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Abstract: We explore the emergence of the collisional broadening of hadrons under the influence
of different media using the hadronic transport approach SMASH (Simulating Many Accelerated
Strongly interacting Hadrons), which employs vacuum properties and contains no a priori infor-
mation about in-medium effects. In this context, we define collisional broadening as a decrease
in the lifetime of hadrons, and it arises from an interplay between the cross-sections for inelastic
processes and the available phase space. We quantify this effect for various hadron species, in both
a thermal gas in equilibrium and in nuclear collisions. Furthermore, we distinguish the individual
contribution of each process and verify the medium response to different vacuum assumptions; we
see that the decay width that depends on the resonance mass leads to a larger broadening than a
mass-independent scenario.

Keywords: hadronic transport; resonance properties; collisional broadening

1. Introduction

The properties of Quantum Chromodynamics (QCD) at finite temperature and finite
baryochemical potential are not well understood, as they comprise a region of the phase di-
agram difficult to access both in experiments and in first-principle theories. In the confined
phase, the degrees of freedom consist of colorless hadrons, and the system evolution is
well described by hadronic transport. As a baseline for any further medium modifications,
it is of interest to understand how hadron properties are modified when embedded in a
hadronic medium.

One natural change caused by the presence of a medium is the reduction in hadron life-
times due to absorption processes. The usual prescription in hadronic transport approaches
is to associate the lifetime (τvac) of a resonance in vacuum with the inverse of its width,
such that its decay in a small time interval ∆τ happens as a Bernoulli trial with probability
Pdecay(∆τ) = Γvac∆τ. Here, Γvac is called vacuum decay width, and the medium-induced
shortening of lifetimes can be thought of as an effective increase in the width. This effect is
known as collisional broadening.

From a historical and experimental perspective, medium modifications are studied by
comparing elementary collisions and heavy-ion collisions (HICs), scaling the observable
appropriately. Specifically, the NA60 Collaboration revealed that the softening of the
invariant mass spectra of dileptons [1] around the ρ meson pole mass is consistent with
the in-medium broadening of vector mesons proposed by Rapp et al. [2,3]. This was later
covered in off-shell hadronic transport approaches—where the hadron spectral function
can change dynamically during propagation—by including a collisional width explicitly
parameterized as a linear function of the local density [4,5]. On the other hand, on-shell
hadronic transport approaches use the coarse-graining method: the average of several
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collisions gives local values for thermodynamic quantities, with which the corresponding
rates from the in-medium model are computed [6–8].

In [8], dilepton emission was included and found to be in agreement with experimental
yields in elementary collisions at HADES energies but not in the heavy-ion yields around
the ρ meson pole mass, showing that the collisional broadening intrinsic to hadronic
transport is not sufficient to account for the full effect of a medium. In [9], we studied
the collisional broadening of ρ in an equilibrated hadron gas and in nuclear collisions.
The thermal gas exhibited a spectral function similar to the full in-medium model but
expectedly less broadened.

In this work, we extend that previous study to some resonances of particular interest,
determine the processes that contribute the most to ρ collisional broadening, and investigate
the effect of the two different model assumptions usually chosen for the vacuum properties
of resonances in hadronic transport. This paper is organized as follows: Section 2 describes
the aspects of the SMASH approach relevant to this work. In Sections 3.1 and 3.2, we display
the behavior of the dynamically generated collisional broadening of different particles in
a thermal scenario and in nuclear collisions, respectively. In Section 3.3, we compare the
collisional broadening of ρ and ω mesons under different vacuum assumptions. A brief
summary of the results is given in Section 4, along with a discussion of their interpretation.
Appendix A shows the inelastic cross-sections of some relevant interactions.

2. SMASH Transport Approach

In this study, we used the hadronic transport approach SMASH-2.2 (Simulating Many
Accelerated Strongly interacting Hadrons) to simulate different states of nuclear matter,
such as a thermal gas in equilibrium and nuclear collisions [10]. In this microscopic
transport approach, the complete information of the phase space is accessible at all times
according to effective solutions of the relativistic Boltzmann equation.

We employ the geometric collision criterion of SMASH to determine possible scatter-
ings, in which an interaction can happen if

dtrans < dint =

√
σtot

π
, (1)

where σtot is the total cross-section and dtrans is the distance between two particles in a given
time interval in the center of the mass frame. With this criterion, the only possible processes
are binary: resonance formation (2→ 1), its corresponding resonance decay (1 → 2), as
well as elastic and inelastic scatterings (2→ 2). To account for multi-particle interactions,
intermediate resonances are produced or decay in a chain. The available species, their
vacuum mass M0 and pole width Γ0, possible decay channels, and associated branching
ratios are taken from Particle Data Group 2016 [11].

The mass of a new resonance is constant during propagation and randomly chosen at
production using the normalized vacuum spectral function

Avac(m) =
2N
π

m2Γdec(m)

(m2 −M2
0)

2 + [mΓdec(m)]2
(2)

as a probability distribution, where normalization factor N is defined by the relation

1 =
∫ ∞

mmin

Avac(m) dm, (3)

with threshold mass mmin being equal to the sum of masses from its lightest decay channel.
The mass-dependent decay width is based on the Manley formalism [12], given by

Γdec
R→ab(m) = Γ0

R→ab
ρab(m)

ρab(M0)
, (4)
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where Γ0
R→ab is the partial width at the pole mass and ρab(

√
s) is a mass-dependent function

evaluating the available phase space for the creation of particles a and b from energy
√

s.
The total decay width of R in (2) is the sum of the partial widths in (4) over all possible
final states ab. If decay happens, the particle decays in a randomly chosen decay channel
according to the corresponding branching ratios. Stable hadrons1 have Γdec ≈ 0, so Avac

reduces to a δ-distribution, and the particle always has pole mass. We also employ a second
assumption for vacuum decays to investigate the impact on collisional broadening. Here,
Γvac = Γ0 independently of the resonance mass. This is referred to as the mass-independent
decay assumption.

The SMASH approach uses vacuum properties, so the average lifetime of a particle
corresponds to its inverse width only in vacuum. When it is surrounded by other hadrons
with which it can interact inelastically, the average lifetime naturally decreases, as illustrated
in Figure 1 for a ρ embedded in a medium. We describe this setup in Section 3.1. We notice
that the medium suppresses the lifetimes of low-mass particles more, while higher masses
are not very affected. This reflects the overall inelastic cross-section between the particle
and the rest of the medium.

We remark that this prescription of sampling lifetimes from the (inverse) vacuum
width breaks down close to the threshold. The available phase space, ρab, approaches
0, so Equation (4) leads to 1/Γdec → ∞, and the resonance can live forever. A more
grounded definition was introduced in [13] from the fundaments of quantal scattering
theory, associating the lifetime of a resonance with the time delay equal to the derivative of
the phase shift, which can be computed analytically from the resonance shape. However,
there is no consensus on how to implement this prescription appropriately in real transport
model calculations, as it can generate negative time delays or require cross-sections for
the “forward-going” part of the resonant wave packet, which are unmeasurable and must
be parametrized [14,15]. Therefore, we stick to the usual prescription and investigate the
consequences by comparing it to the aforementioned mass-independent assumption, which
does not lead to infinite-lasting resonances.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

m[GeV]

100

101

〈τ
(m

)〉[
fm

]

T [MeV]

Vacuum

120

140

160

ρ(770)

Figure 1. Proper lifetime of the ρ meson for a gas in equilibrium at different temperatures and
baryochemical potential µB = 400 MeV.

To probe the effect of these inelastic interactions, we follow [9] and define the effective
width as

Γeff = 〈τ〉−1 =

〈 t f − ti

γ

〉−1
, (5)
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where ti and t f are the initial time (“birth”) and final time (“death”) of the particle, re-
spectively, and γ is its Lorentz factor in the computational frame. This definition follows
naturally from the prescription we use for the resonance lifetimes in vacuum; since they
are sampled from the vacuum width, the effective width should be defined in terms of the
effective lifetime. In this work, we only consider the dependence of Γeff on the resonance
(on-shell) mass. Because the decays are randomly selected at each time step, it may happen
that Γeff < Γdec if there is little to no broadening and the statistics are insufficient.

We consider the “death” of a particle when it either decays or scatters inelastically,
and we compute γ with its initial momentum. This means that if it goes through elastic
scatterings at times t1, ..., tN before its death, the exact lifetime is

τ̃ =
t f − tN

γN
+

tN − tN−1

γN−1
+ ... +

t1 − ti
γi

. (6)

We checked that this leads to the same effective width as simply computing τ =
t f − ti

γi
in the analyzed systems. We believe that this happens because the momentum change in
elastic collisions is small enough and can be either positive or negative, such that 〈τ〉 ≈ 〈τ̃〉.

To further quantify collisional broadening, we also define the collisional width as

Γcoll(m) = Γeff(m)− Γdec(m). (7)

Subtracting the contribution of the vacuum from equation (5) results in the contributions
solely caused by absorption processes. The medium effects can be further reframed in
terms of the dynamical spectral function,

Adyn(m) =
2Ñ
π

m2Γeff(m)

(m2 −M2
0)

2 + m2Γeff(m)2
, (8)

which amounts to replacing the vacuum width in (2) with the effective width (5). Since the
system is restricted to finite phase space, the support of this spectral function is not infinite.
Therefore, we normalize it with respect to the vacuum spectral function (2):

Ñ =

∫ mmax
mmin

Avac(m)dm∫ mmax
mmin

Adyn(m)dm
, (9)

allowing for a proper comparison between the spectral functions for different assumptions.
Usually, the expression “spectral function” is used interchangeably with “invariant mass
spectra”. We find it important to highlight that this is not the case here. The former refers
to Adyn, which encompasses the modifications to the propagator of the resonance, while
the latter is denoted by dN/dm and describes the production of resonances; it was also
studied in [9,16].

3. Results
3.1. Hadron Gas in Equilibrium

In this section, we demonstrate how particle interactions with a thermal medium affect
the effective width (5). To do so, we employ an equilibrated hadron gas with different
temperatures T and baryochemical potential µB = 400 MeV. The system is simulated
with a large box with periodic boundary conditions, initialized with thermal multiplicities
according to the given (T, µB), and momenta are assigned according to the Boltzmann
distribution. To ensure thermalization, we allow the gas to relax and only include particles
with ti > 1000 fm, which modifies the nominal (T, µB) values. The systems starting at
T = 120/140/160 MeV fall to 106/128/149 MeV, respectively. In the following, legends
denote the initial temperature, and error bands are statistical.
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Since collisional broadening originates from absorption processes, it is also possible to
probe it for stable particles. For example, the πρ→ ω process contributes to the broadening
of both π and ρ.

Using (5), we extract the effective width for nucleons and pions. Table 1 shows that
similar to ρ, they display an increasing effective width for rising temperatures, and we
observe it to be significantly stronger for π than for N. The reason for this is the different
number of inelastic channels; many mesonic and baryonic resonances decay into pions,
while nucleons only participate in baryonic processes. As the temperature rises, more and
more of these channels are opened, so the difference between the effective widths increases.

Table 1. Effective width of stable particles in thermal equilibrium. Errors are statistical.

Γeff [GeV]

T [MeV] 120 140 160

N 0.063 (1) 0.1082 (8) 0.1789 (7)
π 0.0802 (4) 0.2033 (5) 0.4376 (6)

Next, we investigate the collisional broadening of some selected resonances of particu-
lar interest. Along with the ρ meson, ω and ∆(1232) are relevant for dilepton yield, and the
latter is also important for pion production, which is famously too high in most transport
models. The reconstructability of K∗(892) in HICs was investigated in [17]. a1(1260) is the
chiral partner to ρ, so whether it also broadens is a natural question. Since the average
lifetime of the ρ meson is shown in Figure 1, we do not repeat its inverse plot here. The
effective width for ω in Figure 2a shows that Γeff grows with the medium temperature and
that the difference from the vacuum is higher at lower masses. The curves converge to
the vacuum decay width at large masses, so the decay probability dominates over the ab-
sorption probability, meaning that collisional broadening decreases. This happens because
the processes that absorb the resonance become less likely, as detailed in Appendix A. We
also see a non-monotonic structure in the effective width, caused by the shape of Γdec(m),
which increases relatively sharply while the medium effect decreases.

(a) (b)

Figure 2. Effective width of (a) ω mesons and (b) ∆(1232) baryons in thermal equilibrium.

This convergence at high enough masses is generally shared between the resonances
we probe, as shown in Figure 2b for the ∆(1232) baryon and in Figure 3a for the K∗(892)
meson, respectively. Another possible effect coming into play here is that if the vacuum
width is large, the particle decays more quickly, so it has less time to scatter inelastically.
Unlike the other resonances, low-mass ∆(1232) do not seem more sensitive to the medium
temperature.
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Moreover, a1(1260) does not develop any collisional broadening, as we show in
Figure 3b. This is because there is no known process in which it emerges as a decay product;
hence, there is no absorption process for it. One possible interesting consequence is that if
the a1 spectral function does broaden in a real QCD medium, as expected if chiral symmetry
is restored [2], it has no contribution from collisional broadening, unlike the broadening of
the ρ meson, its chiral partner.

(a) (b)

Figure 3. Effective width of (a) K∗(892) and (b) a1(1260) mesons in thermal equilibrium.

3.2. Heavy-Ion Collisions

In this chapter, we study the collisional broadening of different particles in the off-
equilibrium systems created after HICs. In SMASH, the nucleons in each nucleus are
sampled from a Woods–Saxon distribution and move along the z-axis with the input beam
energy. One key difference from the thermal hadron gas setup is the presence of strings,
representing 2 → N processes. They are formed in an interaction when the incoming
particles have sufficient energy and are handled by PYTHIA 8.2 [18]. Another consequence
of this initial state is in the system chemistry; in the thermal gas, all possible hadrons are
initialized, using the full support ofAvac. On the other hand, HICs start with only nucleons,
and the available energy limits the phase space for particle production.

We restrict the analysis to central Au+Au collisions at 1.23A GeV kinetic energy and
C+C collisions at 1A GeV, which are setups run by the HADES experiment at GSI [19,20].
A larger set of systems was investigated in [9], but these two provide a good grasp of the
effect of medium size.

Figure 4a shows the effective width of the ω meson, where the broadening increases
with system size. Since the vacuum width is small and close to the pole mass, the spectral
function (2) is sharp; therefore, particles with masses far from the pole value are rare. For
the C+C system, which contains little energy in total, this means that large-mass ω mesons
are not produced. Compared with Figure 2a, lower-mass particles have a small broadening.
We understand this in light of the medium expansion: as the system expands, the energy
available to produce resonances decreases; consequently, lower masses become more likely.
At the same time, the medium is diluted; therefore, the broadening of these particles is
suppressed.

The ∆(1232) baryon also broadens more in a collision between heavier nuclei, as we
show in Figure 4b. In the C+C collision, lower masses are not produced. The behavior is
similar to the thermal gas in Figure 2b, where the collisional broadening displays weak
dependence on the mass. This suggests that the ∆ baryons behave thermally, with most
being created via the first NN → N∆ interactions.
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(a) (b)

Figure 4. Effective width of the (a) ω(782) meson and (b) ∆(1232) baryon for different nuclear
collision systems.

In Figure 5a, we see a small broadening of K∗(892), which increases at high masses
in the Au+Au system. In our implementation of low-energy nuclear collisions, the only2

channel for strange hadron production is the decay of heavier resonances into a strange–
antistrange pair. The first NN interactions rarely produce states able to decay into K∗(892)
(see Appendix A). Then, at least three interactions must happen to produce it, when the
medium may have already become dilute. This is consistent with a previous study that
used reconstructable K∗ [17]; since they leave the medium before being absorbed, their
decay products are also unaffected.

(a) (b)

Figure 5. Effective width of the (a) K∗(892) and (b) ρ mesons for different nuclear collision systems.

Much like in Figure 3b, we do not observe the collisional broadening of the a1(1260)
meson, since there is no process where it is a decay product; therefore, we do not plot the
result. We show the effective width of the ρ meson in these collision systems in Figure 5b.
Similar to the ω meson, the difference from the thermal gas behavior in lower masses
happens because of the medium dilution, since they are mostly produced in the late
stage [9].

To discriminate the processes that cause this broadening, we weigh the collisional
width (7) with the fraction of each process at a given mass. The dominant contributions are
shown in Figure 6 in the Au+Au system. Out of the five most important processes, four
are baryonic, similar to the results of Rapp’s full in-medium model [2], where ρ couples to
nucleons more. As previously suggested in [21], we see a significant contribution from the
ρN → N(1520) channel around m ≈ 0.5 GeV. The biggest mesonic contribution is from
chiral partner a1(1260), as was the case in [22] in the same mass range.
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ρ+N → ∆(1900)

Figure 6. Contributions of the 5 most significant absorption channels to the collisional width of ρ in
central Au+Au collisions at 1.23 GeV.

3.3. Collisional Broadening under Different Vacuum Assumptions

In this section, we discuss the effects of the different vacuum decay assumptions
(described in Section 2) on collisional broadening. We evaluate the collisional width (7)
for both assumptions in the framework of a hadronic thermal gas and show it for ρ and
ω in Figure 7, using Γ0

ρ = 149 MeV and Γ0
ω = 8.5 MeV. ρ is more broadened in the mass-

dependent case, while ω displays a more complicated structure. This arises from different
effects:

1. Particles that decay cannot be absorbed, so a larger vacuum width suppresses colli-
sional broadening. At low masses, the vacuum decay width tapers down to 0 in the
mass-dependent assumption. This makes the particles more prone to be absorbed by
the medium in comparison with the mass-independent case.

2. Inelastic cross-section σab affects the broadening of both a and b, since it determines
how much one absorbs the other. It has peaks around the pole mass (M0

R) of possible
resonances ab → R [10]. The masses of the incoming particles control the off-shell
mass of the outgoing resonance (mR =

√
sab), so such peaks lead to structures in the

collisional width of a and b, as exemplified by Figure 6; the contribution of the process
ρN → N(1520) is higher and close3 to M0

N(1520) − mN = 0.57 GeV, and heavier
resonances lead to peaks in larger mρ. This effect is not relevant for very small masses,
when Avac

R → 0.
3. Absorption cross-section σab→R is also proportional to Γvac

R , so that different mass
assumptions give different weights to the resonance peaks.

4. At high enough masses, the absorption cross-section decreases so much that particles
stop undergoing collisional broadening, as detailed in Appendix A, such that the
vacuum assumption has no effect.

The interplay among the aforementioned effects causes a mass-dependent ρ to always
be more absorbed than a mass-independent one. In the case of ω, both cases lead to the
same broadening in the range mω = 0.6− 0.75 GeV, but a peak is more pronounced in the
mass-dependent assumption in the range mω = 0.75− 1.0 GeV.
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(b)

Figure 7. Collisional widths of (a) ρ and (b) ω in thermal equilibrium under different vacuum decay
assumptions.

In order to assess the net effect of both assumptions, we show the corresponding
broadened spectral functions (Adyn) in Figure 8, using definition (8) with the same normal-
ization (9) for both assumptions. As expected, the mass-dependent assumption leads to a
broader spectral function, but this is only significant around the pole mass.

As mentioned in Section 2, the prescription of setting resonance lifetimes to their
inverse widths is not consistent with scattering theory derivations, as they approach
infinity close to the threshold. In the mass-independent assumption, this does not happen;
subsequently, the medium effect in that region is reduced. In the phase-shift prescription,
the time delay (that is, the vacuum lifetime) approaches 0 at the threshold, so we predict
that if it is used appropriately, the collisional broadening at low masses is suppressed, as
resonances decay immediately after formation.

(a) (b)

Figure 8. Dynamical spectral function of the (a) ρ and (b) ω mesons at different temperatures
and baryochemical potential µB = 400 MeV in thermal equilibrium under different vacuum decay
assumptions.

4. Conclusions and Discussion

In this work, we investigate the collisional broadening of different particles by com-
puting their effective width in the framework of a hadronic transport approach. First, we
evolve a hadron gas to equilibrium at different temperatures and baryochemical potential
µB = 400 MeV, allowing us to establish the thermal behavior of such particles. The effective
width shows dependence on the system temperature, where large temperatures enhance
the collisional broadening of all hadron species except the a1(1260) meson, which does not
have any absorption channel available. The particles that can broaden are generally more
affected at lower masses, because the absorption cross-sections decrease at high masses.

Furthermore, we study the effect of collisional broadening in non-equilibrium systems
created in HICs. In this framework, the effective width shows dependence on the system
size, as collisional broadening is enhanced by a larger system. We observe that each
resonance behaves differently, depending on when it is produced the most. ∆(1232)
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baryons show a behavior similar in both the thermal gas and HICs, since they are mostly
created in the first NN interactions and move across a relatively thermalized medium [8].
On the other hand, K∗(892) mesons, being strange particles, tend to appear after the third
interactions, when the medium has already dissipated.

We also investigate the processes that cause a collisional broadening of ρ mesons.
Particularly, the contribution of the ρN → N(1520) absorption channel shows a significant
effect around mρ ≈ 0.5 GeV. In agreement with the full in-medium model [3,22], the
coupling to nucleons is the most important, with π coupling being a distant second. We
also find that the pole mass of the outgoing particle in each absorption channel determines
the peaks in their contribution to collisional broadening, with some differences to account
for the final kinetic energy.

Lastly, we compare two assumptions for the decay probability in vacuum in the
thermal gas framework. We observe that a mass-dependent description of Γdec slightly
enhances collisional broadening close to the pole mass.
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Appendix A. Interaction Cross-Sections

As discussed in Section 3, the collisional broadening of a particle results from the
processes where it is absorbed, which are determined by inelastic cross-sections. These are
functions of the center-of-mass energy between the incoming particles and thus depend
on the off-shell mass of each, as well as on the relative momenta. We exemplify this in
Figure A1, which shows the inelastic cross-sections for ω + p and ω + π scatterings and
how they depend on the excess energy for different values of mω.

In the thermal hadron gas, the inelastic processes consist of 2→ 1 and 2→ 2 interac-
tions. The peaks of each cross-section are always around the same

√
s, so the peaks in excess

energy trivially shift with the increase in resonance mass. This happens until the peak
cannot shift any further, since the center-of-mass energy is bounded from below by the sum
of incoming masses. After this, heavier resonances have a progressively smaller σinel, and
consequently a smaller collisional width, as seen in Figure 2a. The incoming particles still
interact, but mostly through elastic scattering, which does not cause collisional broadening.

Figure A2 shows the cross-sections of p + p scatterings that happen in the first mo-
ments of an HIC. For energies below

√
s = 3.5 GeV, the largest inelastic contribution is

the excitation of ∆ via NN → N∆, followed by double ∆ production. This is why the ∆
baryons in the nuclear collisions of Section 3.2 behave similarly to the those in the thermal
gas of Section 3.1. Other 2 → 2 channels are possible but very unlikely, with branching
ratio σ/σtot ≤ 2%.

https://figshare.com/articles/dataset/Data-Balinovic_zip/23695755
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(a) (b)

Figure A1. Inelastic cross-sections of (a) ω + p and (b) ω + π scatterings in a thermal gas for different
off-shell masses mω .

Between
√

s = 3.5 and 4.5 GeV, we use a transition from the resonance to the string
picture, with non-diffractive string fragmentations quickly dominating; above that, only
strings are produced.

Concerning the K∗(892) meson, the lowest mass states that can decay into it are
N(1875) and ∆(1900), both of which are rarely produced in these interactions. The systems
analyzed in Section 3.2 have

√
sNN = 2.32–2.41 GeV, so most K∗(892) will be produced

from a tertiary or later interaction.

Figure A2. Cross-sections of p + p scatterings we use in a nuclear collision, including string fragmen-
tation (“2-diff”, “1-diff”, and “non-diff”). Below is an enlargement of smaller contributions.

Notes
1 We consider stable the hadrons with Γ0 ≤ 10 keV.
2 In collisions with energies higher than

√
sNN ≈ 3.5 GeV, strange hadrons also come from string fragmentation (see Appendix A).
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3 The difference from the actual peak is due to the kinetic energy given to the created resonance.
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