction:
δn
n0

= 1− 1
ωpL

(
νD0

2

)1/2
. (7)

Since the diffusion coefficient has always a finite value, total atomic depletion should
not be expected in any situation. Recall that the diffusion coefficient is given by D = l2/τ,
with l = 1/nσL being the photon mean free path. The photon scattering cross-section is
determined by σL = σ0

1+4(δ/Γ)2 , with σ0 = g3λ2/(2π) being the on-resonance cross-section

and g being a degeneracy factor that depends on the specific atomic transition [18]. We can
then rewrite Equation (7) in terms of the photon detuning δ as:

δn
n0

= 1− 1
ωpL

(
νDr

0
2

)1/2[
1 + 4(δ/Γ)2

]
, (8)

with Dr
0 = 1/τn2

0σ2
0 being the diffusion coefficient at resonance. This relation can be fitted

to the experimental results—see Figure 1—which correctly describes both the onset, the
unstable phase at δ ' −2Γ, and the final state of instability in the form of quasi-static
photon bubbles (QSB).

At this point, we shall elucidate the validity of the diffusion approximation in Equa-
tion (1). The photon mean free path has been carefully measured to be of the order of
`0 = 300 µm for resonant light [7]. For δ = −0.8Γ, where a high depletion fraction is
observed, we estimate ` = `0[1 + 4(δ/Γ)2]∼700 µm and, thus, ` � w, with w∼4 mm
being the diameter of the atomic sample, thereby ensuing the validity of the diffusion
approximation. Moreover, and to further consolidate the experimental observations as
evidence of photon bubbles, notice that their spatial extent is expected to be of the order
`, namely, L & `, in good agreement with the structures depicted in Figure 1. In addition,
for δimag = −4Γ, one obtains `∼20 mm, thus ensuring the single-scattering regime during
the imaging sequence.

The atom density profiles observed in the QSB regime, which persist approximately
for δ . −0.6Γ, are not described by the usual Wieman model [11], which predicts a
flattened density in the case of moderate optical thickness and does not account for the
effects associated with the diffusive nature of light. For smaller values of |δ| (i.e., closer to
resonance), a dramatic change of the dynamics of the coupled atom–light gases is observed.
In this regime, the instability leads to the growth of structures beyond the limit that is
sustainable for the depleted atomic medium. At this point, the central photon bubble
collapses, or bursts, followed by a re-establishment of the local atom density that again
re-triggers the instability. Such processes are at the origin of a low-frequency turbulent
regime, the photon bubble turbulence (PBT), which we shall now describe in greater detail.

We investigate the PBT regime by bringing the driving beams very close to the atomic
resonance, typically δ = −0.5Γ. A CCD camera working at 350 fps collects the fluorescence
signal from the trap, resolving the spatio-temporal properties of the turbulent regime—see
Figure 2. We begin to investigate the low-frequency nature of turbulence by measuring the
frequency power spectrum of the spatially resolved fluorescence time signal—see Figure 2.
The total signal is nearly constant, corresponding to an approximately fixed number of
atoms in the trap. Additionally, for a lower laser detuning, δ = −1.5Γ (QSB regime), low-
amplitude isolated frequency peaks are observed. It has previously been described that,
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in a similar region of experimental parameters, the atomic cloud undergoes a supercritical
Hopf bifurcation into an unstable regime of large-amplitude self-sustained oscillations [14].
In that case, nevertheless, the instability is expected for clouds with large radii, typically
greater than 4 mm, and with a number of atoms of the order of 1010, features which safely
distinguish it from the one reported here. Moreover, the unstable behaviour in Ref. [14]
originates at the edge of the cloud, while the photon bubble instability is triggered in its
central region. Regardless, the same authors also describe the transition from over-damped
to under-damped behaviour prior to the instability threshold (lower number of atoms),
which is consistent with the low-amplitude breathing oscillations of the bubbles and the
red line spectrum in Figure 2. When tuning the beams closer to resonance (δ = −0.5Γ),
a complex dynamical regime takes place—black line in Figure 2—with the frequency
spectrum exhibiting broad-band components at low frequencies, as expected in dissipative
weak turbulent systems [19] and originating from the complex dynamics associated with
the growth and collapse of (dynamical) photon bubbles, as we shall demonstrate.

(a)
(c)

(b)

(d)

Figure 2. (Colour online.) (a) Exemplification of column density maps. From left to right: average
density profile, column density at 0ms, fluctuating column density at 0ms—see Appendix B for
further clarification. (b) Time evolution of the fully developed turbulent phase. The plots depict
the fluctuating column density; the grey contours represent the average density profile. The inset
shows the original column density without the subtraction of the average density profile. (c) Power
spectrum of the atom density fluctuations (time domain), in the quasi-static photon bubble phase
(red line) and in the regime of photon bubble turbulence (black line). (d) Experimental (spatial)
power spectrum of the atom density fluctuations in the fully developed PBT regime (grey dots) and
numerical fit to the theoretical power spectrum (red line). The black line indicates the k−4 decay tail,
evidence of the presence of well-defined dynamical structures. The blue and grey lines correspond
to transient situations in the range δ > −0.6Γ, and depict the transition into the fully developed
turbulent regime.

We now turn to the spatial power spectrum of the atom density fluctuations—see
Figure 2—as described in detail in Appendix B. In the fully developed case (δ = −0.5Γ),
the fast k−4 decay at high wavenumbers indicates the existence of quasi-coherent structures
with well-defined scale lengths, and not self-similar (fractal) structures at different scales.
This is easily understood in terms of the auto-correlation function, the conjugate quantity
of the power spectrum, defined as C(δr) = 〈n(r)n(r + δr)〉. For a scaling of the form
P(k)∼1/(a2 + k2)2, similar to a squared Lorentzian function, such as we experimentally
observe, where a is a regularisation at k→ 0 (related with the inverse of the typical scale),
the auto-correlation function takes the form C(δr)∼exp(−aδr), evidencing the existence of
well-defined spatial structures of typical size a (photon bubbles).

In order to make the above phenomenological arguments more accurate, we shall
at this point resort to the photon bubble model. From the fluid equations, we derive the
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power spectrum of the density fluctuations (of both the atom and light gases) and in the
case of dynamical spherical bubbles as P(k) = 4πk2|S0(k)|2:

S0(k) =
8π(γ− ik)

[k2
a + (γ− ik)2]2

, (9)

as derived in Appendix C. Here, ka essentially defines the inverse of the bubble size and,
for k� ka, the spectrum decays as k−4, as observed in the experiment. To further clarify
the consistency of the model, we numerically fitted the theoretical power spectrum to the
experimental results—see Figure 2—where a good agreement is observed. The spectrum
attains its maximum near kmax∼ka∼3 mm−1, corresponding to the typical bubble length
l0∼2π/ka∼2 mm. For lower wavenumbers k . kmax, the theoretical curve slightly diverges
from the experimental data. This may be attributed to finite-size effects, given that the
typical bubble size is just slightly smaller than the diameter of the system (about 4 mm).
The k−4 decay observed here is close to the Kolmogorov scaling, which, in the case of
homogeneous and isotropic turbulence, gives a k−11/3 inertial range in the spectrum of
density fluctuations. As we have shown, however, and despite the closeness with the
Kolmogorov scaling, the spectrum observed here is of a distinct physical origin, related to
the complex dynamics associated with the growth and collapse of photon bubbles. The ob-
servations reported here are compatible with the ones in Ref. [6], where the quasi-coherent
structures—emerging from a realisation-average procedure—have been successfully as-
sociated to a fully developed photon bubble turbulence regime. Here, we recover the
same spatial local structure, and we investigate the full dynamical evolution of the system.
Moreover, unlike what has been reported in [6], where a sharp transition from a stable to a
turbulent regime had been observed, here, the transition into the fully developed phase
is continuous—see Figure 2. Nevertheless, the fully turbulent phase is only observable in
a narrow range of experimental parameters. For δ > −0.4Γ, for instance, the number of
atoms in the trap is significantly lower, reducing the overall optical thickness and strongly
suppressing the diffusive nature of light.

Regarding the low-frequency nature of the turbulent regime, we can inquire about the
temporal dynamical scale associated with the inverse of the typical bubble length, kmax. Go-
ing back to Equation (5), and considering a temperature T = 200 µK, ωp∼2π× 100 s−1 and
a diffusion coefficient at resonance of Dr

0∼0.5 m2/s [7], we can compute the corresponding
growth rate Γβ∼10 s−1. Here, we also used the condition that the damping term ν from
the optical molasses is not the dominant term at the centre of the cloud, corresponding
to the region where the bubble nucleates, and that the initial perturbations of the light
intensity distribution occur at a scale much smaller than the final bubble size, namely,
|∇2 I0|/I0 � k2

max. The initially fast instability growth is gradually reduced as the light
intensity increases and the atom density decreases during the bubble growth. As such,
slower time scales are associated with higher energies (larger structures), which is at the
origin of the observed (temporal) power spectrum. The same instability mechanism is at
the origin of both the previously reported regime of quasi-static photon bubbles (QSB) and
the turbulent (PBT) phase. In summary, strong radiation trapping affects the collective
atomic dynamics and leads to the growth of photon bubbles. While in the QSB phase,
the atomic medium is able the support the saturation of the instability, in the PTB regime,
photon losses due to the depleted medium lead to the burst and decay of the bubbles,
with such continuous processes being at the origin of the low-frequency turbulent regime
described here.

4. Normal Modes and Low-Dimensional Turbulence

The origin of the PBT regime in the growth and collapse of photon bubbles points
towards a weak, low-dimensional form of turbulence. Turbulent flow is considered, in gen-
eral, an infinite dimensional process, as described by some set of nonlinear partial differ-
ential equations—usually, the fluid equations introduced before or some simplification of
them [20–22]. In some physical systems, however, the existence of coherent spatial struc-
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tures, interacting nonlinearly with each other, allows for the description of turbulence in
terms of finite or even low-dimensional processes [23,24]. The Lorenz model of atmospheric
convection [25] or the Couette–Taylor flow [26] are canonical examples where turbulence is
effectively described as a dynamical system in a low-dimensional space, often exhibiting
chaos and the existence of strange attractors governing their evolution [27,28]. To further
clarify the low-dimensional character of the photon bubble turbulence, we now turn to
a rather different approach. Advancements in machine learning and data science [29,30]
have been providing different ways to tackle and retrieve useful information from complex
data. Here, we apply the technique of principal component analysis (PCA) [31] to retrieve
the coherent structures or normal modes of the PBT regime, if they exist. This approach can
be cast inside the more general discipline of dimensionality reduction [32], with the pur-
pose of finding a low-dimensional representation of a given (higher-dimensional) dataset,
written as a linear combination of state vectors (the principal components), chosen in such
a way that they are statistically uncorrelated with each other. Each component can then be
identified with a particular dynamical process, such as atom number fluctuation, centre-of-
mass motion, trap modes of oscillation, etc. We stress that PCA is a model-free approach,
requiring no assumption of the physical nature of the underlying dynamics. The validity
of the PCA technique to extract the collective normal modes has been confirmed with
numerical simulations of the Gross–Pitaevskii equation for Bose–Einstein condensates [33].
Moreover, it has been recently used to diagnose some class of spatial instabilities in clouds
of cold atoms [34].

The results obtained from PCA on the turbulent regime are depicted in Figure 3—further
details on PCA technique can be found in Appendix D. The first mode (highest variance
ratio) determines the growth of the central region of strong radiation trapping, together
with the corresponding depletion of atoms as they are pushed outwards by radiation
pressure forces. The slight asymmetry shown here follows from the asymmetries of the
trapping potential. The second mode, accounting for 0.22 of the total data variance, entails
a collective trap mode, bearing similarities with a quadrupolar structure. The third and
fourth principal components depict a compression mode and fluctuations in the centre-
of-mass (COM) position of the cloud, respectively, with the axes of both aligned with the
direction of strong trapping. The evolution of the fourth mode accounting for COM drift is
essentially decoupled from the remaining dynamics, resulting from fluctuations in both the
polarisation and power of the trapping beams. In the same way, the remaining principal
components (not shown here) represent mostly noise in the COM position in the remaining
directions and in the total number of atoms. Altogether, the first three modes correspond to
approximately 0.65 of the total dynamics observed in the PBT regime, with the remaining
components representing mostly noisy processes decoupled from the main evolution.
The nontrivial time evolution may indicate the existence of complex nonlinear coupling
among such dynamical modes. Moreover, the principal component analysis decomposition
represents a step forward towards the reconstruction of the phase space associated with
the turbulent phase. Here, the state variables may be represented by each of the normal
modes, with the phase space trajectories defined by their corresponding time evolution,
in a manner analogous to the Lorenz model of atmospheric convection. The investigation
of these trajectories may provide deep insight into the nature of the turbulent regime.
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(c)(b)(a) (d)

(e)

Figure 3. (Colour online.) The panels (a–d) depict the first four principal components associated
with the regime of photon bubble turbulence, together with their respective time evolution over
a particular interval contained in the full time span of the experiment. The latter is obtained by
projecting each centred frame onto the respective principal component, in such a way that the full
dynamics can be reconstructed as a linear combination of the principal components (with coefficients
given by their respective time evolution, depicted in the lower panels) and the average profile
depicted in panel (e). The variance ratio corresponds to the ratio of the data variability that can be
explained by each principal component. The imaging plane is rotated approximately 45 degrees in
relation to the direction of strong trapping, defined by the axis of the anti-Helmholtz coils.

5. Conclusions

In this paper we have studied, through the collection of fluorescence light, the atomic
spatio-temporal dynamics arising from the cold atom photon bubble instability. This insta-
bility stems from the strong coupling between diffusive light and atomic matter and results
in the growth of local pockets of high radiation intensity and low atomic density—photon
bubbles. A new regime has been identified, namely, the quasi-static bubble regime. This
is characterised by the formation, at the centre of the cloud, of a stable weakly oscillating
single bubble which arises from the saturation of the photon bubble instability, due to the
photon diffusion losses through the depleted medium. For close-to-resonance driving,
the bubble grows beyond the limit sustainable for the atomic cloud. Hence, the bubble
bursts and decays into smaller structures, causing the atomic density to be restored and,
thus, re-triggering the instability. This phenomenon is known as photon bubble turbulence.
In this manuscript, we have described its low-frequency behaviour, associating it to the
dynamics of large photon bubbles. We have, therefore, unified the interpretation of the
quasi-stationary and turbulent regimes as originating from the same photon bubble insta-
bility. We also provided additional evidence pointing towards the low-dimensional nature
of the PBT regime, based on a dimensionality reduction approach to the experimental data.
Further investigations may be conducted towards the reconstruction of the phase space
trajectories. The existence of strange attractors and/or chaos governing the dynamics asso-
ciated with photon bubble turbulence are exciting possibilities, offering an interesting new
platform to study some fundamental problems of low-dimensional turbulence, dynamical
systems, and chaos, where the huge gap between the many theoretical developments and
the elusive experimental observations has yet to be bridged.
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Appendix A. Inverse Abel Transform

The column density, which we denote as F(ρ), with ρ =
√

x2 + y2, is obtained from
the actual atom density n(r), with r =

√
x2 + y2 + z2, by integrating n(r) over the line of

sight. More precisely, the two are related by the Abel transform:

F(ρ) = 2
∫ ∞

ρ

n(r)r√
r2 − ρ2

dr. (A1)

Since we image the trap with far-off-resonant light, thus avoiding multiple scattering
at this stage, the recorded signal is directly proportional to the column density. The actual
atomic density, n(r), can be numerically obtained, up to an overall multiplicative constant
and assuming spherical symmetry, by computing the inverse Abel transform [35]:

n(r) = − 1
π

∫ ∞

r

dF(ρ)
dρ

1√
ρ2 − r2

dρ. (A2)

For computational reasons, the column density F(z) is expanded into a cosine series
before computing the inverse Abel transform. The Abel transform technique has been
instrumental for determining the structure of astrophysical objects [36,37] or the density
distribution of trapped quantum gases [38].

Appendix B. Experimental Spectrum

A CCD camera working at approximately 350 fps collects the spatially resolved fluores-
cence signal from the atomic sample. In this way, we measure the dynamical evolution of the
column density distribution, which allows us to compute the power spectrum of the atom
density fluctuations, in the spatial domain. We take as many as 500 fluorescence images of
the atom cloud, corresponding to a total time span of approximately 1400 ms, yielding the
atom column density distribution, which we shall denote by n̄i(æ), with æ = (x, y) and
i = 1, 2, . . . , 500. The mean column density is obtained by averaging over the 500 samples,
n̄0(æ) = 〈n̄i(æ)〉, which is then subtracted from each frame to determine the fluctuating
column density δn̄i(æ) = n̄i(æ)− n̄0(æ). In order to compute the spectral dependence,
we Fourier transform each real-space distribution δn̄i(æ) to obtain δn̄i(k). Finally, we can
take the mean of the squared amplitude of the two-dimensional momentum distributions,
P(k) = 〈|δn̄i(k)|2〉. By assuming isotropic density fluctuations, one can average P(k) in
the angular dependence, yielding the desired power spectrum P(k).

Appendix C. Spectrum of Photon Bubble Turbulence

Here, we derive the theoretical turbulence power spectrum of the atom/light density
fluctuations. We begin by assuming dynamical photon bubbles described by intensity
fluctuations Ĩ = I − I0 as:

Ĩ ∝ F(r)e−iΩt, (A3)
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with Ω = ΩR − iΓl being a complex frequency and Γl the timescale associated with the
degradation and decay of the bubble. Coming back to the fluid equations introduced in the
main text, the spatial light profile follows from the generalised Helmholtz equation:

∇2F(r) = −κ2F(r), (A4)

where κ2 = (ka − iγ)2 describes the spatial extent of the bubble, typically ∼1/ka, and its
degradation due to diffusion losses, determined by γ. Note that the interactions between
bubbles (similar to wave mixing processes) may play a role in the nonlinear saturation of
the instability. The microscopical description of such effects, which is outside the scope of
the current work, may be reserved for future investigations. Nevertheless, and as we are
about to see, the self-contained minimal model used here correctly describes the observed
effects. In spherical coordinates r = (r, θ, φ), the solutions to Equation (A4) are given by
F(r) = ∑` a`F`(r), with a` being the expansion coefficients and:

F`(r) = ∑
m

j`(κr)Y`m(θ, φ), (A5)

where j` are the spherical Bessel functions and Y`m the spherical harmonics. Evoking the
analytical continuation properties of the Bessel functions, we obtain:

F`(r) = ∑
m

j`(kar)Y`m(θ, φ)e−γr. (A6)

The observed turbulent behaviour is described by a superposition of such solutions,
with random angular orientations. The corresponding (radial-only) Fourier amplitude,
averaged over randomly oriented spherical harmonics, is given by:

S`(k) = 4π
∫ ∞

0
j`(kar)e−γreikrr2dr, (A7)

where the 4π factor appears from the integration on the angular variables. For spherical
modes (` = 0), we have:

S0(k) =
8π(γ− ik)

[k2
a + (γ− ik)2]2

, (A8)

with the corresponding power spectrum given by P(k) = 4πk2|S0(k)|2.

Appendix D. Principal Component Analysis (PCA)

Here, we shall briefly describe the concept of principal component analysis (PCA) [31],
often used for dimensionality reduction in the context of machine learning and data
mining [32]. The key idea is the construction of a low-dimensional representation of a
given dataset as a linear combination of uncorrelated basis vectors (principal components).
To obtain such basis vectors, we begin by organizing our data as a N × p matrix, which we
shall denote by X, with N being the number of images (observations) and p the number of
pixels (features) in each image. We begin by centring the dataset, meaning that the average
image must be subtracted to each individual frame. From the centred data, we can easily
construct the p× p covariance matrix S as:

S =
X>X
N − 1

, (A9)

with X> denoting the transpose of X. In general, such covariance matrices are quite large,
with p� N, such as in our particular case. We are now interested in the diagonalisation of
the covariance matrix S. This is, in general, not an easy task, given the high dimensionality
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of the feature space. Nevertheless, it can be shown that the rank of S is, at most, N. Let us
begin by assuming A to be an eigenvector of S with eigenvalue λ:

SA = λA. (A10)

By multiplying Equation (A10) on the left by X and replacing S by the definition in
Equation (A9), we obtain:

ΣY = λY, (A11)

with Σ = XX>/(N − 1) and Y = XA. Hence, S and Σ have the same spectrum of, at most,
N real eigenvectors, given that Σ is a N × N matrix. Since S (and Σ) is symmetric, the ein-
genvectors are orthogonal, thus providing an uncorrelated basis that spans the subspace
with the highest data variance from the full data space. The principal components are
defined as the normalised eigenvectors, in decreasing order of their respective eigenvalue,
which represents the variance of the data projected on the subspace spanned by each
eigenvector. In this way, the principal components provide an orthonormal basis that spans
the subspace of the dataset with the highest variance. Consequently, and in general, we can
account for a great percentage of the variability in the data with just a few components,
such as in our experiment. This also offers a way of filtering noise from experimental data
by selecting only relevant principal components [31]. Finally, it is possible to represent each
image as a sum of the average frame and a linear combination of modes whose weights are
obtained by its projection (inner product) onto the corresponding component. PCA analysis
has been used in the study of cold atom dynamics, both in the classical and quantum
regimes [33].
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