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Abstract: Various formulations of the exact renormalization group can be compared in the pertur-
bative domain, in which we have reliable expressions for regularization-independent (universal)
quantities. We consider the renormalization of the λφ4 theory in three dimensions and make a
comparison between the sharp-cutoff regularization method and other more recent methods. They
all give good results, which only differ by small non-universal terms.
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1. Introduction

The exact renormalization group (ERG) [1–7] is the non-perturbative formulation of the
classical renormalization group, which was itself an improvement of perturbative quantum
field theory. The ERG has been employed for the calculation of universal quantities for
critical phenomena, in particular, critical exponents. Unfortunately, the ERG is afflicted
by the problem of regularization scheme dependence of the results, which appears more
acutely than in perturbation theory. However, considerable studies of regularization
scheme dependence have been carried out [8–10], and Litim has proposed an optimized
regulator [9,10], with which he obtains particularly accurate critical exponents [11]. At
any rate, the comparisons made so far, for any given field theory, mostly involve the ERG
fixed point and the perturbations about it (which provide the critical exponents). The ERG
equations are actually applicable in a much larger parameter region. Thus, our intention is
to explore other parts of the parameter space.

Undoubtedly, scale invariance is an important subject, and it is natural that many field
theorists focus on the renormalization group fixed points. However, in many situations,
one has to deal with field theories that are not scale invariant. Nevertheless, these theories
need renormalization, which is normally implemented in perturbation theory [12–14]. The
classical renormalization group still is a convenient method of improving the results of
perturbation theory, but the ERG opens a new avenue, given its non-perturbative nature.
This idea was proposed years ago [15], and it has recently been demonstrated numerically
that the ERG equations can outperform perturbative renormalization within a range of
coupling constant values [16].

The regularization method employed in Ref. [16] is the simple sharp-cutoff method,
which is said to be non-optimal [8–11]. However, the sharp-cutoff method is arguably
useful within the local potential approximation [17]. At any rate, reviews of the exact
renormalization group written after the popularization of Litim’s work [18–21] favor his
method over the sharp-cutoff method. In a finite (truncated) coupling constant space, both
methods lead to ordinary differential equations, whereas general smooth regulators lead
to integro-differential equations [8]. Ordinary differential equations are very suitable for
numerical calculations and even lend themselves to some analytical investigations.

One class of smooth cutoff functions consists of power-law functions with different
exponents [8–10]. In particular cases, these cutoff functions give rise to ordinary differential
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equations, as do the sharp-cutoff or the Litim cutoff functions [8]. Among those cases, we
shall pay attention to the 4th power law in three dimensions, which was originally studied
by Morris [7,22]. He concluded that it is more convenient than the sharp-cutoff function as
a basis for the full derivative expansion of the ERG [22].

Usually, the ERG analysis of regulator performance is concerned with the ERG fixed
points. Of course, the choice of regularization scheme affects the renormalization process
for other values of the coupling constants [12–14]. Despite the fact that dimensional
regularization has become standard in perturbative field theory, there is no fundamental
objection to the use of other schemes in scalar field theories. Thus, one is prompted to
ask for the effect that the various regulators already tested in the ERG may have in the
perturbative domain.

One can consider several aspects of this question. The simplest field theory in three
dimensions, the single-field scalar field theory, has only one non-trivial fixed point, namely,
the Wilson–Fisher fixed point. This fixed point can be found employing the fixed-dimension
perturbative λφ4-theory (which actually provides very accurate values of the corresponding
critical exponents) [13,14]. One important fact to take into account is that this theory is
super-renormalizable, that is to say, only a finite (and small) number of Feynman diagrams
are superficially divergent [13,14]. When these diagrams are regulated, they produce regular-
ization dependent terms, that is to say, non-universal contributions to the renormalized
parameters. At any rate, the divergent diagrams only affect the renormalization of the mass
m, whereas λ is universal, because it does not involve divergences.

The relationship between the bare λ0 and the renormalized λ is well known in pertur-
bation theory, to a high loop order, and it is employed to calculate the critical exponents
of the Wilson–Fisher fixed point [13,14]. This calculation indeed demands a high-order
expansion and sophisticated resummation techniques. However, the perturbative series
converges very well for small values of λ/m, so a few terms of it suffice to obtain very ac-
curate results. Therefore, this fully perturbative region can be the adequate testing ground
for a comparison with non-perturbative ERG results, in particular, regarding regulator
optimality. Moreover, in addition to testing the relationship between λ0 and λ, we can also
test the relationship between m0 and m, in spite of its not being universal.

Other aspects of the relation between truncations of the ERG equation and the per-
turbative renormalization group have been analysed before. Morris and Tighe [23] study
the derivative expansion of the λφ4-theory and compare the ERG beta function with the
perturbative beta function to one and two-loop order. However, they focus on the massless
case in four dimensions. In three dimensions, the perturbative series is hardly useful for the
massless case, unless treated with sophisticated techniques, as noted above. Kopietz [24]
employs Polchinski’s ERG and initially keeps the dimension general, but he restricts the
study, at some point, to D ≥ 4. Kopietz’s renormalization group equations are further
complicated by his keeping the full momentum dependence. Here, we consider the local
potential approximation of the ERG, which allows us to carry out simple calculations of the
RG flow for the massive λφ4-theory in three dimensions. Other articles that discuss the
connection of the ERG with perturbation theory are Refs. [25,26], but they do not consider
the λφ4-theory in three dimensions.

Of course, the study of the connection between the exact and the perturbative renor-
malization groups is, generally speaking, as old as the theory of the renormalization
group itself [1]. It features in the early articles [4,6] and early modern reviews of the
ERG [27–29]. However, these articles and reviews precede (or are simultaneous with) the
studies of regularization-scheme optimization and are mainly concerned with the sharp-
cutoff scheme, as the only one giving rise to tractable differential equations (it seems that
Morris’s scheme [7], namely, the 4th power law in three dimensions, was not sufficiently
considered, perhaps because it is too specific).

A general study of the choice of regularization scheme in the ERG has been carried
out by Baldazzi, Percacci, and Zambelli [30]. In particular, they determine how the set of
ERG beta functions depend on the choice of scheme and calculate and compare them for
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Litim’s scheme and the MS scheme in dimensional regularization. Some of the equations
that we use here are, in fact, particular cases of their beta functions.

Our study consists of two parts. In the first one, spanning from Sections 2–4, we
make a numerical comparison of three well-known ERG regularization methods with the
universal perturbative renormalization formulas, including up to the three-loop order. The
three regularization methods seem to work fine. In the second part, Section 5, we make an
analysis of the relationship between simple forms of the ERG differential equations for m
and λ in the various schemes, on the one hand, and the one-loop gap and bubble equations,
on the other. In Section 6, we present some conclusions.

2. Sharp-Cutoff Exact Renormalization Group and Perturbation Theory

Here we take the Wegner–Houghton sharp-cutoff ERG equations [2], restricted to the
single-field scalar field effective potential [4,31], in three dimensions, namely,

dUΛ(φ)

dΛ
= −A3

2
Λ2 ln

[
Λ2 + U′′Λ(φ)

]
, (1)

where A3 = (2π2)−1 and UΛ(φ) is the effective potential, such that m2 = U′′Λ(0) and
λ = U′′′′Λ (0)/4!. We compare the renormalization induced by Equation (1) to perturbation
theory renormalization, for small values of the bare mass and coupling constant, where
smallness is measured with respect to the only reference scale that we employ, which is the
UV cutoff Λ0. We allow negative values of m2 and then smallness means |m2/Λ2

0| � 1.
As before [16], we employ the linearized Wegner–Houghton ERG for a rough ap-

proximation. Let us recall two simple conclusions from it: the coupling constant is not
renormalized while m2 grows as we lower the running cutoff Λ, namely,

m2(Λ) = m2
0 +

6λ0

π2 (Λ0 −Λ). (2)

Hence, a small positive renormalized mass (at Λ = 0) requires m2
0 < 0. Naturally, a

better approximation, for example, a one-loop calculation or the non-perturbative approach
of Ref. [16], finds that λ < λ0, and also finds a (negative) correction to Equation (2).

Let us make the mass and coupling constant non-dimensional by dividing each by the
corresponding power of Λ0. Notice that this non-dimensionalization is not of the usual
type, which uses powers of the running cutoff Λ [1,2,4,31], but it is more convenient for us
to compare with perturbative field theory results. Nevertheless, our redefinition hides the
fact that the mass renormalization is non-universal and, in particular, Equation (2) contains
a term proportional to Λ0 and divergent for Λ0 → ∞. Let us leave the renormalization
of mass for later and consider now the renormalization of the coupling constant in the
perturbative domain, namely, for small absolute values of non-dimensional m2

0 and λ0.
Thus, we first set λ0 to some small number, say we set 6λ0/π2 = 0.005 (λ0 = 0.008225).

Although Equation (2) gives only a rough approximation, we can use it to guide ourselves
about the choice of m2

0. Thus, let us take m2
0 < 0 but m2

0 > −6λ0/π2 = −0.005, because
we want m to be small, but not too small. We do not want to be close to masslessness
(criticality) because it is not the truly perturbative domain. In addition, we must not take
m2

0 positive, especially positive and large, because then λ is hardly renormalized (as occurs
in the linearized ERG). We have tried m2

0 = −0.0047 + 0.001k, k = 0, . . . , 5, and solved
numerically the ERG equations, as we now explain.

The Wegner–Houghton ERG equations describe how the couplings in the effective
potential flow with Λ. When truncated to a not-too-small number of coupling constants,
the equations are known to be reasonably accurate, at least, for the analysis of critical
behavior [31]. We employ them far from the Wilson–Fisher fixed point, namely, for non-
vanishing but small initial values of |m2

0| and λ0, and for initially vanishing values of the
other couplings.
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The numerical integration between Λ = Λ0 and Λ = 0 of the set of ordinary differ-
ential equations given by the 8th truncation of the Wegner–Houghton equation for the
effective potential (up to φ16) yields the following results. For the renormalized mass and
quartic coupling constant, we obtain (k = 0, . . . , 5):

m = 0.009857, 0.03110, 0.04343, 0.05312, 0.06138, 0.06869, (3)
6λ

π2 = 0.002575, 0.003774, 0.004051, 0.004196, 0.004291, 0.004359. (4)

Hence,
λ

m
= 0.4298, 0.1996, 0.1534, 0.1299, 0.115, 0.1044. (5)

These values are sufficiently small (except the first one) for us to keep a few terms of a
series of powers of λ/m. Also note the relatively small variation of 6λ/π2 from its initial
value 6λ0/π2 = 0.005 (except in the first case). Actually, Equation (2) roughly holds, as
it gives

m = 0.01732, 0.03606, 0.04796, 0.05745, 0.06557, 0.07280.

As to the reliability of the 8th truncation of the ERG equations, we have checked that
even truncations of somewhat smaller order yield essentially the same results.

For the comparison with perturbation theory, it is sufficient to keep up to (λ/m)2 in
the fixed-dimension perturbative series, that is to say, to keep up to the two-loop order
in the renormalization of λ. In addition to this, we can also consider the sextic and octic
coupling constants, which were calculated long ago in perturbation theory [32], and which
we also obtain in our numerical integration of the ERG equations.

To wit, the expressions that we employ are:

λ0 = λ

(
1 +

9λ

2πm
+

63 λ2

4π2m2

)
, (6)

g6 =
9λ3

πm3

(
1− 3 λ

πm
+ 1.389963

λ2

m2

)
, (7)

g8 = − 81λ4

2πm3

(
1− 65 λ

6π m
+ 7.775001

λ2

m2

)
, (8)

where the non-dimensional sextic and octic coupling constants g6 and g8 refer to the terms
next to λφ4 in the expansion of the effective potential, namely, g6φ6 + m−1g8φ8 [32].

The values of g6 and g8 that we obtain with the ERG are:

g6 = 0.1389, 0.01728, 0.008275, 0.005176, 0.003658, 0.002774,

−g8 = 0.09582, 0.009248, 0.003793, 0.002127, 0.001380, 0.0009759.

The preceding perturbative formulas (6)–(8), in combination with Equation (5), yield

6λ0

π2 = 0.004919, 0.005093, 0.005093, 0.005090, 0.005088, 0.005087,

g6 = 0.1924, 0.01970, 0.009166, 0.005652, 0.003959, 0.002983,

−g8 = 0.4195, 0.01272, 0.004669, 0.002511, 0.001592, 0.001109.

The comparison is successful, insofar as the ERG integration yields values of λ/m
and values of g6 and g8 such that the substitution for λ/m in the perturbative formulas
approximately recovers the value of λ0 and obtains values of g6 and g8 similar to the ones
of the ERG integration. Naturally, the approximation is better the smaller λ/m is, and the
last values of g6 and g8 are off by about 10%.
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3. Results for Litim’s Optimized Exact Renormalization Group

Here, we carry out the analogous calculations for Litim’s optimally regulated ERG
flow, employing his flow equation (Equation 2.13 [11]). That flow equation applies to the
O(N) scalar field theory in d dimensions, so we take the particular case d = 3 and N = 1,
which, in terms of the dimensionful potential, reads

dUΛ(φ)

dΛ
=

Λ4

6π2 [Λ2 + U′′Λ(φ)]
. (9)

We again employ the 8th truncation of the flow equations. Litim studies the reliability
of truncations (for fixed-point calculations) and finds that even lower order truncations
are reliable (Section 3 [11]). We have also checked the reliability of the 8th truncation for
our calculations.

For the calculation of renormalized mass and coupling constants through Litim’s flow
equation, we need to set initial (“bare”) values. The linearization of Equation (9) yields

m2(Λ) = m2
0 +

4λ0

π2 (Λ0 −Λ). (10)

We can choose again (in dimensionless variables) 6λ0/π2 = 0.005 (λ0 = 0.008225), but
now we require m2

0 > −4λ0/π2 = −0.0033333. To have a set of initial values that can give
results similar to the ones in the preceding section, we now choose
m2

0 = −0.00303333 + 0.001k, k = 0, . . . , 5. Nevertheless, we should not expect to recover
the same values of renormalized mass, namely, the values in Equation (3). This does not
matter, since our aim is to compare the results of the ERG integration with the results of the
regularization-independent perturbative formulas (6)–(8), in which the bare mass m0 does
not feature. We only need m and not m0 in the perturbative formulas, and we only need to
assess to what extent the formulas are fulfilled.

The numerical integration is again straightforward and yields the following results:

m = 0.01083, 0.03146, 0.04370, 0.05335, 0.06158, 0.06889, (11)
6λ

π2 = 0.002620, 0.003770, 0.004053, 0.004202, 0.004300, 0.004370, (12)

g6 = 0.1260, 0.01788, 0.008624, 0.005399, 0.003814, 0.002890, (13)

−g8 = 0.08318, 0.009681, 0.004024, 0.002264, 0.001470, 0.001039. (14)

Hence,
λ

m
= 0.3979, 0.1972, 0.1526, 0.1296, 0.1148, 0.1043. (15)

In the present case, the relative variation of 6λ/π2 from its initial value 6λ0/π2 = 0.005
is not as small as before. Nevertheless, the values of λ/m are small (smaller than before)
and warrant the comparison with the low-order perturbative formulas.

Perturbative formulas (6)–(8), in combination with Equation (15), yield

6λ0

π2 = 0.004775, 0.005069, 0.005089, 0.005095, 0.005097, 0.005099,

g6 = 0.1517, 0.01901, 0.009019, 0.005606, 0.003943, 0.002979,

−g8 = 0.2777, 0.01212, 0.004573, 0.002484, 0.001584, 0.001108.

We find that the performance of this scheme is comparable to the one of the sharp-
cutoff scheme.
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4. Results for Morris’s Power-Law Cutoff Function

Here, we carry out the calculations for Morris’s power-law cutoff function, employing
his differential equation in D = 3 (Equation 12 [7]) in dimensionful form, namely,

dUΛ(φ)

dΛ
=

Λ3

2π [2Λ2 + U′′Λ(φ)]
1/2 . (16)

We again truncate at φ16.
The linearization of Equation (16) yields

m2(Λ) = m2
0 +

3λ0

21/2π
(Λ0 −Λ). (17)

We choose again (in dimensionless variables) 6λ0/π2 = 0.005 (λ0 = 0.008225), and
now we require m2

0 > −3λ0/(21/2π) = −0.0055536. Therefore, we set
m2

0 = −0.0052536 + 0.001k, k = 0, . . . , 5. Our purpose is always to assess to what ex-
tent the perturbative formulas are fulfilled.

The numerical integration is again straightforward and yields the following results:

m = 0.009914, 0.03109, 0.04341, 0.05310, 0.06135, 0.06866, (18)
6λ

π2 = 0.002531, 0.003748, 0.004030, 0.004178, 0.004274, 0.004343, (19)

g6 = 0.1404, 0.01775, 0.008482, 0.005294, 0.003735, 0.002829, (20)

−g8 = 0.09416, 0.009580, 0.003930, 0.002200, 0.001425, 0.001006. (21)

Hence,
λ

m
= 0.4199, 0.1983, 0.1527, 0.1294, 0.1146, 0.1041. (22)

Perturbative formulas (6)–(8), in combination with Equation (22), yield

6λ0

π2 = 0.004766, 0.005048, 0.005061, 0.005064, 0.005065, 0.005066,

g6 = 0.1791, 0.01933, 0.009041, 0.005588, 0.003919, 0.002955,

−g8 = 0.3700, 0.01239, 0.004587, 0.002474, 0.001572, 0.001096.

The performance of this scheme is comparable to that of the others.

5. Regularization and Renormalization in the Exact Renormalization Group

So far, we have tested the renormalization of coupling constants, which is
regularization-scheme independent. This is not the case for the relationship between
m0 and m, but this non-universal relationship is also worth considering. In this section, the
role of Λ0 is important, so we return to dimensional mass and coupling constants, that is to
say, without dividing them by powers of Λ0 (except when showing numerical results).

We have already derived first approximations to the mass renormalization in the three
schemes considered, namely, Equations (2), (10), and (17). However, we should not expect
great accuracy from linearized ERG equations, which do not even renormalize the coupling
constant. Fortunately, this method can be considerably improved by means of a simple
non-perturbative formula, without considering coupling constant renormalization, namely,
the “gap equation” [13]. Assuming a sharp cutoff Λ0, the gap equation reads

m2 = m2
0 +

∫ Λ0

0

d3k
(2π)3

12λ0

k2 + m2 . (23)
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This equation can actually be connected with the ERG [6,15,16]. In addition, it can be
easily integrated to give (suppressing inverse powers of Λ0):

m2 = m2
0 +

6Λ0

π2 λ0 −
3
π

mλ0 . (24)

This mass renormalization equation improves on Equation (2) for Λ = 0. For example,
when solved for our values of m0 and λ0, it yields

m = 0.01383, 0.03234, 0.04419, 0.05365, 0.06176, 0.06898.

The agreement with the result of the numerical integration of the Wegner–Houghton
ERG equation in Equation (3) is quite good. Further improvements can be achieved with
the method employed in Ref. [16].

We can also find an improved version of Equation (10) for Litim’s regulator and
reproduce the success above, in a certain sense. Let us first expound the connection
between Equation (23) and the Wegner–Houghton ERG equation. This equation admits an
integral formulation, whose second derivative with respect to φ at φ = 0 yields [15,16]:

m2(Λ) = m2(Λ0) + 12
∫ Λ0

Λ

d3k
(2π)3

λ(k)
k2 + m2(k)

. (25)

Taking Λ = 0 and assuming that we can set λ(k) = λ0 and m2(k) = m2(0) = m2, we
obtain Equation (23). Equation (25) is equivalent to the differential equation

dm2

dΛ
= − 6 λ0 Λ2

π2 (Λ2 + m2)
. (26)

This differential equation cannot be solved analytically (to our knowledge). However,
when |m2

0|/Λ2
0 � 1, and as far as |m2|/Λ2 � 1, we can neglect the m2 in the denominator,

so we have a trivial differential equation, whose solution is Equation (2).
Actually, Equation (26) derives from a truncation of the Wegner–Houghton ERG

equation in which we assume λ to be constant and, consistently, the higher-order coupling
constants to vanish. Thus, we are left with only the first equation of the hierarchy of
ordinary differential equations. Of course, taking Litim’s flow Equation (9), and under the
same assumptions, we can also restrict ourselves to the first differential equation, which
can be written as

dm2

dΛ
= − 4 λ0 Λ4

π2 (Λ2 + m2)2 . (27)

(This equation is a particular case of the Litim scheme beta functions calculated by
Baldazzi, Percacci, and Zambelli [30].) In analogy with Equation (26), the solution of this
equation, when |m2

0|/Λ2
0 � 1, is Equation (10). However, the integral equation that is

equivalent to Equation (27) is now

m2(Λ) = m2
0 +

∫ Λ0

Λ

d3k
(2π)3

8λ(k) k2

[k2 + m2(k)]2
. (28)

Taking Λ = 0, m2(k) = m2(0), and λ(k) = λ0, as we did in Equation (25), we now
obtain, after integrating over k:

m2 = m2
0 +

2λ0

π2

(
3Λ0 −

Λ3
0

Λ2
0 + m2

− 3m arctan
Λ0

m

)
≈ m2

0 +
4λ0Λ0

π2 − 3λ0 m
π

, (29)

where we have suppressed inverse powers of Λ0 in the last expression.
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Let us turn to Morris’s power-law cutoff function. From differential Equation (16), we
can derive, instead of (26) or (27):

dm2

dΛ
= − 6 λ0 Λ3

π (2Λ2 + m2)3/2 . (30)

Within the same approximation as above, we obtain, instead of (24) or (29):

m2 ≈ m2
0 +

6λ0Λ0

23/2π
− 3λ0 m

π
. (31)

To interpret Equations (24), (29), and (31), let us recall that the gap Equation (23), as the
“cactus approximation” to the Dyson–Schwinger equation for the two-point function, is just
an elaboration of the one-loop perturbation theory [13]. The one-loop mass renormalization
is given by

m2 = m2
0 +

∫ d3k
(2π)3

12λ0

k2 + m2
0

. (32)

This integral is ultraviolet divergent, of course, and needs to be regularized. There are
several methods of regularization in field theory, namely, modifications of the kinetic term in
the action (or Hamiltonian), proper-time regularization, lattice regularization, etc. [12–14].
Usually, every method introduces a new parameter and gives a form of the integral that,
in the divergent limit, can be split into a divergent term and a parameter-independent
term. The latter term can also be calculated with methods that do not introduce a new
parameter, such as subtraction methods or the method of differentiation. In fact, when
we take the derivative with respect to m2

0 of the integrand in Equation (32), we obtain a
convergent integral, proportional to (m2

0)
−1/2. The indefinite integral over m2

0 recovers
the divergent part as the arbitrary constant of integration and obtains the finite term
−3m0λ0/π. This term is the one obtained with the economical methods of dimensional or
analytic regularization and must be reproduced by every method of regularization. It is
indeed common to Equations (24), (29), and (31), although their respective divergent terms
are different.

Finally, let us consider the one-loop perturbative renormalization of λ, first in connec-
tion with the second differential equation of the Wegner–Houghton equation hierarchy.
This equation can be written as

dλ

dΛ
=

18 λ2 Λ2

π2 (Λ2 + m2)2 , (33)

where we have neglected the sextic coupling constant. To integrate this equation, let us
assume that m is constant (with Λ) and takes its renormalized value at Λ = 0 (like we did
to integrate Equations (25) or (28)):

∫ λ0

λ

dλ

λ2 =
∫ Λ0

0

18 Λ2 dΛ
π2 (Λ2 + m2)2 =

18
π2

∫ ∞

0

Λ2 dΛ
(Λ2 + m2)2 +O

(
1

Λ0

)
=

9
2πm

+O
(

1
Λ0

)
. (34)

This approximation, in the limit Λ0 → ∞, is equivalent to the so-called bubble approximation
of the Dyson–Schwinger equation and obtains a simple expression of λ0 as a function of λ and
m (Equation 16 [15]), namely,

λ0 =
λ

1− 9λ/(2πm)
= λ

(
1 +

9λ

2πm
+

81 λ2

4π2m2 + · · ·
)

. (35)

Of course, this function matches Equation (6) to one-loop order.
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An expression equivalent to Equation (35) results from the classic renormalization-
group-improved perturbation theory to one-loop order, with the beta-function [13,14](

m
∂

∂m
λ

m

)
λ0

=
λ

m

(
−1 +

9λ

2πm

)
. (36)

This beta-function does not refer to a flow with the cutoff Λ but to the effect that a
change of m has on λ, once renormalization has been carried out, for a given value of λ0.
The integration of Equation (36) between m1 and m2 yields:

λ1 =
λ2

1− (1/m2 − 1/m1) 9λ2/(2π)
. (37)

We have seen that, for some m1 large (m1 � Λ0), λ1(Λ) hardly changes with Λ; hence,
λ1 ≈ λ0 (the latter being its value at Λ0). Therefore, for m1 � Λ0 > m2, we neglect 1/m1
in Equation (37) and it becomes equivalent to Equation (35).

From Litim’s equation hierarchy, in place of Equation (33), we have (see also Ref. [30])

dλ

dΛ
=

24 λ2 Λ4

π2 (Λ2 + m2)3 , (38)

whereas, from Morris’s equation hierarchy, we have

dλ

dΛ
=

27 λ2 Λ3

π (2Λ2 + m2)5/2 . (39)

These two differential equations can be integrated with the same approximation made
above, obtaining again Equation (35), in the limit Λ0 → ∞.

6. Conclusions

Our analysis of the Wegner–Houghton sharp-cutoff exact renormalization group
equation demonstrates that it is a useful tool in the perturbative domain of λφ4 theory in
three dimensions. Unlike Morris [17], who cautions that, with the sharp-cutoff method
in the local potential approximation, “truncations of the field dependence have limited
accuracy and reliability”, we do find sufficient accuracy and reliability with a moderate
truncation. This conclusion can be expected to hold for more general field theories.

The good numerical concordance of the Wegner–Houghton sharp-cutoff ERG flow
results with standard perturbative formulas holds in the other forms of the ERG flow that
we study, namely, in Litim’s or Morris’s schemes. Moreover, a theoretical study of the effect
of changes of the regularization scheme on universal magnitudes in standard renormalized
perturbation theory leads us to unveil that Litim’s or Morris’s flow equations produce the
same universal terms in the mass and coupling-constant renormalization formulas.

Therefore, the difference between the various regularization methods lies in the non-
universal terms, namely, the terms with explicit dependence on the parameter Λ0. This is
evident in regard to the mass renormalization, where the term proportional to Λ0, divergent
if Λ0 → ∞, is different in each case. Furthermore, the terms proportional to inverse powers
of Λ0, which are the only ones that appear in the coupling constant renormalization,
are also non-universal. We have not calculated these terms, which produce corrections to
universality of relative magnitude m/Λ0. This amounts to corrections that are less than 10%
for our values of m, and this is indeed a bound to the order of magnitude of the deviations
between the results of the three methods that we find in the numerical integrations.

At any rate, the crucial test is the comparison of the results for universal quantities
obtained by each method with the results of the perturbative formulas. In this comparison,
we find again errors of less than 10%, for sufficiently small values of λ/m. In addition,
none of the three methods appears as definitely optimal.
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In conclusion, the choice of regularization method in this setting seems to be a matter
of taste, to a large extent. The simple sharp-cutoff method is certainly a suitable choice.
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