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Abstract: Pressure shifts inside an atomic beam are among the more theoretically challenging effects
in high-precision measurements of atomic transitions. A crucial element in their theoretical analysis
is the understanding of long-range interatomic interactions inside the beam. For excited reference
states, the presence of quasi-degenerate states leads to additional challenges, due to the necessity
to diagonalize large matrices in the quasi-degenerate hyperfine manifolds. Here, we focus on the
interactions of hydrogen atoms in reference states composed of an excited nD state (atom A), and
in the metastable 2S state (atom B). We devote special attention to the cases n = 3 and n = 8. For
n = 3, the main effect is generated by quasi-degenerate virtual P states from both atoms A and B and
leads to experimentally relevant second-order long-range (van-der-Waals) interactions proportional
to the sixth inverse power of the interatomic distance. For n = 8, in addition to virtual states with
two states of P symmetry, one needs to take into account combined virtual P and F states from atoms
A and B. The numerical value of the so-called C6 coefficients multiplying the interaction energy was
found to grow with the principal quantum number of the reference D state; it was found to be of the
order of 1011 in atomic units. The result allows for the calculation of the pressure shift inside atomic
beams while driving transitions to nD states.

Keywords: van der Waals interaction; perturbation theory; quasi-degenerate states; fine-structure-
hyperfine structure mixing

PACS: 31.30.jh; 31.30.J-; 31.30.jf

1. Introduction

In general, optical frequency measurements of nD–2S transition in hydrogen are of
significant interest in high-precision spectroscopy [1–4]. For the interpretation of experi-
mental data, the pressure shift experienced by atoms inside the atomic beam is of particular
interest [5,6] and its description requires considerable theoretical effort. This is because
the pressure shift is generated by interatomic long-range (van-der-Waals) interactions. The
evaluation of the interaction potentials constitutes a highly nontrivial task in the case of
excited-state atoms [7–12] in view of the nontrivial placement of the infinitesimal imaginary
parts in the propagator denominators [10], as well as due to the necessity of employing
hyperfine resolution for the evaluation of the long-range interaction in the presence of
quasi-degenerate states.

The leading-order van-der-Waals interaction between two excited electrically neutral
hydrogen atoms, which are in spherically symmetric states, has been studied in Refs. [7–9],
with a full account of the hyperfine sub-manifolds of states. Long-range interactions among
excited-state atoms are characterized by the presence of quasi-degenerate states. Therefore,
the treatment of the long-range (van-der-Waals) interaction of two excited atoms proceeds
differently from that of ground-state atoms and from that of the excited-ground-state system.
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This statement applies in particular to atoms where the virtual transitions to the quasi-
degenerate states are of low multipole order, e.g., in the case of dipole-allowed transitions.

For two atoms in reference S states, virtual dipole transitions to P states lead to
interaction potentials proportional to 1/R6, where R is the interatomic distance. The so-
called C6 coefficients multiplying the second-order interaction potential can assume large
numerical values in the presence of quasi-degenerate states (see Refs. [6,8,9,12,13]). For
hydrogen, two sources of quasi-degeneracy need to be distinguished. The first of these is
the Lamb shift. For example, in the n = 2 manifold of states, the 2P1/2 state is removed
from 2S only by the Lamb shift frequency interval of 1057.8 MHz, which is very small on the
scale of atomic energy. The latter is governed by the Hartree energy Eh = α2 me c2 ≈ 27.2 eV
(here, α is the fine-structure constant, me is the electron mass, and c is the speed of light).
The other source of quasi-degeneracy lies in the hyperfine structure itself. For example, in
the case of two hydrogen atoms in metastable 2S states, the hyperfine splitting (together
with the Lamb shift) enters the propagator denominators in the coefficients of the 1/R6

interaction [8]. (Note that first-order interactions, proportional to 1/R3, average out to zero
in the calculation of pressure shifts in atomic beams [5,6] and are therefore not considered
here. Higher orders of perturbation theory, by contrast, lead to more powers of R in
the interaction energy and thus to parametric suppression.) Due to the extremely long
wavelength of hyperfine and fine-structure transitions (when measured on the atomic
scale), the dominant contribution to the long-range interaction remains nonretarded on all
experimentally relevant length scales.

A prime example is the interaction of metastable hydrogen atoms in the 2S state with
other hydrogen atoms in excited nD states. We here put special emphasis on the cases
n = 3 and n = 8. There are dipole-allowed virtual transitions to 2P and nP, as well as nF
states (the latter are present for n = 8). The presence of these quasi-degenerate states makes
a full diagonalization of the van-der-Waals Hamiltonian in the hyperfine-resolved basis
necessary. Since ` = 2 for D states, there are 2`+ 1 possible projections of orbital angular
momentum along the axis of quantization, in addition to the spin projections. This aspect
enhances the dimensionality of the Hamiltonian matrices in the hyperfine-resolved basis,
which describes the virtual transitions among the energetically quasi-degenerate states.
The second complicating aspect is that, within the hyperfine-resolved manifolds, we also
have fine-structure-hyperfine-structure mixing matrix elements, which couple states with
different j values (but the same F), where j is the total angular momentum of the electronic
part and F is the overall total angular momentum quantum number (which includes the
nuclear spin).

SI mksA units are used throughout this paper, which is organized as follows. Details
of the Hamiltonian of our system are discussed in Section 2. In Section 3, for the (3D; 2S)
system, we look into how the Hamiltonian matrix decomposes into nine hyperfine mani-
folds, namely, Fz = ±4,±3,±2,±1, 0, where Fz is the sum of the projections of F for both
atoms. We devote Section 4 to the analysis of the second-order van-der-Waals shifts in the
(8D; 2S) system. Conclusions are drawn in Section 5.

2. Mathematical Formalism

The total Hamiltonian of a system, in which two neutral hydrogen atoms interact with
each other, can be written as

H = H0 + HvdW , (1)

where the perturbation HvdW is the van-der-Waals Hamiltonian of the system. The unper-
turbed Hamiltonian H0 is the sum of the Lamb shift Hamiltonian HLS, the fine-structure
Hamiltonian HFS, and the hyperfine-structure Hamiltonian HHFS,

H0 = ∑
i=A,B

[HS,i + HLS,i + HFS,i + HHFS,i] . (2)
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Here i = A, B enumerates the two atoms involved in the interaction. In SI mksA
units adapted to the atomic scale (using the Hartree energy Eh as the energy scale), the
Schrödinger and the fine-structure Hamiltonians, respectively, can be written as follows:

HS,i =
~p 2

i
2µ2 −

e2

4πε0|~ri|
, (3)

HFS,i = −
~p 4

i
8m3

e c2
+

π

2
Eh α2 δ(3)

(
~ri
a0

)
+

Eh α2 a3
0

4 |~ri|3
~Si ·~Li . (4)

Here, Eh = α2mec2 is the Hartree energy, α is the fine-structure constant, ~ri is the
position vector of the electron with respect to its nucleus for the ith atom, a0 is the Bohr’s
radius, and c is the speed of light. We also add the Lamb shift Hamiltonian, which has the
matrix elements

〈
ni, `i, ji|HLS,i|n′i, `′i, j′i

〉
=

α3 Eh

π n3
i

{[
4
3

ln(α−2) +
38
45

]
δ`i 0

−
1− δ`i 0

2κi(2`i + 1)
− 4

3
ln k0(ni`i)

}
δnin′i

δ`i`
′
i
δji j′i

. (5)

In the above form, the Lamb shift Hamiltonian is taken in leading order (self energy
and vacuum polarization) within the non-recoil approximation. The self-energy operator
and the Uehling potential, are diagonal in the angular-momentum basis [14,15], while the
van-der-Waals interaction couples states with different angular momenta. Note that the
numerical coefficient 38/45 in Equation (5) is, quite famously, the result of a numerical
coefficient 10/9 from the self energy and −4/15 from vacuum polarization [14,15]. The
Bethe logarithm is denoted as ln k0, and the Dirac angular momentum number κ is equal to
κ = (−1)j+`+1/2 (j + 1/2), where we recall that ` is the orbital and j is the total electron
angular momentum. In regard to the principal quantum numbers, we take only the
diagonal matrix elements of the Lamb shift operator into account. Off-diagonal elements
lead to tiny, higher-order corrections in the calculation of the van-der-Waals interaction and
can be ignored.

The ith momentum operator is ~pi and~Li is the orbital angular momentum operator
for electron i. Furthermore, e is the elementary charge, me is the electron mass, and µ is
the reduced mass of the system; ~Si is the spin operator for electron i. The Hamiltonians in
Equations (5) and (4) are given for reference only. In the course of our investigations below,
we use the full theoretical values for the fine-structure splitting and Lamb shift [16].

The hyperfine Hamiltonian is

HHFS,i =
Eh α2

4
me

mp
gs gp

[
8π

3
(~Si ·~Ii) δ(3)

(
~ri
a0

)

+
a3

0

[
3(~Si · r̂i)(~Ii · r̂i)− ~Si ·~Ii

]
|~ri|3

+
a3

0

[
~Li ·~Ii

]
|~ri|3

 , (6)

where ~Ii is the spin operators for proton i. The proton mass is denoted as mp, while
gs ≈ 2.002 319 and gp ≈ 5.585695 are the electronic and protonic g-factors.

The perturbation comes through the distance-dependent van-der-Waals Hamiltonian
of the system HvdW. The interaction Hamiltonian of atoms A and B can be written as

ĤAB = HvdW = Eh a0

[
1

|~RA − ~RB|
+

1
|~rA −~rB|

− 1
|~rA − ~RB|

− 1
|~rB − ~RA|

]
, (7)
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where ~RA and ~RB are the position vectors of atoms A and B, respectively, whose electrons
are at positions~rA and~rB. We assume that the inter-nuclear distance, |~RA − ~RB| = |~R|
is much larger than the distance between a nucleus and its respective electron, i.e., R =
|~R| � |~rA − ~RA| = |~r A| as well as |~R| � |~rB − ~RB| = |~r B|, where the components of ~r i
are given as

~r i = xi êx + yi êy + zi êz , i = A, B . (8)

The leading-order contribution to the van-der Waals interaction is the dipole–dipole
interaction, which reads

HvdW
l.o.
== Eh a0

[
~r A ·~r B

R3 − 3(~R ·~r A)(~R ·~r B)

R5

]
=

e2

4πε0

xA xB + yA yB − 2zA zB

R3 , (9)

where we assume that the interatomic separation is aligned with the quantization axis,
~R = R êz. The corresponding Feynman diagram for one-photon exchange (for the (nD; 2S)
system, involving virtual P states) is depicted in Figure 1.

nD

2S

nP

2P

(a)

nD

2S

2P

nP

(b)

Figure 1. Feynman diagram for the one-photon exchange interaction within the quasi-degenerate
basis of the nD and 2S atoms. There are two combinations of final states possible within the manifolds
of quasi-degenerate states investigated here, as evident from (a,b). Both processes are taken into
account in our formalism. For n = 3, the displayed diagrams constitute all diagrams relevant to the
1/R6 interaction; for n = 8, there are two further diagrams where the nP states is replaced by an nF
state. This is explained in further detail in Section 4.

The role of the virtual 2P3/2 states is worthy of special attention. The 2S and 2P1/2
levels are displaced only by the classic Lamb shift, L2, while the 2P3/2 levels are displaced
by the fine structure which is larger than the classic Lamb shift by an order of magnitude
(see Figure 2). Because of this relatively large separation from the reference 2S level, we
discard the 2P3/2 states. The theoretical accuracy of our results for the C6 coefficients can
thus be estimated to be on the order of roughly 10%. We stress that the main aim of our
calculations is the determination of estimates of the C6 coefficients for pressure shifts in
atomic beams; the pressure shift is proportional to |C6|2/5 (see Ref. [6]). The resulting
theoretical uncertainty of 4% in the pressure shift is perfectly acceptable, both because the
effect is small overall and because its determination depends on other parameters such as
the volume density of atoms in the beam, which can typically be estimated only with much
less precision [6]. Thus, here and in the following, whenever we discuss nP3/2 levels, we do
not mean n = 2. The 3D3/2 and 3P3/2 levels are about ∼5 MHz apart, and the separation
between 8D3/2 and 8P3/2 levels is only about ∼0.29 MHz. The spacing between 3P1/2
and 3P3/2 levels is about three orders of magnitude larger than the 3P3/2–3D3/2 splitting
(see Figure 2a). The same is true in the case of 8P1/2–8P3/2 and 8P3/2–8D3/2 spacings (see
Figure 2b). The role of virtual nP1/2 states is thus suppressed in comparison to virtual
nP3/2 states. The energetically quasi-degenerate nP3/2–nD3/2 transition plays a significant
role in the long-range nD–2S interaction.

When setting up the calculation, it is useful to define the following parameters:

H =
gN
18

α4m2
e c2

mp
= 59.21498 MHz = 8.99967× 10−9Eh , (10)
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L2 = E(2P1/2)− E(2S1/2) = h 1057.8447 MHz = 1.60774 × 10−7Eh , (11)

F3PD = E(3P3/2)− E(3D3/2) = h 5.33172 MHz = 8.10331× 10−10Eh , (12)

F3D = E(3D3/2)− E(3D5/2) = h 1083.33970 MHz = 1.64649× 10−7Eh . (13)

Fine–Structure of Neighboring Levels for nD and 2S Hydrogenic States (n = 3, 8)

(a) States Relevant for the (3D; 2S) System (b) States Relevant for the (8D; 2S) System

Figure 2. Schematic diagram for energy levels showing the fine structure splittings for n = 2 and
n = 3 levels (a) and n = 2 and n = 8 levels (b). The spacing between the energy levels are not
scaled; some closely spaced splittings are exaggerated in comparison with the widely spaced ones for
better visibility. In (b), instead of displaying all the energy levels for n = 3, 4, · · · , 7, we introduced a
break in the vertical axis. The nD3/2–nD5/2 and nP1/2–nP3/2 splittings are denoted as FnD and FnP,
respectively, while nP3/2–nD3/2 splittings are denoted as FnPD.

The hyperfine parameter H is the hyperfine splitting between the F = 0 hyperfine
singlet and the F = 1 hyperfine triplet of the 2P1/2 states; F3PD is fine-structure splitting
between 3P3/2 and 3D3/2 levels whereas F3D is the fine-structure splitting between 3D3/2
and 3D5/2 levels of hydrogen atom [16]. Corresponding quantities for the (8D; 2S) system
are defined in Figure 2b. Numerical values of fundamental physical constants are taken
from Refs. [17,18]. One can calculate the ratios of energy level spacings given in Figure 2
and find that the Lamb shift Ln and the fine-structure splittings FnP, FnD, and FnPD
approximately follow the 1/n3 scaling law, where n is the principal quantum number.

Due to the multitude of relevant levels in the n = 3 and n = 8 manifolds, it is
alternatively possible to define the following parameters:

Ξ(n`j) =
E(n`j)− E(nP1/2)

α5mec2 , (14)

where Ξ(n`j) is a dimensionless parameter which expresses the energy displacement of the
level with quantum numbers n, `, and j from the energetically lowest level nP1/2 within the
manifold of given n in units of the Lamb shift scale α5mec2. One may use the database [16]
to obtain the following results:

Ξ(2P1/2) = 0 , Ξ(2S1/2) = 0.41373 , Ξ(2P3/2) = 4.2901 , (15)

Ξ(3P1/2) = 0 , Ξ(3S1/2) = 0.12315 , Ξ(3D3/2) = 1.2691 , (16)

Ξ(3P3/2) = 1.2711 , Ξ(3D5/2) = 1.6927 , (17)

Ξ(8P1/2) = 0 , Ξ(8S1/2) = 0.006518 , (18)

Ξ(8D3/2) = 0.066919 , Ξ(8P3/2) = 0.067033 , (19)

Ξ(8F5/2) = 0.089222 , Ξ(8D5/2) = 0.089262 , Ξ(8F7/2) = 0.100039 . (20)
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The smaller parameters for n = 8 illustrate that the higher excited states are energeti-
cally closer than for n = 3, which results in smaller propagator denominators and larger
second-order long-range energy shifts.

To explain these ideas, a few remarks might be in order. An atom in a 2S state has
four hyperfine states, namely, a hyperfine singlet for F = 0 and a hyperfine triplet for
F = 1. The nD states have nD3/2 and nD5/2 fine structures. For nD3/2, the hyperfine
quantum number F takes the values F = 1 and F = 2, while for nD5/2 states, one either has
F = 2 or F = 3. As a result, the nD3/2 and nD5/2 states further split into eight and twelve
hyperfine states, respectively. For atomic states with ` = 3, one has hyperfine manifolds
with F = 3 and F = 4. We here use the notation |n, `, j, F, Fz〉 to denote the basis states,
where n is the principal quantum number, ` is the orbital quantum number, and j is the
total (orbital + spin) electronic angular momentum quantum number. Furthermore, we
denote by F the overall total (orbital + electron spin + nuclear spin) angular momentum
quantum number. The projection of the overall total angular momentum quantum number
onto the quantization axis (z axis, aligned with the interatomic separation) of an individual
atomic electron is denoted as Fz (or, as Fz,i with i = A, B if the specification of the atom
is not clear from the context). For the two atoms, we anticipate that the total overall
angular momentum projection is Fz = Fz,A + Fz,B as the sum of the projections for the
electrons in atoms A and B. The quantum number Fz is a conserved quantity under the
long-range interaction and allows us to separate the Hamiltonian matrices into mutually
noninteracting submanifolds.

The unperturbed states in our problem are thus the states

|φ〉 = |(nA, `A, jA, FA, Fz,A)A (nB, `B, jB, FB, Fz,B)B〉 , (21)

with both hydrogen atoms in well-defined hyperfine states. The hyperfine states are
constructed from the states |n, `, j〉 via the addition of the nuclear angular momentum.
Conversely, one establishes, with reference to Equation (5), the diagonality of the Lamb
shift Hamiltonian in the hyperfine basis:〈

ni, `i, ji, Fi, Fz,i|HLS,i|n′i, `′i, j′i , F′i , F′z,i
〉
=
〈
ni, `i, ji|HLS,i|n′i, `′i, j′i

〉
δFi F′i

δFz,i F′z,i
. (22)

In this context, it is useful to remember that hyperfine effects are excluded from the
energy levels of states |n, `, j〉 given in the database [16]. This observation applies to the
definition of the Ξ parameters in Equation (14).

Let us now briefly discuss the evaluation of the diagonal elements of the hyperfine
Hamiltonian, noting that we can temporarily drop the index i = A, B indicating the atom,
since we are dealing with two identical hydrogen atoms. The expectation value of HHFS
measures the diagonal entries of the hyperfine splitting Hamiltonian, and it reads [19]

EHFS(n, `, j, F) = 〈n, `, j, I, F, Fz|HHFS|n, `, I, F, Fz〉

=
α gN

2
m2

e
mp

ξe(`, j) [F(F + 1))− I(I + 1)− j(j + 1)] , (23)

where mp is the proton mass. The quantity ξe(`, j) depends only on the electronic part. In
the nonrelativistic limit, one obtains the following results [19]:

ξe(0, 1
2 ) =

4 α3 me c2

3 n3 , ξe(1, 1
2 ) =

4 α3 me c2

9 n3 , ξe(1, 3
2 ) =

4 α3 me c2

45 n3 , (24)

ξe(2, 3
2 ) =

4 α3 me c2

75 n3 , ξe(2, 5
2 ) =

4 α3 me c2

175 n3 , ξe(3, 5
2 ) =

4 α3 me c2

245 n3 , (25)

ξe(3, 7
2 ) =

4 α3 me c2

441 n3 . (26)
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The proton spin is I = 1/2. For all hydrogenic states of interest, Equations (23)
and (24) define the hyperfine splitting uniquely. An example is the hyperfine energy shift
of 2S states:

EHFS(n = 2, ` = 0, j = 1
2 , F) =

gN
12

α4m2
e c2

mp

[
F(F + 1)− 3

2

]
. (27)

For 8F5/2 and 8F7/2 states, one obtains the results

EHFS(n = 8, ` = 3, j = 5
2 , F) =

gN α4m2
e c2

62720 mp

[
F(F + 1)− 19

2

]
, (28)

EHFS(n = 8, ` = 3, j = 7
2 , F) =

gN α4m2
e c2

112896 mp

[
F(F + 1)− 33

2

]
. (29)

It is well known that the hyperfine Hamiltonian has off-diagonal elements in the fine-
structure resolved basis. The relevant off-diagonal elements of the hyperfine Hamiltonian
for the (nD; 2S) reference states under investigation are given by〈

n = 3, ` = 2, j =
5
2

, F = 2, Fz

∣∣∣∣HHFS

∣∣∣∣n = 3, ` = 2, j′ =
3
2

, F = 2, Fz

〉
= − gN α4m2

e c2

1350
√

6 mp
, (30)〈

n = 8, ` = 2, j =
5
2

, F = 2, Fz

∣∣∣∣HHFS

∣∣∣∣n = 8, ` = 2, j′ =
3
2

, F = 2, Fz

〉
= − gN α4m2

e c2

25600
√

6 mp
. (31)

The nontrivial off-diagonal matrix elements are incurred for nD3/2 and nD5/2 states
with the same overall total angular momentum quantum number F = 2 and the same Fz. It
is evident from the ratio of Equation (30) to Equation (31), i.e., 83 : 33, that the off-diagonal
hyperfine splitting follows the 1/n3 scaling.

A rediagonalization of the hyperfine Hamiltonian in the basis of states

|a〉 =
∣∣∣nDF=2

3/2 (Fz)
〉
=

∣∣∣∣n, 2,
3
2

, 2, Fz

〉
, |b〉 =

∣∣∣nDF=2
5/2 (Fz)

〉
=

∣∣∣∣n, 2,
5
2

, 2, Fz

〉
, (32)

leads to the following second-order energy shifts:

∆E(2)(3D; F = 2) =
1

33750
H2

4
75H+F3D

= ∆3 Eh , ∆3 = 1.4618× 10−14 , (33)

∆E(2)(8D; F = 2) =
27

327 680 000
H2

9
3200H+F8D

= ∆8 Eh , ∆8 = 7.7087× 10−16 . (34)

Taking the ratio of the ∆s from Equations (33) and (34), we have ∆3 : ∆8 ≈ 83 : 33,
consistent with the fact that ∆n ∼ 1/n3.

3. Second–Order van-der-Waals Shifts in the (3D; 2S) System

The calculation proceeds as follows. The reference states are (3D; 2S) states, with one
atom in the metastable 2S state and the other in the excited 3D state. One includes virtual
(3P; 2P) states that could be reached via electric dipole transitions and have nonvanishing
transition matrix elements with the Hamiltonian (9). Specifically, for the reasons outlined
above, one investigates the manifolds composed of the product states of 2S1/2(F = 0, 1),
2P1/2(F = 0, 1), 3P1/2(F = 0, 1), 3P3/2(F = 1, 2), 3D3/2(F = 1, 2), and 3D5/2(F = 2, 3). Of
the product states, only the (3D; 2S) states could be interpreted as reference states. The
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total number of states is 4 + 4 + 4 + 8 + 8 + 12 = 40. These states could in principle form
402 = 1600 product states in hyperfine resolution, which all should be analyzed. However,
we can select from the product states only those that are energetically quasi-degenerate with
respect to the reference states. The physically relevant basis states have nA + nB = 5 for the
(3D; 2S) interaction and `A + `B = 2. Namely, for `A = 0 and `B = 2, one has a reference
state, while for `A = `B = 1, one has a virtual state composed of two P states. Here, ni and
`i are the principal and the orbital angular quantum numbers, respectively, of the ith atom
(i = A, B). The van-der-Waals Hamiltonian (9) is diagonal in the quantum number

Fz = Fz,A + Fz,B , (35)

which is the sum of the two projections of atoms A and B. One can easily find that
the nine physically relevant hyperfine manifolds are those with Fz = 0,±1,±2,±3,
±4. The two reference states in the Fz = 4 hyperfine manifold are (see also Table 1),

|ψ1〉 = |2, 0, 1
2 , 1, 1〉A |n, 2, 5

2 , 3, 3〉B , |ψ2〉 = |n, 2, 5
2 , 3, 3〉A |2, 0, 1

2 , 1, 1〉B . (36)

Table 1. Multiplicities are given for reference (nDj=3/2,j=5/2; 2S) states, in the submanifolds with
different Fz = 0,±1,±2,±3,±4. For reference, we point out that the highest Fz value (Fz = 4) is
reached for reference states composed of the F = 3 hyperfine submanifold of the D5/2 states with
maximum projection on the quantization axis, and the F = 1 hyperfine submanifold of the S1/2

states, also with maximum projection on the quantization axis. Entries marked with a long hyphen
(–) indicate unphysical combinations.

(jA, FA) Fz = 0 Fz = ±1 Fz = ±2 Fz = ±3 Fz = ±4 Total

( 5
2 , 3) 8 8 8 6 2 56

( 5
2 , 2) 8 8 6 2 – 40

( 3
2 , 2) 8 8 6 2 – 40

( 3
2 , 1) 8 6 2 – – 24

Total 32 30 22 10 2 160

The Fz = 4 manifold does not involve any quasi-degenerate (P; P) states that could
be reached via dipole transitions (remember that we exclude 2P3/2 states); hence, the
second-order energy shift vanishes (see also Table 2). The manifolds with Fz = ±3 have
12 quasi-degenerate states, while for Fz = ±2, one has 32 quasi-degenerate states. For
Fz = ±1, one encounters 52 states, while for Fz = 0, one has 60 states. For an example of
a matrix obtained for a given value of Fz in a related calculation for a different atomic-state
configuration, we refer to Section 3.4 of Ref. [5]. Our calculation reported here proceeds
analogously, but with even higher-dimensional matrices for each Fz as compared to Ref. [5].

For clarity, we thus present one particular case, namely, the Fz = 4 submanifold for
the (8D; 2S) system, in Section 4. Note also that, as explained in the discussion following
Equation (9), the final results for the C6 coefficients have a theoretical uncertainty of roughly
10%. We still indicate the results in Table 2 to five significant figures, in order to facilitate an
accurate independent recalculation of the coefficients within the indicated, specified basis
set of states. The quoted accuracy is thus nominal and does not imply that all indicated
figures are physically significant.

One then selects from every Fz manifold the reference (3D; 2S) states with the defined
Fz eigenvalue and then calculates the second-order shifts due to all (3P; 2P) hyperfine
sublevels coupled to the reference level via the van-der-Waals Hamiltonian. One verifies
that the first-order shifts vanish when the average is taken in a specific Fz manifold, which
makes the first-order shifts physically irrelevant [6]. One may average the second-order
shifts in various ways. For a given Fz value, when averaging over the possible j and F
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values of the excited D state, one obtains the the following results after the extensive use of
computer algebra [20],

〈E(3D,Fz = 0)〉j,F =
9.9498× 108 Eh

ρ6 , (37)

〈E(3D,Fz = ±1)〉j,F =
8.9918× 108 Eh

ρ6 , (38)

〈E(3D,Fz = ±2)〉j,F =
6.6624× 108 Eh

ρ6 , (39)

〈E(3D,Fz = ±3)〉j,F =
3.6042× 108 Eh

ρ6 , (40)

〈E(3D,Fz = ±4)〉j,F = 0 . (41)

Table 2. Second-order van-der-Waals shifts of the 1/R6-type are given for 3Dj hydrogen atoms
interacting with 2S-state hydrogen via virtual P states. Entries marked with a long hyphen (–)
indicate unphysical combinations of F and Fz values, within our basis of states. We denote the scaled
interatomic distance by ρ = R/a0 and give all energy shifts in atomic units, i.e., in units of the Hartree
energy Eh = α2mec2. The symbol ∆3 denotes the fine-structure-hyperfine-structure mixing term,
which is given in Equation (33). Recall that Fz = Fz,A + Fz,B; however, the FA quantum number in
the table is that of the 3Dj state, which constitutes the reference state.

(jA, FA) Fz = 0 Fz = ±1 Fz = ±2 Fz = ±3 Fz = ±4

(
5
2

, 3) 1.0743× 109

ρ6
9.9925× 108

ρ6
7.7411× 108

ρ6
4.2149× 108

ρ6
0

(
5
2

, 2) 1.0595× 109/ρ6 +∆3 9.0978× 108/ρ6 +∆3 5.4505× 108/ρ6 +∆3 9.8638× 107/ρ6 +∆3 –

(
3
2

, 2) 9.5443× 108/ρ6−∆3 8.7210× 108/ρ6−∆3 6.8471× 108/ρ6−∆3 4.3899× 108/ρ6−∆3 –

(
3
2

, 1) 8.9169× 108

ρ6
7.8772× 108

ρ6
5.4296× 108

ρ6
– –

When averaging over Fz for given j and F, one has

〈E(3D5/2, F = 3)〉Fz
=

7.5046× 108 Eh
ρ6 , (42)

〈E(3D5/2, F = 2)〉Fz
=

(
∆3 +

7.4919× 108

ρ6

)
Eh , (43)

〈E(3D3/2, F = 2)〉Fz
=

(
−∆3 +

7.8904× 108

ρ6

)
Eh , (44)

〈E(3D3/2, F = 1)〉Fz
=

7.8158× 109 Eh
ρ6 . (45)

The fine-structure averages, keeping j fixed but averaging over F and Fz, are given as

〈E(3D5/2)〉F,Fz
=

(
5

12
∆3 +

7.4993× 108

ρ6

)
Eh , (46)

〈E(3D3/2)〉F,Fz
=

(
−5

8
∆3 +

7.8624× 108

ρ6

)
Eh . (47)

Recall that ∆3 is given in Equation (33).
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4. Second–Order van-der-Waals Shifts in the (8D; 2S) System

One proceeds similar to the (3D; 2S) case. With the reference (8D; 2S) states, one
includes virtual (8P; 2P) and virtual (8F; 2P) states that could be reached via electric
dipole transitions and have nonvanishing transition matrix elements with the Hamil-
tonian (9). Specifically, one investigates the manifolds composed of the product states
of 2S1/2(F = 0, 1), 2P1/2(F = 0, 1), 8P1/2(F = 0, 1), 8P3/2(F = 1, 2), 8D3/2(F = 1, 2), and
8D5/2(F = 2, 3), as well as 8F5/2(F = 2, 3) and 8F7/2(F = 3, 4). Only the hyperfine
manifolds of the (8D; 2S) states act as reference states. The total number of states is
4 + 4 + 4 + 8 + 8 + 12 + 12 + 16 = 68 states. Of the 682 = 4624 product states, one can se-
lect only those which are energetically quasi-degenerate with respect to the reference states.
The relevant basis states have nA + nB = 10 for the (8D; 2S) interaction, and `A + `B = 2
and/or `A + `B = 4 (virtual (F; P) states). For `A = 0 and `B = 2, one has a reference state,
while for `A = `B = 1, `A = 1, and `B = 3, one has virtual states. Here, again, ni and `i are
the principal and the orbital angular quantum numbers of the ith atom (i = A, B). Since
the van-der-Waals Hamiltonian (9) is diagonal in the quantum number Fz = Fz,A + Fz,B,
one can diagonalize the interaction in the submanifolds with Fz = 0,±1,±2,±3,±4,±5
separately. For our purposes, the submanifold with Fz = ±5 is physically irrelevant
because it does not contain (8D; 2S) reference states.

For the (8D; 2S) system, one needs to consider a complicated array of virtual P and F
states. The manifold with Fz = 4 (which contains 12 quasi-degenerate states) provides us
with an opportunity to illustrate the calculation by way of and example. To this end, we
supplement the definition given in Equations (10)–(13) as follows:

V ≡ 3
e2

4πε0

a2
0

R3 =
3 Eh
ρ3 , (48)

where V measures the characteristic scale of a first-order element of the nonretarded van-
der-Waals interaction, and the interatomic distance, expressed in atomic units, is denoted
as ρ = R/a0. The first six states, given in the notation introduced in Equation (21), in the
manifold with Fz = 4 are as follows,

|φ1〉 = |(2, 0,
1
2

, 1, 1)A (8, 2,
5
2

, 3, 3)B〉 , |φ2〉 = |(2, 1,
1
2

, 0, 0)A (8, 3,
7
2

, 4, 4)B〉 , (49)

|φ3〉 = |(2, 1,
1
2

, 1, 0)A (8, 3,
7
2

, 4, 4)B〉 , |φ4〉 = |(2, 1,
1
2

, 1, 1)A (8, 3,
5
2

, 3, 3)B〉 , (50)

|φ5〉 = |(2, 1,
1
2

, 1, 1)A (8, 3,
7
2

, 3, 3)B〉 , |φ6〉 = |(2, 1,
1
2

, 1, 1)A (8, 3,
7
2

, 4, 3)B〉 . (51)

They are complemented by six further states with Fz = 4,

|φ7〉 = |(8, 2,
5
2

, 3, 3)A (2, 0,
1
2

, 1, 1)B〉 , |φ8〉 = |(8, 3,
5
2

, 3, 3)A (2, 1,
1
2

, 1, 1)B〉 , (52)

|φ9〉 = |(8, 3,
7
2

, 3, 3)A (2, 1,
1
2

, 1, 1)B〉 , |φ10〉 = |(8, 3,
7
2

, 4, 3)A (2, 1,
1
2

, 1, 1)B〉 , (53)

|φ11〉 = |(8, 3,
7
2

, 4, 4)A (2, 1,
1
2

, 0, 0)B〉 , |φ12〉 = |(8, 3,
7
2

, 4, 4)A (2, 1,
1
2

, 1, 0)B〉 . (54)

In the basis of states |φi=1,...,6〉, the matrix of the total Hamiltonian defined in Equation (1) is
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H′ =



E2, 5
2

0, 1
2
+ 6729H

8960 −12
√

55
7 V 12

√
55
7 V − 8

√
165
7 V − 12

√
55

7 V 12
√

55
7 V

−12
√

55
7 V E3, 7

2

1, 1
2
− 1343

1792H 0 0 0 0

12
√

55
7 V 0 E3, 7

2

1, 1
2
+ 449

1792H 0 0 0

− 8
√

165
7 V 0 0 E3, 5

2

1, 1
2
+ 3145

12544H − 3
√

3H
50176 0

− 12
√

55
7 V 0 0 − 3

√
3

50176H E3, 7
2

1, 1
2
+ 3127

12544H 0

12
√

55
7 V 0 0 0 0 E3, 7

2

1, 1
2
+ 449

1792H


. (55)

Here,
E`′ ,j′

`,j = En=2,`,j + En=8,`′ ,j′ (56)

is a concise notation for the unperturbed energy levels without hyperfine effects. The energy
level En,`,j = E(n`j) enters the definition of the Ξ parameter according to Equation (14).
Now, in the basis of states |φi=7,...,12〉, the Hamiltonian matrix of the total Hamiltonian
defined in Equation (1) can be calculated as

H′′ =



E2, 5
2

0, 1
2
+ 6729

8960H − 8
√

165V
7 − 12

√
55V

7 12
√

55
7 V −12

√
55
7 V 12

√
55
7 V

− 8
√

165
7 V E3, 5

2

1, 1
2
+ 3145

12544H − 3
√

3
50176H 0 0 0

− 12
√

55
7 V − 3

√
3

50176H E3, 7
2

1, 1
2
+ 3127

12544H 0 0 0

12
√

55
7 V 0 0 E3, 7

2

1, 1
2
+ 449

1792H 0 0

−12
√

55
7 V 0 0 0 E3, 7

2

1, 1
2
− 1343

1792H 0

12
√

55
7 V 0 0 0 0 E3, 7

2

1, 1
2
+ 449

1792H


. (57)

The Hamiltonian forFz = 4 in in the basis of the twelve states listed in Equations (49)–(54) is

HFz=4 =

(
H′ 06×6

06×6 H′′

)
, (58)

where 06×6 is a 6-by-6 matrix with zero entries. For the manifolds with Fz = ±3, we
already have 34 quasi-degenerate states and the presentation of the Hamiltonian matrix is
not practical. For Fz = ±2, one already has 62 quasi-degenerate states. For Fz = ±1, one
encounters 84 states, while for Fz = 0, one has 92 states in the quasi-degenerate, hyperfine-
resolved basis. One then proceeds as in the (3D; 2S) case, selects the reference states, and
calculates the second-order shifts in the quasi-degenerate bases. When averaging over j
and F for a given Fz, one obtains

〈E(8D,Fz = 0)〉j,F =
3.4778× 1011 Eh

ρ6 , (59)

〈E(8D,Fz = ±1)〉j,F =
3.2626× 1011 Eh

ρ6 , (60)

〈E(8D,Fz = ±2)〉j,F =
2.8373× 1011 Eh

ρ6 , (61)

〈E(8D,Fz = ±3)〉j,F =
2.4342× 1011 Eh

ρ6 , (62)

〈E(8D,Fz = ±4)〉j,F =
2.0722× 1011 Eh

ρ6 . (63)



Atoms 2022, 10, 6 12 of 14

Of particular interest is the global hyperfine average of the second-order van-der-Waals
shifts over all possible Fz values for given values of j and F (see also Table 3):

〈E(8D5/2, F = 3)〉Fz
=

3.0674× 1011 Eh
ρ6 , (64)

〈E(8D5/2, F = 2)〉Fz
=

(
∆8 +

3.0673× 1011

ρ6

)
Eh , (65)

〈E(8D3/2, F = 2)〉Fz
=

(
−∆8 +

3.0378× 1011

ρ6

)
Eh , (66)

〈E(8D3/2, F = 1)〉Fz
=

3.0377× 1011 Eh
ρ6 . (67)

The fine-structure averages, for fixed j, but averaged over F and Fz, are given as

〈E(8D5/2)〉F,Fz
=

(
5
12

∆8 +
3.0674× 1011

ρ6

)
Eh , (68)

〈E(8D3/2)〉F,Fz
=

(
−5

8
∆8 +

3.0377× 1011

ρ6

)
Eh . (69)

Table 3. Second-order van-der-Waals shifts of the 1/R6-type are given for 8Dj hydrogen atoms
interacting with 2S-state hydrogen atoms in the presence of virtual P states. Just as in Table 2, entries
marked with a long hyphen (–) indicate unphysical combinations of F and Fz values. The interatomic
distance in atomic units is denoted as ρ = R/a0. All energy shifts are given in Hartrees. The quantity
∆8 constitutes the fine-structure-hyperfine-structure mixing term, which is given in Equation (34).
Recall that Fz = Fz,A + Fz,B; however, the FA-number in the table is for the reference 8Dj state.

(jA, FA) Fz = 0 Fz = ±1 Fz = ±2 Fz = ±3 Fz = ±4

(
5
2

, 3) 3.6868× 1011

ρ6
3.5107× 1011

ρ6
2.9827× 1011

ρ6
2.5080× 1011

ρ6
2.0722× 1011

ρ6

(
5
2

, 2) 3.6012× 1011/ρ6 + ∆8 3.2492× 1011/ρ6 + ∆8 2.7431× 1011/ρ6 + ∆8 2.2443× 1011/ρ6 + ∆8 –

( 3
2 , 2) 3.4545× 1011/ρ6−∆8 3.1707× 1011/ρ6−∆8 2.7943× 1011/ρ6−∆8 2.4027× 1011/ρ6−∆8 –

(
3
2

, 1) 3.1689× 1011

ρ6
3.0721× 1011

ρ6
2.6720× 1011

ρ6
– –

The second-order shifts increase with the principal quantum number of the excited
D state, as would be expected. One consults Refs. [5,12] for analogous observations in
the (nP; 2S) systems, with n = 4, 6. We recall that ∆8 is given in Equation (34). One can
now invoke the formalism introduced in Ref. [6], and assume, for definiteness, a typical
number density of N = 2.6 × 1013 atoms/m3, which is 1% of the number density of
the ground state hydrogen atoms used in Ref. [21], at a temperature of T = 5.8 K (see
Ref. [21]). One can estimate the pressure shift from inside the atomic beam for the (8D; 2S)
transitions under the given conditions and on the basis of the data given in Table 3, as
well as Equations (59)–(69), to be of the order of 100 Hz. Under different experimental
conditions, the effect can be much larger.

5. Conclusions

We have studied leading-order (dipole–dipole) long-range interactions in the (3D; 2S)
and (8D; 2S) hydrogen systems with hyperfine resolution. The Hamiltonian of the system
is determined by Lamb shift, fine structure, hyperfine structure, and the long-range inter-
action, as discussed in Section 2. The fine-structure-hyperfine-structure mixing term, ∆n,
couples the nD3/2(F = 2) and nD5/2(F = 2) states. We found that one must include the
2P1/2, nP1/2 and nP3/2 states in the basis (n = 3, 8). However, one can exclude the 2P3/2
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level while maintaining sufficient accuracy, because the 2P1/2 levels are comparatively
closer to the reference 2S level than 2P3/2 (see also the discussion following Equation (9)).
The fine-structure splitting decreases with the principal quantum number. Analogous
considerations are applied to the (8D; 2S) interaction. However, for the (8D; 2S) system, it
is necessary to also consider virtual F levels. We define the quantum number Fz as the sum
of the total overall angular momentum projections Fz,A and Fz,B of both atoms. Discarding
the irrelevant (for our investigations) subspace with Fz = ±5, we resolve the Hamiltonian
matrix into nine hyperfine manifolds with dimensions of at most 92.

The hyperfine-averaged van-der-Waals C6 coefficients of the (3D; 2S) system are of
the order of 108 (in atomic units), while for the (8D; 2S) system, they are of the order of 1011

(in atomic units, see Sections 3 and 4). These constitute very large numerical coefficients
for van-der-Waals interactions. This confirms a trend of increasing C6 with the increasing
quantum number, seen for (nP; 2S) interactions in Refs. [5,12]. The van der Waals-type
collisional shift and the collisional broadening both are linear to the number density of
atoms N and proportional to |C6|2/5 (see Ref. [6]). For typical experimental parameters, the
collisional shift in the (nD; 2S) interaction can easily be as large as a few hundred Hz, if the
number density of the atom in the 2S state is in the order of 1014 atoms/m3. Collisional shifts
inside the atomic beam are among the most challenging systematic effects in high-precision
experiments and are hard to control. We hope to have shed some light on these effects
for the experimentally interesting transitions of the metastable 2S state to the relatively
long-lived excited D states, which have been analyzed in a number of very remarkable
experiments [1–4].
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