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Abstract: We review the nonlinear statistics of Primordial Black Holes that form from the collapse
of over-densities in a radiation-dominated Universe. We focus on the scenario in which large over-
densities are generated by rare and Gaussian curvature perturbations during inflation. As new results,
we show that the mass spectrum follows a power law determined by the critical exponent of the
self-similar collapse up to a power spectrum dependent cutoff, and that the abundance related to
very narrow power spectra is exponentially suppressed. Related to this, we discuss and explicitly
show that both the Press–Schechter approximation and the statistics of mean profiles lead to wrong
conclusions for the abundance and mass spectrum. Finally, we clarify that the transfer function in the
statistics of initial conditions for Primordial Black Holes formation (the abundance) does not play a
significant role.
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1. Setup

Primordial Black Holes (PBHs), if they exist, are arguably the most economical form
of Dark Matter. A PBH is the final state of a large over-density collapse that happened long
before matter–radiation equality. A black hole is surely of a primordial origin if its mass is
lower than the solar one. In the realm in which PBHs account for all of Dark Matter, this is
precisely where their masses need to be [1].

Assuming only the standard model of particle physics, before matter–radiation equal-
ity and after inflation the universe is in a state dominated by radiation. Because black
holes only interact gravitationally, they behave as dust particles. In other words, in a
homogeneous and isotropic universe (i.e., a Friedman–Robertson–Walker (FRW) universe)
with metric element

ds2 = −dt2 + a(t)2d~x · d~x , (1)

the energy density of radiation scales as a−4 and that of Primordial Black Holes scales as a−3.
In the minimal scenario in which the perturbations in the mean FRW universe were seeded
by inflation, large over-densities might only have been generated at scales much smaller
than those related to the cosmic microwave background radiation observed today. Thus,
for a high reheating temperature PBHs will have had a long period to increase their energy
density relatively to radiation. In this scenario, the initial density of PBHs is tiny; therefore,
the formation of a PBH represents a rare event. This has a particular resonance with the
theory of inflation, as inflation mainly generates perturbative over-densities. However,
because perturbations are quantum in nature, their amplitudes are statistically distributed,
meaning that non-perturbative over-densities can be generated as well, albeit rarely.
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Thus far, there is no evidence of (perturbative) deviations from the simple Gaussian
statistics; therefore, for the purposes of discussion, we assume it here in order to investigate
the statistics of PBH formation from a given Gaussian-distributed initial seed of curvature
perturbations. Our procedure can be generalized to other distributions as well.

Before moving on, it is necessary to quickly review the conditions for PBH formation
in an expanding universe. Interested readers may consult the review of [2] for a more
technical perspective; here, we provide a more intuitive overview.

In the hoop conjecture of Thorne [3], a black hole forms if a portion of fluid with “mass”
M in an asymptotically flat spacetime can be enclosed within a hoop of perimeter 2πRs,
where Rs ≡ 2M (GN = h̄ = c = 1) is the Schwarzschild radius of the portion of that fluid.
For a fluid of density ρ, we can define an instantaneous mass (dt = 0) as

M
∣∣∣
dt=0
≡ 4π

∫ R

0
ρ R̄2dR̄

∣∣∣
dt=0

, (2)

where we have assumed that the energy density of the fluid is isotropic and R is the
areal radius. In an expanding universe, this mass is known as the Misner–Sharp mass
(MS) [4]. The scenario we are interested in here is a localized large over-density (defined
in a specific gauge that we clarify later on) evolving in a homogeneous and isotropic
radiation-dominated universe. Because of the assumption of asymptotic flatness in the
hoop conjecture, we could attempt to obtain similar conditions in an expanding universe
by subtracting the infinitely long wavelength mode (the background energy density) from
the MS mass. Thus, we define the instantaneous over-mass as

δM(R)
∣∣∣
dt=0
≡ 4π

∫ R

0
δρ R̄2dR̄

∣∣∣
dt=0

, (3)

where δρ ≡ ρ− ρb is the over-density with respect to the background ρb.
The extension of the hoop conjecture to an expanding universe would then be that a

collapse into a black hole starts at position RBH whenever

C
∣∣∣
dt=0
≡

2δM(RBH)
∣∣∣
dt=0

RBH

∣∣∣
dt=0
∼ 1 . (4)

We can now remove the fixed time and define

C(r, t) ≡
8π
∫ r

0 δρ R(r̄, t)2∂r̄R(r̄, t) dr̄
R(r, t)

, (5)

where r is the radial coordinate of the general isotropic metric

ds2 = −A(r, t)2dt2 +
∂rR(r, t)2dr2

Γ(r, t)2 + R(r, t)2dΩ2
2 . (6)

The metric function Γ is the “boost factor” of the fluid (being 1 for vanishing fluid
velocity and gravitational mass [4]); thus, the Misner–Sharp mass is the equivalent of the
“rest mass” of the fluid. The function C, defined in Equation (5), was called the compaction
function in [5], in which the compaction factor was defined without the factor 2. The
factor 2 was introduced in [6] to resemble the Schwarzschild potential; see [7] for the latest
interpretations of the earlier work of [5]. In the same paper, it was shown that, in agreement
with the hoop conjecture, a black hole would inexorably form whenever C ∼ 1.

Let us now return to our primordial black hole scenario. We have already mentioned
that whenever PBHs are generated by large inflationary perturbations during the radiation
epoch they are generically rare. Assuming a Gaussian distribution of perturbations, this
implies an approximate spherical symmetry around the peak of such rare large perturba-
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tions [8]. Thus, in this regime the condition for collapse into black holes can be provided in
terms of C:

The first trapped horizon is formed at a radius equaling the maximum of the com-
paction function [6]; in other words, a black hole will form at a scale r = rBH(tBH) solution
of ∂rC = 0 whenever C(rBH, tBH) ∼ 1. The threshold for PBH formation can then be
provided in terms of a critical value Cc(rm(ti), ti), where ti 6= tBH is some initial time [6,9].

Initial Conditions and Threshold

The question we answer in this section is:

Under which initial conditions for C will a BH form at some later time t = tBH?

Under the inflationary paradigm, perturbations set in at scales larger than the cos-
mological horizon. On such scales and at the leading order in gradient expansion, the
metric (6) can always be recast (see, e.g., [10] for a review) into a local FRW metric:

ds2
l ' −dt2

l + al(tl)
2dr2

l + r2
l al(tl)

2dΩ2
2 (7)

where the subscript l refers to local coordinates and functions and al(t) to the spatial
rescaling due to a long-wavelength perturbation, i.e., a perturbation with a wavelength
larger than the cosmological horizon of the background. Up to decaying terms, we find
that al(tl) ' a(tl), where a is the background scale factor in local time [11].

The idea is then to find appropriate initial conditions for C at super-horizon scales
such that a future black hole would form. At the leading order in gradient expansion,
however, the compaction function vanishes, making it necessary to go beyond this concept.

If the typical co-moving scale of the perturbation is r0, then we can define the parameter

σ(t) ≡ RH(t)2

Rp(t)2 =
a2

i
H2a(t)2r2

0
=

a2
i

ȧ(t)2r2
0
� 1 , (8)

where ai is the scale factor at some initial time ti. Thus, R(ti, r) = ra(ti).
If we specialize to the case of radiation,

σ(t) =
3 a(t)2

a2
i

(l4
pρ0) (r0/lp)2 , (9)

where ρ0 is the background energy-density at t = ti, then we have now replaced units by
using lp as the Planck scale. Because the universe is expanding, a necessary condition is
then to choose an initial time such that

l4
pρ0 �

l2
p

r2
0a2

i
. (10)

As already anticipated, a generic spherically symmetric metric can be recast in the
following diagonal form:

ds2 = −A(r, t)2dt2 +
∂rR(r, t)2

1− K(r, t)r2 dr2 + R(r, t)2dΩ2
2 . (11)

At super-horizon scales, we can then expand each function in (11) in powers of
σ(t) [12,13]. However, it turns out that the zeroth order in σ is ambiguous, and we might
instead write [14]

1− K(r, t)r2 = (1− Ki(r)r2)K̃(r, t) , (12)

where Ki(r) is the curvature K at an initial time t = ti where the perturbation is at super-
horizon scales and K̃(r, t) = 1 + ∑∞

n=1 K̃n(r)σ(t)n. For consistency, K should then be the
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next-to-leading order in gradient expansion; and indeed, we find that Ki ∼ O(l2
p/r2

0) [14]
when scales smaller than the horizon are cut off.

With this, at the leading order in σ (though fully nonlinearly) we finds that for the
case of radiation we have [6,15]

C ' 2
3

Ki(r)r2 . (13)

As can be seen, at super-horizon scales the compaction function is approximately
constant. Thus, a black hole can only be formed when the typical scale of the perturbation
re-enters the horizon. This typical scale, as we explain, is related to the size rm in which the
compaction function is maximal. Moreover, as it is found numerically [6], the co-moving
location of this maximum does not change much up to the moment in which the hoop
conjecture conditions are met. Thus, we shall henceforth approximate it as constant.

Our prescription for the black hole formation is then that a black hole eventually forms
whenever C at its maximum is larger than a certain critical value Cc, which we specify later
on. The constant(s) Cc are called the “thresholds”.

The curvature Ki is related to the initial co-moving over-density as follows [6]:

a2
i δρi(r) ∝ (Ki +

r
3

K′i) (14)

where f ′ ≡ ∂r f for a given function f . At the maximum of the compaction function r = rm,
where we want to define a threshold for the black hole formation, we have

C(rm) ∝ δρi(rm) r2
m . (15)

Therefore, the threshold on the compaction function greatly differs from other previous
prescriptions, which considered a “threshold” of the over-density amplitude at its peak
r ∼ 0. Here, we mean a radius small enough to be closer to the highest point of the
over-density while being large enough to retain the super-horizon approximation.. In the
presence of an over-density it is clear that rm 6= 0, as C ≥ 0; thus, the relationship between
δρ(0) and C(rm) depends on the full profile of the over-density, and any statistics based on
the distribution of δρi(0) are limited to very specific statistical realizations. We return to
this point later on.

The initial spatial metric at time t = ti and at super-horizon scales is then

ds2
∣∣∣
t=ti
'

a2
i dr2

1− Ki(r)r2 + a2
i r2 dΩ2

2 (16)

recalling that R(ti, r) = ai r. However, inflationary initial conditions are usually phrased
using a different conformal form

ds2
∣∣∣
t=ti
' a2

i e2ζ(r̂)
(

dr̂2 + r̂2dΩ2
2

)
, (17)

where ζ is the curvature perturbation in the synchronous gauge. For both expressions to be
the same, it must be the case that both

r = eζ(r̂) r̂ and
dr√

1− Ki(r)r2
= eζ(r̂) dr̂. (18)

However, the expression on the left implies that dr/dr̂ = eζ(r̂)[1 + r̂ ∂r̂ζ(r̂)]; along with
the expression on the right, this implies that

Ki(r)r2 = 1−
[
1 + r̂ ∂r̂ζ(r̂)

]2
. (19)
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In the r̂ coordinates, the maximum of the compaction function is at that r̂ = r̂m where
∂r̂(r̂∂r̂ζ) = 0; due to the regularity condition Ki(r)r2 < 1, the amplitude of this maximum
cannot exceed 2/3.

As for the over-density, it is obvious that the threshold Cc cannot be generically written
in terms of the value of ζ at its central peak unless strong assumptions are made concerning
the statistical realizations of ζ. Moreover, because the theory is invariant under shifts of ζ
at super-horizon scales, its peak value only has a meaning by fixing it at certain scales. In
contrast, the value of the compaction function at its maximum is an observable. Previous
attempts at statistical descriptions of PBH formations have assumed that the spread of
the curvature profile around the mean is negligible [16–18]. Following [19], we instead
scan all possible compaction function shapes, defining the corresponding threshold for
each realization.

2. Analytic Formula for the Threshold

As we have discussed earlier, a gravitational collapse occurs at positions where the
maximum of the compaction function is over threshold. The threshold is that value of
the compaction function for which a black hole of mass zero is eventually formed. Far
away from the maximum the fluid is dispersed away, whereas close to the center the
regularity of the curvature K(r) requires the compaction function to decay as r2. Therefore,
what matters most for the threshold is the form of the compaction function around its
maximum. Moreover, because the conditions to form a black hole are tied to the local
gradient pressures, the threshold only approximately depends on the local shape of the
compaction function. At the maximum (r = rm), we can then fit the compaction function

using its value C(rm) and its normalized curvature q ≡ −r2
mC ′′(rm)

4C(rm)
[20]; see [21] for other

equations of state.
In [20], the following fitting function was used:

C f it(r) = C(rm)
r2

r2
m

e
1
q (1−[

r
rm ]

2q
) , (20)

where C(rm), rm, and q are calculated from the compaction function of the perturbation.
The average of the fitting function

C̄(r) = 3
r3

m
θ(r− rm)

∫ rm

0
C f it(r′)r′2 dr′ (21)

would then be a fictitious top-hat compaction function which has a threshold for radiation
equal to C̄c =

2
5 [9]. With this, by inverting (21) we can obtain the threshold for C(rm) [20]:

Cc(q) =
4
15

e−
1
q

q1− 5
2q

Γ( 5
2q )− Γ( 5

2q , 1
q )

. (22)

Note that Cc ≥ 2
5 ; this lower bound has been confirmed by numerical studies. Numer-

ical simulations show that the critical value (22) and its dependence on q are accurate to
within 2% [20].

If (22) is provided in terms of derivatives with respect to r̂ rather than r, e.g., in [22],
then

q =
−r̂2

m∂2
r̂C(r̂m)

4C(r̂m)(1− 3
2C(r̂m))

. (23)

With this analytical formula for the threshold of PBH formation, we are now in a
position to calculate the statistical abundance of PBHs in our universe.
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3. The Statistics of Compaction Function

A scalar field (in particular, the inflaton) does not have a preferred direction; therefore,
we expect isolated perturbations to be spherical. This symmetry is broken only by the
interference of two or more nearby perturbations [8]. Thus, focusing on rare events, as in
the case of PBHs formed during the radiation era, it is the case that spherical symmetry
around a rare peak of a Gaussianly distributed amplitude is well preserved.

The observed cosmological curvature perturbations at the cosmic microwave back-
ground (CMB) scale are extremely close to (multivariate) Gaussian [23]. We assume that
this is true on all scales. Nevertheless, it should be noted by the reader that for most of the
inflationary evolution related to PBH formation, e.g., [24–26], this assumption may be too
strong, e.g., [27–29].

In the Gaussian case, then, as discussed above, we have

C(r̂,~x0) =
2
3

[
1− (1 + r̂ ∂r̂ζ(r̂,~x0))

2
]

, (24)

where x0 defines the center of the spherical distribution and r̂ = ‖~x − ~x0‖ in the coordi-
nates (17). Although the combination r̂ ∂r̂ζ(r̂,~x0) is independent on the choice of radial
units, r̂ is not.Therefore, we fix the scale factor at matter–radiation equality aeq = 1 such
that r̂ represents physical distances.

Before developing the full statistics in detail, it is interesting to note that even if ζ
(and its derivatives) are multi-Gaussian distributed, C follows a non-centrally peaked
multi-χ2 distribution. Thus, rare configurations of C generically do not coincide with rare
configurations of ζ.

PBHs are then distributed according to the multi-χ2-statistics of C constrained under
the following conditions:

There is a center: C(r̂,~x) has a peak, and there exists a position ~x0 such that

~∇C(r̂,~x)
∣∣∣
~x=~x0

= 0 , and , ∇2C(r̂,~x)
∣∣∣
~x=~x0

< 0 . (25)

This condition is studied in peaks theory [8]. At this level, we can already see that
the statistics we are looking for are very different from the Press–Schechter/excursion
set approach from [30,31], which is often used in the literature. Whereas peaks theory
seeks to describe the point process which describes the positions around which collapse
occurs, the Press–Schechter calculation does not describe a point process; it only aims at
a statistical description of the mass fraction in bound objects. It returns biased (incorrect)
estimates of this mass fraction, as it assumes that this can be done by considering the
statistics of all positions in space [32] rather than the special subset of positions around
which collapse occurs [33]. This point has been discussed extensively in the literature on
halo formation during matter domination [32–34]; because essentially all of that discussion
remains relevant during radiation domination, we do not repeat it here.)

C(r̂,~x0) has a maximum at r̂ = r̂m: this condition is verified for

∂r̂C(r̂,~x0)
∣∣∣
r̂=r̂m

= 0 , and , ∂2
r̂C(r̂,~x0)

∣∣∣
r̂=r̂m

< 0 . (26)

This important condition appeared for the first time in the nonlinear statistics of [19],
and is based on the excursion set peaks formalism from [34]. In our statistics, we calculate
the probability that the compaction function has a maximum for a given scale r, thereby
scanning all possible realizations of C. Other proposed statistics [16–18] have instead
considered only the maximum associated with the averaged profile. This difference is
crucial. Using our procedure, we are able to associate a threshold for each statistical
realization of the perturbation’s shapes (or the above q variable) instead of considering
only the statistics of Cc for a fixed (presumably average!) q.



Universe 2023, 9, 421 7 of 22

C(r̂m,~x0) is over the threshold: the condition in this case is

C(r̂m,~x0) ≥ Cc(q) . (27)

Again, this condition crucially differs from those employed in [16–18], with respec-
tively considered thresholds for the co-moving curvature and for the over-density at the
peak (i.e., at r = 0).

3.1. The Statistical Variables and the Role of the Transfer Function

As we have already commented, a direct connection to inflation is obtained by consid-
ering ζ(~x) as the main statistical variable. Strictly speaking, this is the curvature pertur-
bation calculated in the past infinity as if radiation was always dominating the universe’s
evolution [6] (in the language of [6], in the limit of t→ 0). Practically, however, numerical
simulations start at a finite time from the cosmological singularity. Thus, one would be
tempted to consider the statistics of PBHs at the time tBH , at which the maximum of the
compaction function crosses the cosmological horizon (e.g., [22,35,36]), where nonlinear
effects start to play a crucial role. The statistics would then be developed by hoping that the
evolution of ζ, via the perturbative transfer function, would retain its invariant Gaussian
nature up to the point of crossing the horizon. However, it is expected that the time evolu-
tion of curvature perturbations in the nonlinear regime would badly break our assumption
of Gaussianity. For example, in the context of stochastic inflation, the nonlinear regime is
no longer Markovian [11].

Even accepting the assumption of Gaussianity, because the perturbation at t = tBH is
outside the regime of validity of gradient expansion the use of ζ(rm, tBH) is not consistent
with the quasi-homogeneous initial conditions of the Misner–Sharp system [14], which
really use ζ(~x) ≡ ζ(~x, t→ 0). Thus, using ζ(~x, tBH) would mean setting a different numeri-
cal problem from the one studied in the literature [6,9]. In turn, this choice would lead to a
background-dependent threshold which cannot be obtained as a simple generalization of
the one employed here (the threshold suggested in [22] tries to generalize the one in [20]
using the transfer function in the definition of the compaction function maximum; however,
as we have discussed in the text this is inconsistent).

Thus, we accept the small error caused by not being able to run the simulation from the
infinite past, and consider the initial conditions for black hole formation at the leading order
in gradient expansion. This error is smaller than the error we already accepted by using
our analytical formula for the threshold. One can appreciate it by looking at the simulated
Hamiltonian constraint deviation caused by the use of quasi-homogeneous conditions at a
finite time [9].

Having defined the relevant variable, we are now equipped to study its statistical
proprieties. In Fourier space, we have

ζ(~x) =
∫ d3k

(2π)3 ei~k·~xζk , (28)

where the ζks modes, assumed to be Gaussian, coincide with the Fourier modes of the
curvature perturbations in synchronous gauge and at the leading order in gradient ex-
pansion. More precisely, the amplitudes follow a Rayleigh distribution and the phases a
uniform distribution.

While the curvature perturbation is a function of ~x, C is a function of r̂ and ~x0. Thus,
we need to specify the meaning of r̂∂r̂ζ(r̂,~x0); we can integrate the Laplacian of ζ over a
ball B centered on ~x0, obtaining (henceforth, we drop the hats)∫

B
d3x ∇2ζ = 4πr2∂rζ(r,~x0) , (29)
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where we have assumed spherical symmetry around ~x0 (having in mind a rare peak from
inflation). The same relation can be written as

r∂rζ(r,~x0) =
1

4πr

∫
d3x∇2ζ θ(r− ‖~x−~x0‖) . (30)

Using the Fourier decomposition (28), we obtain

r∂rζ(r,~x0) = −
1

4πr

∫ d3k
(2π)3 k2ζk

∫
d3x ei~k·~xθ(r− ‖~x−~x0‖) . (31)

For the second integral, we can use polar coordinates:

∫
d3x ei~k·~xθ(r− ‖~x−~x0‖) = 2πei~k·~x0

∫
dr̄dφ r̄2eikr̄ cos φθ(r− ‖~x−~x0‖) = ei~k·~x0

4π

k3 (−kr cos(kr) + sin(kr))

allowing us to use the suggestive form

r∂rζ =
1
3

∫ d3k
(2π)3 ei~k·~x0(kr)2ζkWTH(kr) , (32)

where we have used the definition of the Fourier-transformed top-hat window function

WTH(kr) = 3
sin(kr)− kr cos(kr)

(kr)3 . (33)

We stress here that the top-hat window function was not added by hand, and is simply
encoded in the variable r∂rζ. However, this appearance of WTH ensures that sub-horizon
modes of r∂rζ (for r larger than the cosmological horizon size) are cut away, a necessary
condition for the initial conditions of the Misner–Sharp equations. Evidently, then, in order
to construct the compaction function we ought to be interested in the Laplacian of the
curvature perturbation.

This Laplacian is related to the linear density perturbation used in previous statis-
tics [16]. Hence, for greater intuitiveness we can define the new variable as

gr(~x0) ≡ −
4
3

r∂rζ = −4
9

∫ d3k
(2π)3 ei~k·~x0(kr)2ζkWTH(kr) . (34)

Note that gr is a linear combination of ζk, meaning that it similarly follows a Gaus-
sian statistics.

Although the compaction function is fully nonlinear, for greater intuitiveness it should
be noted that gr(~x0) is the would-be smoothed linear over-density on a ball of radius r at
super-horizon scales. This results from the Poisson equation of linear perturbations in an
FRW Universe. It should be stressed here that this linear over-density is only an auxiliary
(i.e., non-physical) function in the regime that we are interested in.

With gr(~x0), we can now write the compaction function as

C(r,~x0) = gr(~x0)
(

1− 3
8

gr(~x0)
)

. (35)

Finally, note that when we impose that the condition that ~x0 must be a maximum, the
coordinates can be shifted to locally fix ~x0 =~0.

3.2. Statistical Conditions I: Existence of Isolated Peaks

In what follows, we search for a special center ~x0 = ~xp which is a peak for the
compaction function. Indeed, as already discussed, the first constraint to form a PBH is the
existence of an isolated peak in the compaction function which defines the spatial center of
the approximately spherically symmetric initial over-density (again, we are assuming rare
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peaks). Then, we need to restrict the statistical realizations of the compaction function to
those that fulfill the constraints

~∇~x0
C(r,~x0) = 0 and ∇2

~x0
C(r,~x0) < 0 . (36)

The first condition identifies positions which are extremes, while the second ensures
that these extremes are local maxima, i.e., peaks.

The condition for an extreme of C is satisfied either where ~∇~xgr(~x0) = 0 or where
gr(~x0) = 4/3; however, as the latter has probability zero and would produce a PBH of
negligible mass, we discard it here. It can now be seen that the condition for the peak of
the compaction function is the same condition for an extreme of the linear over-density,
as considered earlier in [16]. This extreme is a maximum whenever 0 < gr(~x0) < 4/3
and a minimum for 4/3 < gr(~x0) < 8/3. The first region corresponds to the so-called
type I collapse and the second to type II [37]. Although type II has yet to be thoroughly
explored, it is believed that such peaks collapse rapidly [38]. However, because high peaks
are extremely rare and type IIs are even rarer than type Is, we only consider type Is in what
follows (i.e., gr(~x0) ≤ 4/3). Moreover, because gr must exceed 0.49 for PBH formation
(corresponding to the limit Cc ≥ 0.4 [20]), the conditions for the existence of an (isolated)
center of the compaction function are

0.49 . gr(~xp) ≤
4
3

, ~∇~xp gr(~xp) = 0 , and ∇2
~xp

gr(~xp) < 0 . (37)

In a discretized sense (see [8]), the total number density of peaks is

npeaks = ∑
~xp

δ(3)(~x−~xp) ; (38)

the idea is to use the statistical variable gr and its derivatives instead of the peak(s) position(s).
We can expand gr around the maximum(s) (~xp):

gr(~x) ' gr(~xp) +
1
2
∇i∇jgr(~xp)(xi − xi

p)(xj − xj
p) . (39)

Defining ~η(~x) ≡ ~∇gr(~x) and χij ≡ ∇i∇jgr(~xp), we have

npeaks = ∑
~xp

∣∣∣det χij

∣∣∣δ(3)(~η) , (40)

where we have used the position around the peak ηi(~x) ' ∑j χij(~x−~xp)j.
The sum over peaks can now be replaced by the probability of having a peak in a

position ~xp. As already discussed, we assume that ζ, and consequently gr, follow multi-
Gaussian distributions. By this we mean that ζ is the anti-Fourier transformation of the
Gaussian random variables ζk. While the probability distribution we look for is a Gaussian
on gr(~x), as we have discussed, concerning the peaks it is enough to use second-order
expansion gr around the peak value and consider p(gr(~x))→ p(gr(~xp), χij,~η(~xp)).

Statistically, vector, scalar, and tensor quantities can decouple; thus, p(gr, χij,~η) =

p(gr)p(χT
ij)p(χr|gr)p(~η), where χT is the traceless part of the Hessian matrix of gr. We

additionally define χr ≡ −r2∇2gr(~xp), which is the trace part of the Hessian. The latter
is a scalar, and as such correlates with gr. All of these probabilities obviously remain
multi-Gaussians.

Then, the mean number of peaks is

npeaks →
∫

dχijd~η dgr

∣∣∣det χij

∣∣∣δ(3)(~η)θ(χr) p(gr)p(χT
ij)p(χr|gr)p(~η) , (41)

where the Dirac delta and the Heaviside theta define ~xp as an extreme that is a maximum.
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The Dirac delta constraint is easy to integrate:∫
d~η δ(3)(~η) p(~η)→ 1

(2π)3/2σ3
η

, (42)

where the third power is due to the fact that the distribution is three-dimensional and

ση ≡
√

det
(
〈ηiηj〉

)
.

The integral in χT
ij is more involved. However, assuming an approximate rotation

invariance (we consider high and rare peaks), the determinant of the Hessian simply

provides the normalized trace value to the cube, i.e.,
∣∣∣det χij

∣∣∣ ∼ χ3
r

r3 , while the integral over

dχT only provides the variance. All in all, then, we have

∫
dχij

∣∣∣detχij

∣∣∣ p(χij) θ(χr) ∼
∫ ∞

0
dχr

σ3
χχ3

r

r3 p(χr|gr). (43)

The exact integration in χT can actually be done exactly, leading to

npeaks =
∫

dgr

∫ ∞

0
dχr

f (χr/σχ)

(2πr2∗)
3/2 p(gr) p(χr|gr) , (44)

where the explicit calculation to find f (x) (from the integration in χT) can be found in
appendix A of [8] The function is

f (x) =
x3 − 3x

2

[
erf

(√
5
2

x

)
+ erf

(√
5
2

x
2

)]
+

√
2

5π

[(
31x2

4
+

8
5

)
e−5x2/8 +

(
x2

2
− 8

5

)
e−5x2/2

]
, (45)

and, as anticipated, f (x)→ x3 for x → ∞ (i.e., large isolated peaks); finally, r∗ ≡ rση/σχ.
We pause here for a moment. The integral in gr has been intentionally left indefinite, for

the reason that only a subset of peaks that are the maximum of the compaction function and
over-threshold are related to PBH formation. Because we are looking for rare configurations,
we assume the existence of only one maximum per peak, thereby discarding the cloud-in-
cloud possibility. In this respect, a local maximum would be a global one. A new condition,
that r = rm must be a maximum, should then be supplemented in the statistics of peaks,
which is what we do in the next section.

3.3. Statistical Conditions II: Maximum of Compaction Function

The second constraint we must impose is the existence of a maximum for the com-
paction function. Here, note that ‘maximum’ refers to the variation of r, rather than the
variation of the spatial position ~x, meaning that when the spatial peak position ~xp has been
found the maximum can be related to the behavior of the derivatives of C with respect to r.
Thus, what we really want to count is

dnpeaks ∩ max

dr
= ∑

~xp ,rm

δ(~x−~xp)δ(r− rm) , (46)

where rm denotes the compaction function maximum for each ~xp, where we have assumed
that a peak and a maximum of the compaction function do not happen at more than one
smoothing scale.

As before, for type I black holes the maxima of C coincide with those of gr(~x0); hence,
we can consider the following expansion around rm:

dgr

dr
=

dgr

dr

∣∣∣
rm

+
d2gr

dr2

∣∣∣
rm
(r− rm) + . . . =

d2gr

dr2

∣∣∣
rm
(r− rm) + . . . . (47)
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In what follows, it is useful to define the following dimensionless quantities related to
expansion in r:

vr ≡ r
dgr

dr
, wr ≡ −r2 d2gr

dr2 , and χr ≡ −r2∇2gr. (48)

The curvature of the compaction function is actually related to the Hessian around the
peak; indeed, we have

2gr + wr = −
4
9

∫ d3k
(2π)3 ei~k·~x0(kr)4ζkWTH(kr) = χr. (49)

This shows that for the variables associated with the ‘infinite’ past (i.e., χr, the (dimen-
sionless) Laplacian of gr, and wr), the second derivative with respect to scale the r differs
by 2gr, i.e., the curvatures with respect to position and scale (χr and wr, respectively) differ
by 2gr.

With the above definitions, we have

vr = −wrm

(r− rm)

rm
+ . . . , (50)

thus, we have
δ(r− rm) =

w
rm

δ(vr) ∼
w
rm

δ(vrm) (51)

whenever the Dirac delta is imposed. The density of these states is then obtained by
replacing the following in (44):

p(gr) dgr → p(grm , vrm , w) dvrm dw dgrm . (52)

By changing the sum in rm into an integral, we finally obtain the number of peaks per
unit volume having a maximum at some r (we now remove for simplicity all the indices r):

npeaks ∩ max =
∫ rmax

rmin

dr
r

∫ ∞

0
dχ
∫ ∞

0
dw w

∫
dg

f (χ/σχ)

(2πr2∗)
3/2 p(g, v = 0, w) p(χ|g, v = 0, w) θ(χ) (53)

where the integral over only positive values of w specifies that rm is a maximum.
Because χ = 2g + w, i.e., χ is completely determined by g and w, p(χ|g, v = 0, w)→

δ(χ− (2g + w)); thus, we finally obtain

npeaks ∩ max =
∫ rmax

rmin

dr
r

∫ ∞

0
dw w

∫
dg

f (χ/σχ)

(2πr2∗)
3/2 p(g, v = 0, w) , (54)

where one should read χ = 2g + w. Note that because both w and g are positive we do not
need to add an extra constraint for the maximum in ~xp (i.e., θ(χr)).

The integral in r requires further explanation. First of all, the minimal radius should
be larger than the Hubble radius at the initial time in order for the gradient expansion to
be valid. Second, because of Hawking evaporation, black holes less massive than ≈1015gr
will have completely evaporated by now, and should not be counted [1]. Thus (replacing
Planck units Mp ' 2× 10−5gr), because M• ∼ M2

p H−1
r = ra(tr)M2

p, we fix

rmin = MAX

(1012 gr
M2

p

)3/4

H−1/4
eq , (H(ti)a(ti))

−1

 , (55)

where we have used aeq = 1 and Heq is the Hubble scale at matter equality. Whether the
Hubble radius at initial conditions or the Hawking evaporation limit ought to be considered
as the minimal radius depends on the specific inflationary model under investigation.
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Similarly, the maximal scale we are interested in here is the Horizon size at matter–
radiation equality:

rmax = H−1
eq . (56)

Finally, note that the integral in r is really the integral of all configurations that have a
maximum for the compaction function for a given smoothing scale r; hence, we remove the
sub-index m from now on.

3.4. Statistics Condition III: Being over the Threshold

We are now finally in a position to implement the over-threshold condition for the
integral in gr. Converse to the case of finding a local maximum for the compaction function,
in general the threshold value is nonlocal, i.e., it depends on the profile realization of
gr at all smoothing scales. Thus, the number of peaks we are looking for is the subset
of npeaks∩max such that for any possible smoothing scale configuration with the same peak
position and same rm the corresponding grm is over-threshold. Obviously, this would lead to
an untreatable computational problem.

To bypass this issue, previous approaches have considered only the mean gr profile [16]
(here, we remind the reader that gr happens to equal the would be linear over-density [19]),
and have consequently associated rm with the location of the compaction function max-
imum when the mean profile is used. However, unless all possible realizations of gr for
any smoothing scale r have negligible spread from 〈gr〉, this peak counting will be grossly
wrong (similar arguments have been made for the ζ statistics in [17,18]). Here, we instead
adopt the more refined argument already outlined in the introduction.

Although it is true that the threshold at the maximum of the compaction function
depends upon the full gr profile [6], to a very good approximation the threshold only
depends on the curvature of the compaction function around a maximum rm [20]. Thus,
we can simply consider the ensemble of all possible compaction function curvatures for
any given smoothing scale r = rm, then associate a threshold with each of these.

The realization of this condition requires some algebra; in the region g ≤ 4
3 and at the

maximum, we have

−r2∂2
rC
∣∣∣
r=rm

= −r2∂2
r gr

(
1− 3

4
gr

)∣∣∣
r=rm

= w

√
1− 3

2
Cc . (57)

leading to

q =
w

4Cc(q)
√

1− 3
2Cc(q)

, (58)

and implying that Cc(q) = Cc(q(w)) = Cc(w). On the other hand, the threshold in terms of
g is

gc(w) =
4
3

(
1−

√
1− 3

2
Cc(w)

)
(59)

Thus, the number density of peaks that would eventually collapse into Primordial
Black Holes is

n• =
∫ rmax

rmin

dr
r

∫ ∞

0
dw w

∫ 4
3

gc(w)
dg

f (χ/σχ)

(2πr2∗)
3/2 p(g, v = 0, w) . (60)

3.5. Energy Density in PBHs

Super-horizon over-threshold perturbations that enter the horizon at the time ra(tr) =
H(tr)−1 quickly collapse into black holes (here, we assume instantaneous formation) [6].
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Up to a deviation of about ∆C ≡ C − Cc ∼ 10−2 from the threshold value [9], the mass is
distributed according to the following scaling law [39]:

M• =
K

2Hr

[
C(g)− Cc(w)

]0.36
, (61)

where Hr ≡ H(tr). The function K is ofO(1), and depends on the specific curvature profile
chosen; thus, it depends slightly on r. Nevertheless, we keep it constant in our estimation
of abundance, accepting the related error O(1). To fix its value, we take the typical value
K ' 6 from [9].

For ∆C ≥ 10−2, the mass distribution starts to deviate from the scaling law with a
maximum deviation of ∼ 15% [40]. Because the error on using (61) is on a similar order as
that emerging from fixing K, we keep it and retain the scaling law throughout.

Because we are interested in the energy density of PBHs at matter–radiation equality,
we need to be careful about the evolution of the number density. Thus far, we have
calculated the number density per co-moving volume. When black holes are formed, as we
have already mentioned in the introduction, their energy density simply dilutes as dust,
i.e., as the inverse of the volume expansion. At super-horizon scales and the leading order
in gradient expansion, the power spectrum is constant; thus, peak positions in co-moving
volumes do not change, i.e., at the leading order there are no intrinsic velocities between
peaks. Obviously, at the next-to-leading order in gradient expansion this would not exactly
be the case. While we do not consider this subtlety further here, we do mention that it
would be incorrect to try to capture the intrinsic velocities between peaks by considering
a linear transfer function in the statistics, for similar reasons as those outlined before in
the case of threshold definition. More specifically, the transfer function capturing the
time evolution of the power spectrum at linear order (even assuming that Gaussianity is
not broken at next-to-leading order in gradients), is next to the leading order in gradient
expansion. Therefore, considering a transfer function in the statistical correlators would
imply the necessity of considering both new nonlinear thresholds and new nonlinear initial
conditions. What should be done instead is to calculate the initial number density in
co-moving volumes as done here, then simulate the velocity dispersion of the initial peaks
at later times. We are not aware of any of such numerical simulation to date; thus, we accept
the small related error in order to consider only the leading order in gradient expansion.

Having made these remarks, the total energy density of PBHs at matter–radiation
equality is

d2ρ•
drdM•

∼ ∑
~x0,rm ,M• ,C(rm)>Cc

δ(~x−~x0)δ(r− rm) δ

(
M• −

K
2Hr

[
C(g)− Cc(w)

]0.36
)

M• (62)

or

ρ• =
∫ rmax

rmin

dr
r

∫ ∞

0
dw w

∫ 4
3

gc(w)
dg

f (χ/σχ)

(2πr2∗)
3/2 p(g, v = 0, w)

K
2Hr

[
C(g)− Cc(w)

]0.36
, (63)

where we have again set aeq = 1. We can now define the fractional density of PBHs at
equality, β• ≡ ρ•

ρeq
, as follows:

β• =
8π

3H2
eq

∫ rmax

rmin

dr
r

∫ ∞

0
dw w

∫ 4
3

gc(w)
dg

f (χ/σχ)

(2πr2∗)
3/2 p(g, v = 0, w)

K
2Hr

[
C(g)− Cc(w)

]0.36

=
4πK

3(Heqreq)3

∫ rmax

rmin

dr
r

(r/req)2

(r/req)3

∫ ∞

0
dw w

∫ 4
3

gc(w)
dg

f (χ/σχ)

[2π(r∗/r)2]
3/2 p(g, v = 0, w)

[
C(g)− Cc(w)

]0.36
. (64)

recalling that Heqreq = a−1
eq and aeq = 1 in our units.
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The final expression makes it easy to see that the abundance of PBHs with respect
to radiation grows with the scale factor from formation. If we ignore the scaling solution
and only focus on order of magnitudes, i.e., we consider that the PBH mass is provided
simply by the mass within the horizon at formation, then we can ignore the integrals over
w and g in the mass while retaining the dependence on r. Then, because K/(2Hr) ∝ r2

and (2πr2
∗)

3/2 ∝ r3, we find that we obtain req/r = aeq/a(tr) for each r. This is the scaling
we should expect; the integrals over w and g serve to return the actual fraction of patches
which produce PBHs, and the fact that they depend on r shows how the energy density
that is stored in PBHs builds up over time, i.e., as r increases.

3.6. Mass Spectrum of PBHs

The mass distribution per proper volume (known as the ‘mass function’) is

dn•(M•)
dM•

∼ ∑
~x0,rm ,C(rm)>Cc

δ(~x−~x0)δ(r− rm) δ

(
M• −

K
2Hr

[
C(g)− Cc(w)

]0.36
)

, (65)

leading to

dn(M•)
dM•

=
∫ rmax

rmin

dr
r

∫ ∞

0
dw w

∫ 4/3

gc(w)
dg

p(g, w, v = 0) f (x)
(2πr2∗)3/2 δD

(
M• −KMH[C(g)− Cc(w)]0.36

)
, (66)

where gc(w) = (4/3) [1−
√

1− 3Cc(w)/2] and we use x ≡ χ
σχ

.
We can write the previous expression in a different form:

dn(M•)
dM•

=
∫ dr

r

∫ ∞

0

dw
w

d3n(M•, r, w, v = 0)
d ln r d ln w dM•

, (67)

where

d3n(M•, r, w, v = 0)
d ln r d ln w dM•

≡
∫ 4/3

gc(w)
dg

w p(g, w, v = 0) f (x)
(2πr2∗)3/2 δD

(
M• −KMH[C(g)− Cc(w)]0.36

)
. (68)

The delta function suggests that we define

Mg ≡ KMH[C(g)− Cc(w)]0.36 = KMH(2/3)0.36[1− C̃c(w)− (1− g̃)2]0.36, (69)

where we have additionally defined g̃ ≡ g/(4/3) and C̃ ≡ C/(2/3) (i.e., both quantities
are defined in units of their maximum possible value) and MH ≡ 1/(2Hr). Note that
Mg = 0 when g = gc(w) and Mg = [1− C̃c(w)]0.36 when g = 4/3. Inverting, we can write
g as a function of Mg, which yields

g =
4
3

1−

√
1− C̃c(w)− 3

2

(
Mg

KMH

)1/0.36
, (70)

thus,

dg
dMg

∣∣∣
w fixed

=
2
3
(3/2)(Mg/KMH)

1/0.36/0.36Mg√
1− C̃c(w)− 3

2

(
Mg
KMH

)1/0.36
=

(Mg/KMH)
1/0.36/0.36Mg

1− g̃
. (71)

As a result, instead of the original integral in dg at fixed w in (68), we can consider an
integral in dMg. By defining g• such that Mg = M•, we obtain

d3n(M•, r, w, v = 0)
d ln r d ln w d ln M•

=
(M•/KMH)

1/0.36/0.36√
1− 3Cc(w)

2 − 3
2

(
M•
KMH

)1/0.36

w p(g•, w, v = 0) f (x•)
(2πr2∗)3/2 (72)
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recalling that for the type I black holes the term in the square root is always positive.
The r-dependence in this expression arises from the r-dependence of the various

correlators (which we describe below) and from MH = Meq (r/req)2. This shows that
the power law (M•/KMH)

1/0.36, which derives from the scaling solution, is a generic
prediction of our approach (see a similar result for the case of bubbles formation [41],
where the power law in the mass spectrum similarly results from a Jacobian). The question,
then, is whether the other terms and the subsequent integrations over w and r modify this
power law. Before we answer this question, we should stress again that our approach in
Equation (66) explicitly integrates over PBH profile shapes (parametrized by w) and PBH
formation times (parametrized by r); it does not assume that either of these distributions
are sharply peaked.

For notational convenience, it is convenient to define

Nrw(M•) ≡
d3n(M•, r, w, v = 0)
d ln r d ln w d ln M•

, Nr(M•) ≡
d2n(M•, r, v = 0)

d ln r d ln M•
and N(M•) ≡

dn(M•, v = 0)
d ln M•

, (73)

where the second expression is the result of integrating the first over w, the final expression
is the result of additionally integrating over r, and it is understood that we always have
v = 0. Thus,

N(M•) =
∫ rmax

rmin

dr
r

Nr(M•) =
∫ rmax

rmin

dr
r

∫ ∞

0

dw
w

Nrw(M•). (74)

If we think of N(M•) as the final PBH ‘mass function’ (i.e., at equality), then it is the
sum of all PBHs formed at earlier times as indexed by r, Nr(M•); thus, at any fixed time
we can have a range of compaction function ‘shapes’ indexed by w, with Nrw(M•) being
the mass function at fixed r and w.

3.7. The Probability Distribution

Now that we have implemented the constraints, we need to specify the probability
distribution p(g, v = 0, w). For this, it is useful to use the identities

p(g, v = 0, w) = p(v = 0) p(g|v = 0) p(w|g, v = 0) = p(v = 0) p(w|v = 0) p(g|w, v = 0), (75)

where, e.g., p(w|g, v = 0) is the conditional probability of having w given g and v = 0.
Because the ζk are Gaussian by assumption, all the other variables are as well; thus, we
only need to consider two-point correlators. Defining

σ2
j (r) =

16
81

∫ dk
k
(kr)4 Pζ(k)W2

TH(kr) (kr)2j where Pζ(k) =
k3 〈ζkζk′〉

2π2 δ(3)(k + k′), (76)

we have

σ2
g ≡ 〈g2〉 = σ2

0 , 〈ηiηj〉 =
σ2

1
3

δij, σ2
χ ≡ 〈χ2〉 = σ2

2 , σ2
w ≡ 〈w2〉 = σ2

2 − 4σ2
1 + 4σ2

0 ,

σ2
v ≡ 〈v2〉 = d〈gv〉

d ln r
− 〈gv〉+ σ2

1 − 2σ2
0 , where 〈gv〉 = 1

2
dσ2

0
d ln r

(77)

and

〈gχ〉 = σ2
1 , 〈gw〉 = σ2

1 − 2σ2
0 , 〈wχ〉 = σ2

2 − 2σ2
1 ,

〈vχ〉 = 1
2

dσ2
1

d ln r
− σ2

1 , 〈vw〉 = 〈vχ〉 − 2〈vg〉. (78)
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With these correlators in hand, we can now write

p(w, v = 0) =
e
− w2

2σ2
w(1−γ2

wv)√
4π2σ2

v σ2
w(1− γ2

wv)
and p(g|w, v = 0) =

e
−(g−〈g|v=0,w〉)2

2Σ2
g|vw√

2πΣ2
g|vw

, (79)

where we have used the fact that p(v = 0) = 1/
√

2πσ2
v and we have

〈g|v = 0, w〉 = σg
γwg − γwvγvg

1− γ2
wv

w
σw

(80)

and

Σ2
g|wv = σ2

g
1− γ2

gv − γ2
wv − γ2

wg + 2γgvγwvγwg

1− γ2
wv

. (81)

Note that the probability p(g|w, v = 0) is not centered on g = 0 due to its condi-
tional nature; furthermore, we have used the normalized (Pearson) correlation coefficient
γab ≡ 〈ab〉/σaσb. Unless Pζ is a power law, these additionally depend on r.

Before we consider explicit examples, because p(g|w, v = 0) is a Gaussian we expect
the mass function Nrw(M•) to be a power law in M• times a Gaussian cutoff. Note
that this cutoff is not simply exp[−(M•/M f )

1/0.36], as suggested in [42] by the use of
Press–Schechter formalism, both because g• is a more complicated function of M• (see
Equation (70)) and because p(g•|w, v = 0) is not centered on zero. This shows once more
that the Press–Schechter formalism is not adequate for PBHs.

4. Illustrative Examples

We now consider a number of examples that demonstrate the implications of our
approach. It is useful in the following to note that σj ∝ rj for sufficiently large r; this is
a consequence of the built-in top-hat filter along with the fact that we do not employ an
additional transfer function when computing statistics; for further discussion, see [19].

4.1. Sharp Feature

Previous work assumes that

Psharp(k) = As kp δ(k− kp) (82)

produces a PBH with a well defined mass. In this case, the idea is to set kp such as to produce
approximately asteroid-mass objects while setting As by requiring that their abundance
accounts for all the Dark Matter.

However, upon setting κ ≡ kpr we have

σ2
j (r) = As κ4 W2(κ) κ2j σ2

w(r) = (κ2 − 2)2 σ2
0 σ2

v (r) = As κ4
(

3j0(κ)−W(κ)
)2

(83)

and
〈gw〉 = σ0σw 〈wv〉 = σwσv 〈gv〉 = σ0σv. (84)

As a result, γgv = γwv = γgw = 1, suggesting that g, v, and w only differ from one
another by multiplicative factors. Hence, as we are interested in v = 0, the others are
peaked to zero; however, g = 0 results in no PBHs at all!

While this power spectrum relates the linear and nonlinear statistics (see [19]), in the
nonlinear case the contribution of PBHs from a very peaked power spectrum is exponen-
tially suppressed. This does not happen for statistics using the mean profiles [16–18], as the
constraint of having a maximum in the compaction function (v = 0) does not enter into
the statistics.
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4.2. Broad Feature

Next, we consider models that have power over a broad range of scales before cutting
off exponentially at krp � 1:

Pbroad(k) = As (k rp)
p exp(−k rp). (85)

On physical grounds, we expect p ≤ 4 [43,44]. Here, As and rp are a characteristic
amplitude and scale, respectively.

The appearance of rp means that it is more convenient to express our results in terms
of dimensionless quantities, e.g., because of the factor of req/r inside the integral in the
second part of Equation (64), it is better to work with

β̃ ≡ (rp/Kreq) β• (86)

rather than β• (i.e., the mass fraction at equality) itself. Likewise, it is better to work with
scaled number densities

Ñ(M•) ≡
4π r3

p

3
N(M•) =

N(M•)
ρeq/KMp

rp

Kreq
, (87)

where, the first equality is dimensionless (a volume times a number density) and the
final expression shows that Ñ scales the number density by (ρeq/Kmp), meaning that the
remaining factors are the same as those which arise when defining β̃•.

4.2.1. Mass Function

Figure 1 shows the dimensionless scaled mass function Ñ when p = 0. The two panels
show different values of As for which σ0 = 0.33 (left) and 0.6 (right). In each panel, the thick
red curve shows Ñ(M•); this is a power law at low masses (the magenta curve shows a
power law of the expected slope, 1/0.36) which is truncated exponentially at larger masses.
Moreover, Ñ(M•) is built up over time by summing over many Ñr(M•); the solid curves
show these for a few choices of r (with a larger r extending to larger M•).

Figure 1. Distribution of M• when P(k) has slope p = 0 and amplitude As such that σ0 = 0.33
(left) and σ0 = 0.6 (right). The thick red curve in each panel shows the scaled mass function Ñ(M•)
(Equation (87)), which results from summing over Ñr(M•) distributions, a selection of which are
shown as thick black curves (with a larger r extending to larger M•). Each of these results from
summing over different Ñrw(M•) (cf. Equation (74)), which we show for a few representative values
of w (dotted, short-dashed, dot-dashed, dot-dot-dot-dashed, long dashed). At small r, increasing
w decreases the maximum mass, while at larger r the mass function is a power law with a small
divergence at the largest allowed masses; the amplitude of this power law depends on w and qualita-
tively traces the distribution of w, i.e., it is small at both small and large values of w. The magenta
line shows a power law of slope 1/0.36, which we argue in the text to be a good approximation at
small M•.
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At any r, the shape of Nr is a power law at low masses with an exponential truncation
at larger masses. The amplitude of the power law part is clearly not monotonic in r, as
neither a very small nor a very large r contributes to the final N(M•). Because r is related
to the time of PBH formation, this explicitly shows that PBHs form over a range of times
and that at any given time they can form with a wide spectrum of masses. Moreover, while
there is a preferred formation time for Nr as r changes, e.g., at the r for which the amplitude
of the power law is greatest, the peak mass at this time is not the same as the peak mass of
the red curve (N(M•)). Thus, we cannot assume either a delta function in PBH formation
times or an equivalent dominance of the mean profile for the compaction function.

Each Nr(M•) distribution, i.e., the mass function of black holes formed at a given time,
is built from summing over different Nrw(M•) distributions, i.e., the mass function of black
holes formed at a given time and with a given compaction function curvature. The thin
curves of different styles in Figure 1 show Nrw(M•) for a few choices of r and w. The cutoff
properties of Nrw(M•) can be understood as arising from the interplay between the pole in
dg•/d ln M• (Equation (72)) and the exponential suppression from p(g•), with both acting
to modify what would otherwise be a power law of slope 1/0.36 = 2.78. In particular, here
it can be seen explicitly that the exponential cutoff arises from the fact that for a given r
and w there is a maximum possible mass which is set by requiring g• ≤ 4/3; note that
this is slightly more stringent than just saying that the mass cannot exceed that within the
horizon. For a given As, this maximum is larger if r is larger and smaller if w is larger,
which is because Cc(w) increases as w increases. Finally, just as we cannot assume a delta
function in r, we cannot assume a delta function in w either. This once again shows that the
use of a mean profile would provide an incorrect result.

To illustrate how the shape rather than the amplitude of the power spectrum affects
the predictions, Figure 2 shows a similar analysis of the case in which p = 2. The mass
spectrum clearly peaks at a lower M•/Mp than before, and the range of r that contributes
significantly is smaller than before as well; however, the qualitative trends remain: a power
law of slope 1/0.36 at lower masses is truncated at larger masses, at first gradually and
then exponentially.

Figure 2. Same as in the previous figure, except now with P(k) having a slope p = 2 and without
any Nrw curves. The right-hand panel has σ0 = 0.5, while the left hand panel has the same σ0 as in
Figure 1; however, the value of As is similar to that in the right hand panel of Figure 1. For the same
As, the mass spectrum peaks at smaller M• compared to p = 0, while the power law slope at low
masses (magenta) is the same.

4.2.2. Dependence of the Abundance on the Power Spectrum

Figure 3 shows how the predicted abundance (Equation (64)) for a given maximal
scale rmax depends on P(k). The two panels are for two different P(k), and the different
curves in each panel are for different amplitudes As. Because the horizontal axis is a proxy
for the formation time, the flattening of the curves at r � rp is another indication that PBHs
do not form at very late times. The steepness of these curves, i.e., how rapidly they rise to
their asymptotic value, is a measure of the narrowness of the distribution of PBH formation
times. Evidently, in the panel on the right this distribution is rather narrow, whereas in
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the panel on the left it is broader. In both panels, a smaller amplitude of P(k) results in a
broader range of formation times.

Figure 3. Dependence of scaled mass fraction at equality (Equation (86)), that is, in PBHs which
formed before r; the panels show results for P(k) having p = 0 (left) and p = 2 (right); the different
curves in each panel are for different amplitudes As (as labeled). In both cases, this quantity is smaller
if As is smaller. For p = 2, most PBHs form when r is slightly smaller than rp; for n = 0 the range of
r/rp is broader, especially for small amplitudes.

As expected, it can be observed that the abundances related to very small power
spectrum amplitudes are exponentially suppressed. This is due to the fact that essentially
all variances decrease with As. Thus, for a very small power spectrum, in order to have
β• ∼ 1 we would need rp to be much smaller than req. On the contrary, a relatively
large amplitude is related to a power spectrum peak position closer to the scale of matter–
radiation equality.

Finally, another power spectrum shape that has appeared in the literature is the
log-normal one, which sets

PLN(k) = As e−[ln(k/kp)]2/2σ2
LN . (88)

Here, σLN determines the width of the feature, which is centered on kp. For small σLN,
σj are not monotonic functions of r (see Figure 4); this can be understood by considering
the delta function limit discussed in the sharp spectrum section and noting that W(kr)
oscillates (and strongly!). At larger r, the σj in this model is asymptotic with respect to the
σj ∝ rj scaling noted earlier. In this respect, the model does not provide any new insights
compared to what we have already studied in this section, and we do not consider it further.

Figure 4. Value of (σj/rj)2 in the Log-normal model for σLN = 0.03 (solid), 0.3 (dotted), and 3
(dashed) for j = 0 (black), j = 1 (cyan), and j = 2 (blue) with As = 1. Curves which drop to zero
show the delta function limit (σLN → 0) of σ0. Larger σLN are simply smeared versions of this limit,
and at large r/rp, σj/rj → is constant.



Universe 2023, 9, 421 20 of 22

5. Conclusions

In this paper, we have reviewed a framework for nonlinear estimation of the abun-
dances of PBHs formed at times when radiation dominated the energy density of the
universe. Our method explicitly differs from others in the literature in that it accounts for
the fact that PBHs form at positions and scales where all possible statistical realizations
of compaction functions (Equation (24)) are maximized. These positions and scales are
intimately related to the formation time of black holes.

Apart from predicting the PBH abundance for any given inflationary power spectrum,
we have studied their mass distribution, that is, the mass function. We show that the latter
is generically a power law at low masses (Figures 1 and 2). The slope of this power law
depends on the critical scaling law for PBH formation (Equation (72)), and is independent
of the shape or amplitude of the underlying power spectrum of fluctuations. At larger
masses, there is a cutoff which depends on the shape and amplitude of the power spectrum
(Figures 1 and 2).

Our analysis shows that smaller amplitudes generically result in PBH formation that
extends over a larger range in r (compare the top and bottom curves in left panel of
Figure 3), i.e., over a longer range of times. In this regard, models which arbitrarily assume
a single epoch of PBH formation related to a peak scale of the power spectrum (rp) should
be treated with skepticism. On the other hand, PBHs considerably lighter than Meq (the
mass of the cosmological horizon at matter–radiation equality) require rp � M−1

eq and a
small As. Exactly how small depends on the shape of P(k), and is the subject of ongoing
work. The fact that we can treat the whole of Dark Matter as being contained in PBHs,
even with a small power spectrum, is related to the fact that the mass spectrum is broader
when the amplitude of the power spectrum is smaller, as can be seen Figures 1 and 2. As a
byproduct, this cautions against analyses which assume that all PBHs have the same mass.

Finally, we would like to remark that all of our results in this paper depend critically
on not including a transfer function when integrating over a power spectrum to compute
our statistics. We have provided a detailed discussion of why a transfer function should
not be used in our setup, in particular because of the way in which the compaction function
is defined.
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