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Abstract: The one-dimensional Landau–Vlasov equation describing ultracold dilute bosonic gases
in the mean-field collisionless regime under strong transverse confinement is analyzed using tra-
ditional methods of plasma physics. Time-independent, stationary solutions are found using a
similar approach as for the Bernstein–Greene–Kruskal nonlinear plasma modes. Linear stationary
waves similar to the Case–Van Kampen plasma normal modes are also shown to be available. The
new bosonic solutions have no decaying or growth properties, in the same sense as the analog
plasma solutions. The results are applied for real ultracold bosonic gases accessible in contemporary
laboratory experiments.

Keywords: cold dilute bosonic gas; Landau–Vlasov equation; Bernstein–Greene–Kruskal modes;
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1. Introduction

When the average collision time in ultracold dilute gases made of bosonic atoms is
much larger than the relevant dynamics characteristic time scale, it is possible to have a
model based on the Landau–Vlasov equation [1]. The Landau–Vlasov equation is obtained
from the Boltzmann–Vlasov equation [1–4] neglecting the collision operator. The dynamics
of ultracold bosonic systems, e.g., in the crossover from collisionless to collisional regimes
needs the Boltzmann–Vlasov equation [5]. Hydrodynamic equations [6,7] are useful tools
in the collisional case, for instance, for Bose–Einstein condensates [6] or the superfluid
Fermi gas in the BCS–BEC crossover [8].

Under a very strong transverse confinement, a bosonic gas is in a quasi one-dimen-
sional (1D) configuration. Experimental achievement of quasi-1D systems is realized
in ultracold atoms trapped in optical potentials with harmonic transverse confinement
energies much larger than the temperature or chemical potential [9]. The collisionless
regime is enhanced in the quasi-1D configuration. Indeed, in 1D binary elastic collisions,
particles exchange their energies completely, thus there is no sensible effects from these
collisions between identical particles. Consequently, no thermalization is possible, as
verified in ultracold bosonic atoms trapped in 1D optical lattices [10,11]. For these dilute
1D bosonic systems, the Landau–Vlasov equation is applicable, provided the gas does not
contain a quasi-condensate and that it is not in the Tonks–Girardeau regime, with fermionic
properties [10,12]. We are following the terminology of ultracold atoms community [12]
(and references therein) when referring to the Landau–Vlasov equation. Namely, it is
collisionless so that it has no “Landau collision operator”, as would be implied in the
context of plasma physics.
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Recently [12], the linear stability of solutions of the 1D Landau–Vlasov equation was
investigated by means of well-known methods from plasma physics, namely, the Landau
or Laplace transform approach. In this method, the time-evolution of perturbations around
the equilibrium distribution function is treated as an initial-value problem. The linear
Landau damping rate (or growth rate, for unstable equilibria) is therefore determined upon
the adequate analysis in the complex plane (Landau contour). The similarity between the
Landau–Vlasov equation and the Vlasov–Poisson system describing collisionless electro-
static plasmas provides a stimulating scenario for the application of plasma techniques in a
seemingly uncorrelated area such as in the study of ultracold bosonic gases.

In this context, the present work is dedicated to the discussion of time-independent
solutions and stationary wave solutions for the 1D Landau–Vlasov equation. In plasmas,
stationary solutions for the Vlasov–Poisson system can be derived starting from Jeans’s
theorem according to which the particle distribution function satisfying Vlasov’s equation
should be a function of the constants of motion. In the time-independent case, the particle
energy is such a constant of motion or invariant, as treated in the original work [13]
by Bernstein, Greene, and Kruskal (BGK). By construction, these so-called BGK modes
are exact nonlinear plasma oscillations which do not present damping or growth. The
BGK approach where the energy is the central dynamical variable can be adapted for the
derivation of phase-space hole structures [14–17] and, to a more limited extent, to quantum
plasmas [18].

In spite of the more popular view in terms of the surfing electron interpretation [19],
an alternative, more rigorous interpretation of Landau damping is in terms of the phase
mixing superposition of Case–Van Kampen modes [20]. Introduced by Van Kampen [21]
and demonstrated by Case [22] to form a complete orthogonal set for the linearized Vlasov–
Poisson system, the stationary wave or Case–Van Kampen modes have been discussed in
a variety of contexts. For instance, in plasmas with an ionic background slowly varying
in time [23]; in multidimensional non-uniform plasmas [24]; for nonlinear waves [25];
extended Fermi systems [26]; and electromagnetic [27], collisional [28], and quantum [29]
plasmas. As discussed in Section 3, the Case–Van Kampen modes are also available for an
ultracold boson gas described by the Landau–Vlasov equation.

This work is organized as follows. In Section 2, we revisit the 1D Landau–Vlasov
equation, which was derived and discussed in detail in [12]. Section 3 considers BGK
modes and Section 4 the Case–Van Kampen modes for the 1D Landau–Vlasov equation.
Section 5 is reserved to the conclusions and final remarks.

2. The One-Dimensional Landau–Vlasov Equation

The one-dimensional (1D) Landau–Vlasov equation is given [12] by[
∂

∂t
+

p
m

∂

∂x
− ∂

∂x

(
V(x) + g ρ(x, t)

) ∂

∂p

]
f = 0 , (1)

where f = f (x, p, t) is the 1D probability distribution function, V(x) is the external confine-
ment potential,

ρ = ρ(x, t) =
∫

dp f (x, p, t) (2)

is the axial local density and

g =
4 h̄2as

m a2
⊥

(3)

is the renormalized 1D interaction strength, in which h̄ is the reduced Planck constant, m is
the atomic mass, as is the s-wave scattering length of the interaction between atoms, and
a⊥ is the characteristic transverse width occupied by the dilute bosonic gas. The integrals
are taken from minus to plus infinity except if explicitly stated. The normalization

N =
∫

dx dp f (x, p, t) (4)
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is adopted, where N is the total number of bosons. In some cases we will use the harmonic
external potential

V(x) =
1
2

m ω2x2 (5)

although this choice is not decisive for the following treatment.
The validity conditions of the 1D Landau–Vlasov equation are

h̄ω⊥ �
< p2 >

2m
, (6)

where h̄ω⊥ is the energy associated with the transverse confinement,

4πh̄2ρ2

< p2 >
� 1 , (7)

and m g
h̄2ρ
� 1 . (8)

Equations (6)–(8) are resp. Equations (10), (18) and (19) in [12], assuring a quasi-1D
configuration where the ultracold dilute bosonic gas is neither in a quasi-condensate or
Tonks–Girardeau regime.

3. Bernstein–Greene–Kruskal Modes

In the stationary case where ∂/∂t = 0 everywhere, the general solution to Equation (1) is

f = f (H) , (9)

where f is an arbitrary function of the energy function

H =
p2

2m
+ U(x) (10)

with the total potential
U(x) = V(x) + g ρ(x) . (11)

This holds for arbitrary external potential, as long as it is time-independent. The
same reasoning applies to the BGK solution for the stationary Vlasov–Poisson system, with
some differences. The energy function in the plasma problem contains the electrostatic
potential, while in the bosons problem H depends on the particle distribution function
itself, through the interaction potential g ρ where ρ is a functional of f , viz. Equation (2).
Moreover, there is nothing similar to Poisson’s equation to be self-consistently solved, but
only the normalization condition (4). In this context, therefore, it is not an exaggeration to
consider the stationary Vlasov–Landau equation to be much simpler than the stationary
Vlasov–Poisson system. Nevertheless, concrete applications require a detailed analysis, as
shown in the next examples.

3.1. Maxwell–Boltzmann Distribution

The functional form of f (H) is entirely free, which is in accordance with the collision-
less assumption so that no particular equilibrium (e.g., the Bose–Einstein distribution) is
preferred. Suppose there is a Maxwell–Boltzmann distribution

f (H) =
A√
2π

exp(−β H) (12)

where β has the role of inverse temperature in energy units, A is a normalization constant
to be determined and 1/

√
2π is a numerical factor included for convenience.
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From Equations (2) and (10)–(12), the 1D particle number density is

ρ(x) = A
(

m
β

)1/2
exp

[
−β
(

V(x) + g ρ(x)
)]

. (13)

The axial local density appears in both sides of Equation (13). Nevertheless, in this
example the determining equation can be easily disentangled according to

ρ(x) =
1

β g
W
(

g A
√

β m exp
(
−β V(x)

))
, (14)

where the Lambert W function or product log function is defined [30] as the solution of
W(s) exp[W(s)] = s, in the domain s ≥ −1/e. By construction, the solution is analytically
exact. The exact total potential (11) is also entirely available. For simplicity, a repulsive
interaction (g > 0) is assumed, so that ρ(x) in Equation (14) is automatically a real, positive
definite quantity.

The last step concerns the determination of the normalization constant A. For instance,
for the harmonic potential in Equation (5), it is convenient to introduce the rescaled variables

x̄ =
x
L

, ḡ =
N β g

L
, Ā =

A
N β ω

, (15)

in terms of the characteristic length L = 1/(
√

β m ω). The normalization condition (4) yields

ḡ =
∫

dx̄ W
[

ḡ Ā exp
(
− x̄2

2

)]
, (16)

which cannot be analytically solved for Ā. Nevertheless, given the rescaled coupling con-
stant ḡ one can readily numerically obtain Ā, as shown in Figure 1. It should be remarked
that ḡ has very small values in today’s experiments [12,31], which allows to approximate
W(s) ' s for a generic argument s � 1 in Equation (16), yielding Ā = 1/

√
2π = 0.40 in

this approximation. For instance, with N = 100, g = 5× 10−41 kg m3 s−2, m = 9× 10−27 kg
(Li atom) as in [12] together with typical values ω = 700 rad/s, β = 1028 J−1 [32,33] one
has L = 0.15 mm, ḡ = 3.32× 10−7. The validity conditions (7) and (8) are safely meet for
these parameters. Moreover, from Equation (6) one would need an energy of transverse
confinement h̄ω⊥ with ω⊥ � 106 rad/s.

0.2 0.4 0.6 0.8 1.0
g

0.35

0.40

0.45

0.50

A

Figure 1. Numerical solution of Equation (16) for 0 ≤ ḡ ≤ 1, where the interaction strength ḡ and the
normalization constant Ā are given in Equation (15).
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It is interesting to rewrite the validity condition (7) using the approximations ḡ � 1
and Ā ' 1/

√
2π so that A ' Nβω/

√
2π. From Equation (13), one has the estimate

ρ ∼ Nω
√

βm/(2π). Together with < p2 > /(2m) ∼ 1/β, one has that Equation (7) becomes

1
β
� N h̄ ω , (17)

which has an evident thermodynamic meaning. Under the same approximation, the
Lambert function in Equation (14) can be safely replaced by W(s) ' s so that the number
density assumes the Maxwellian form

ρ(x) = N ω

(
β m
2π

)1/2
exp

(
−β V(x)

)
. (18)

To summarize and without any approximation within the Landau–Vlasov model, for
the Maxwell–Boltzmann distribution (12) one has the exact number density (14), subject to
N =

∫
dx ρ(x) which determines the normalization constant A given an arbitrary external

potential V(x).

3.2. Water Bag Distribution

In a non-equilibrium situation we are free to have any function of the total energy as
a suitable particle distribution function. A second example is provided by a completely
degenerate Fermi–Dirac-like distribution

f (H) = A Θ(EF − H) , (19)

where Θ is the step function, A is a normalization constant, and EF > 0 is a energy parameter
which would be the Fermi energy in a Fermi gas. Moreover, we assume EF ≥ U(x); otherwise,
some quantities become complex valued in the following. However, in the context of a
bosonic gas, EF is just a measure of the energy spread, precisely as in the water bag model
for plasmas [34]. By construction, Equation (19) shows an exact stationary solution of the
Landau–Vlasov equation.

Integration in momentum space implicitly gives the 1D number density

ρ(x) = 2 A
√

2m (EF −U(x))1/2 . (20)

Note for real ρ one has EF ≥ U(x) and hence automatically EF ≥ V(x), supposing
g > 0 (repulsive interaction). The always non-negative solution of Equation (20) is

ρ(x) = 4 m A2

[
−g +

(
g2 +

1
2m A2 (EF −V(x)

)1/2
]

. (21)

The exact total potential (11) is also immediately available, for arbitrary external potential.
The last step is the determination of the normalization constant A, once a specific

external potential is chosen. For the harmonic potential (5), it is convenient to introduce
the rescaling

x̄ =
x
L

, ḡ =
N g
EF L

, Ā =
EF A
N ω

, ρ̄ =
ρ

N/L
, (22)

in terms of the characteristic length L =
√

EF/m /ω. The dimensionless 1D number
density becomes

ρ̄ = 4Ā2

[
−ḡ +

(
ḡ2 +

1
2 Ā2

(
1− x̄2

2
))1/2]

, (23)
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and the normalization condition
∫

dx ρ(x) = N yields

1
4 Ā2 =

∫ √2

−
√

2
dx̄

[
−ḡ +

(
ḡ2 +

1
2 Ā2

(
1− x̄2

2
))1/2]

, (24)

where EF ≥ V(x) yields x̄2 ≤ 2 in dimensionless variables. The integral in Equation (24)
can be analytically done, but in terms of transcendental functions which are not useful
to show here. For specific values of ḡ, one can numerically determine Ā and hence the
necessary normalization, as depicted in Figure 2. In the limit of very small ḡ one has
Ā = 1/(2π) = 0.16. The resulting dimensionless 1D number density is shown in Figure 3.

Similarly to the Maxwellian case, it is possible to rewrite the validity condition (7)
using the approximations ḡ� 1 and Ā ' 1/(2π). From Equation (20) one has the estimate
ρ ∼ 2 A

√
2m EF. Together with < p2 > /(2m) ∼ EF yields

EF � N h̄ ω , (25)

with an evident thermodynamic meaning.

0.2 0.4 0.6 0.8 1.0
g

0.14

0.16

0.18

0.20

0.22

0.24

A

Figure 2. Numerical solution of Equation (24) for 0 ≤ ḡ ≤ 1, where the interaction strength ḡ and the
normalization constant Ā are given in Equation (22).

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

0.1

0.2

0.3

0.4

ρ

Figure 3. Dimensionless 1D number density ρ̄ from Equation (23), for interaction strength ḡ = 10−2

and normalization constant Ā = 1/(2π).
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To summarize and without any approximation within the Landau–Vlasov model,
for the water bag, completely degenerate Fermi–Dirac-like distribution (19) one has the
exact number density (21), subject to N =

∫
dx ρ(x) which determines the normalization

constant A given an arbitrary external potential V(x). For the sake of introducing the next
section, notice the correspondence between the Van Kampen mode decomposition and the
water bag distribution which is shown to be granted in the limit of an infinite number of
bags [35].

4. Case–Van Kampen Modes

The Case–Van Kampen modes are the normal modes in a plasma [21,22]. For the
Landau–Vlasov equation, Case–Van Kampen modes can be derived starting from the
assumption V = 0. Experimentally, a 1D configuration of ultracold atoms free of external
confinement can be produced by means of a 1D ring geometry with large radius [11] or
considering two high barriers at the edges of a straight axial arrangement [36]. In both cases,
spatial periodic conditions can be assumed. The 1D Landau–Vlasov equation reduces to(

∂

∂t
+

p
m

∂

∂x
− g

∫
dp′

∂ f (x, p′, t)
∂x

∂

∂p

)
f (x, p, t) = 0 , (26)

To proceed, we set
f (x, p, t) = f0(p) + δ f (x, p, t) , (27)

where f0(p) is the equilibrium distribution subject to∫
dp f0(p) = n0 (28)

where n0 is the equilibrium 1D number density and δ f (x, p, t) is a first-order perturbation.
Due to the periodic boundary conditions, it is meaningful to Fourier transform according to

δ f (x, p, t) = ∑
k

fk(p, t) ei k x , (29)

where k is a multiple of a fundamental wavenumber. Linearizing the Landau–Vlasov
Equation (26) the result is

∂ fk(p, t)
∂t

+
i k p
m

fk(p, t)− i g k
∂ f0(p)

∂p

∫
dp′ fk(p′, t) = 0 . (30)

Complementary to the Landau approach where the linearized Landau–Vlasov equa-
tion is taken as an initial value problem analyzed by Laplace transform methods, the
Case–Van Kampen approach assumes

fk(p, t) = fν(p)e−i ω t , ν =
ω

k
, (31)

where ω is a real, arbitrary constant and ν is the phase speed. Inserting from Equation (31)
into Equation (30) gives the eigenvalue problem

(p−m ν) fν(p) = g m
∂ f0(p)

∂p

∫
dp′ fν(p′) . (32)

Following [21,22], it is convenient to assume the normalization∫
dp fν(p) = cte. = n0 , (33)

So that the integral Equation (32) simplifies to
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(p−m ν) fν(p) = g m n0
∂ f0(p)

∂p
. (34)

In a distributional sense, the solution for Equation (34) is

fν(p) = g m n0 ℘

(
∂ f0(p)

∂p
1

p−m ν

)
+ λ(ν) δ(p−m ν) , (35)

where ℘ denotes the Cauchy principal value symbol, λ(ν) is a function to be determined
and where δ is the Dirac delta.

As can be readily verified, the naive solution (without principal value and with
λ(ν) = 0) can not be made compatible with the normalization (33). Indeed, to comply with
the normalization one needs

λ(ν) = n0 − g m n0 ℘
∫

dp
∂ f0(p)

∂p
1

p−m ν
, (36)

where the integral is taken in the principal value sense. The final result is

fν(p) = g m n0 ℘

(
∂ f0(p)

∂p
1

p−m ν

)
+ (37)

+

(
n0 − g m n0 ℘

∫
dp′

∂ f0(p′)
∂p′

1
p′ −m ν

)
δ(p−m ν) .

As apparent, these Case–Van Kampen modes are not damped (they are stationary
waves) and have a singular character. Following Case, by means of the introduction of
adequate adjoint solutions, it is possible to demonstrate that the Equation (37) provides a
complete set, in the sense that all solutions to the linearized Landau–Vlasov equation can be
expressible as a linear combination of these modes. More precisely, for simplicity we have
discussed only the class 1a among the four classes of eigenfunctions in Case’s terminology,
as detailed in the original article [22] and textbooks [37]. To demonstrate the completeness of
the full set of Case–Van Kampen eigenfunctions makes necessary to introduce an auxiliary
(or adjoint) equation with a different set of eigenfunctions, orthogonal to those in the
original set, except when the eigenvalues coincide. The complete analysis is not trivial but
entirely similar to the Vlasov–Poisson case, shown in [22,37], for instance.

Note that in spite of the singular character of the Case–Van Kampen modes, they can
be used to compute well behaved physical quantities. For instance, we can consider the 1D
number density perturbation

δn(x, t) =
∫

dp dw c(ω) δ f (x, p, t) , (38)

where c(ω) is an arbitrary weight function. Allowing a superposition law taking into
account a frequency spread is valid in the context of the linearized Landau–Vlasov equation.
Restricting to the k−th Fourier component, applying Equations (31) and (37), we have the
well behaved function

δn(x, t) =
n0 k
m

∫
dp c

(
ω =

k p
m

)
ei k (x− p t

m ) , (39)

after using the property δ(p− m ω/k) = (k/m)δ(ω − k p/m). In this case, the first and
last terms of Equation (37) cancel upon integration (the same occurs for Vlasov–Poisson
plasmas [37]).

As a simple illustration, the Gaussian weight function

c(ω) =
δn0√

2π Ω n0
exp

(
− (ω−ω0)

2

2 Ω2

)
(40)
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produces from integration of Equation (39) the density perturbation

δn(x, t) = δn0 exp
(

i (k x−ω0 t)− Ω2t2

2

)
. (41)

This is an example of the well known fact that although the isolated Case–Van Kampen
eigenmodes are stationary waves, they can produce damped macroscopic objects, taking
into account phase mixing. Consistently, the monochromatic limit Ω→ 0 is not damped.

5. Conclusions

In the context of mean-field collisionless theory for 1D ultracold dilute Bose gases, non-
decaying nor growing in time structures have been analyzed. For this purpose, traditional
methods from plasma theory have been adapted to the Landau–Vlasov equation. Nonlinear
stationary solutions have been derived in analogy with the BGK modes of the Vlasov–Poisson
system in plasmas. Specific kinetic equilibria have been worked out in detail, together with
the associated validity conditions in real ultracold bosonic gases. Linear, normal modes have
been also derived, in analogy with the plasma Case–Van Kampen stationary wave modes.
These results are a necessary complementary development to the analysis of Landau damping
and instabilities for the 1D Landau–Vlasov equation [12]. The stability of the BGK modes for
the Landau–Vlasov equation is an important point to be addressed in future works.
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