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Abstract: In a recent article we showed that the vacuum energy density in two spacetime dimensions
for a wide variety of integrable quantum field theories has the form ρvac = −m2/2g where m is a
physical mass and g is a generalized coupling, where in the free field limit g → 0, ρvac diverges.
This vacuum energy density has the form 〈Tµν〉 = −ρvacgµν, and has previously been considered
as a contribution to the stress energy tensor in Einstein’s gravity as a “cosmological constant". We
speculated that in four spacetime dimensions ρvac takes a similar form ρvac = −m4/2g, but did not
support this idea in any specific model. In this article, we study this problem for λφ4 theory in d
spacetime dimensions. We show how to obtain the exact ρvac for the sinh–Gordon theory in the weak
coupling limit by using a saddle point approximation. This calculation indicates that the vacuum
energy can be well-defined, positive or negative, without spontaneous symmetry breaking. We also
show that ρvac satisfies a Callan–Symanzik type of renormalization group equation. For the most
interesting case physically, ρvac is positive and can arise from a marginally relevant negative coupling
g and the vacuum energy flows to zero at low energies.

Keywords: vaccum energy; quantum field theory; cosmological constant

1. Introduction

The so-called “cosmological constant problem” continues to provide serious challenges
to our understanding of fundamental physics. Einstein’s equations of General Relativity
involve the classical stress-energy tensor as a source of gravitation and should include all
possible sources of stress energy. Experimental cosmology provides evidence for a very
small positive cosmological constant, and the origins of it remain unknown. There are
many possibilities that remain to be explored, everything from modified classical General
Relativity, quantum fluctuations of the vacuum, to quantum gravity effects at the Planck
scale. In this article, we study this problem from the point of view in which it was first
stated, namely as originating in quantum vacuum fluctuations, which is where the often-
quoted discrepancy by 120 orders of magnitude originated. However, we do not claim
any kind of resolution of the problem, since the non-zero cosmological constant may have
completely different origins. Nevertheless, it is worthwhile to fully explore this option. We
need to say, however, that some researchers believe that this problem cannot be resolved
without considering quantum fields in curved spacetime, which is far beyond the scope of
this article. See, for instance, the recent articles [1,2] and references therein.

In a semi-classical quantum theory, it is reasonable to suppose that the classical Tµν

is replaced by its quantum vacuum expectation value 〈0|Tµν|0〉, where |0〉 is the vacuum
state. Based on general coordinate invariance, one expects

〈0|Tµν|0〉 = −ρvac gµν (1)

where gµν is the spacetime metric. In the above equation, the convention for the metric is
the signature gµν = diag(−1, 1, 1, 1), i.e., g00 = −gii = −1 in Minkowski space. Perhaps
the first version of the cosmological constant problem was based on viewing a free quantum
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field as a collection of harmonic oscillators of frequency ωk =
√

k2 + m2, and the vacuum
energy is naively the sum of the zero point energies [3,4]:

ρvac =
∫ Λ

0

dk
(2π)3 4πk2 1

2

√
k2 + m2 ≈ Λ4

16π2 (2)

where Λ is an ultraviolet cutoff and we have assumed Λ � m. The problem is that
for reasonable values of the cut-off Λ, such as the Planck scale, the above ρvac is off by
roughly 120 orders of magnitude compared to astrophysical measurements. The original
problem has evolved to consider a series of phase transitions in the thermal development
of the dynamical evolution of the Universe where Λ is a scale of spontaneous symmetry
breaking (SSB), such as the electro-weak scale, a supersymmetry breaking scale, or even
the QCD scale (see, for example, the review [5] and references therein.) In any case, the
corresponding Λ leads to much too high a scale to explain the observed astrophysical value
of ρvac.

We emphasize that we will not consider here quantum fields in curved spacetime,
nor quantum gravity; in fact, we neglect gravity entirely. This is the main shortcoming
of this article since, as previously mentioned, some physicists feel that one cannot avoid
dealing with gravity in order to even attempt to solve the cosmological constant problem.
Although ignoring gravity may turn out to be an oversimplification, let us mention that
one does not need to understand quantum electrodynamics in curved spacetime in order
to understand the cosmic microwave background, so as a first step we can suppose this is
true for the cosmological constant itself. We feel this is justified since the original version
of the cosmological constant problem was based on divergences in the vacuum energy in
pure quantum field theory without gravity, and it is worthwhile to make sense of this since
it is not well understood; it is worth exploring whether it can be ruled out or not, and we
will argue that it is not. Although perhaps an abuse of terminology, henceforth we refer to
“ρvac” and “cosmological constant” interchangeably, although clearly we are not studying
cosmology per se but rather the vacuum energy density of an interacting QFT in flat space.

One should strongly question the above naive computation in (2), since we are ac-
customed to dealing with divergences in quantum field theory (QFT) in a way that leads
to finite physical predictions. Moreover, as already mentioned, the way the problem is
stated above, it is actually a QFT problem in the absence of gravity. It is only relevant to
gravity when one treats 〈0|Tµν|0〉 as a source in Einstein’s equations of General Relativity.
Thus it would appear that a first step in addressing the vacuum energy density should
focus on making mathematical and physical sense of 〈0|Tµν|0〉 purely in the context of
quantum field theory in flat space, i.e., without gravity. This may or may not resolve the
cosmological constant problem, but it is worthwhile exploring with the theoretical tools we
have available at the present time. In [6], we studied this problem for integrable quantum
field theory in d = 2 spacetime dimensions. Although d = 2 is considerably simpler,
conceptually the problem is essentially the same as in 4d since in 2d the calculation (2) also
leads to a divergent ρvac ≈ Λ2/4π. We proposed that interactions can actually fix the above
simplistic free field calculation. Using integrability, we were able to exactly calculate ρvac
for a wide variety of models, including massive and massless, and some with and without
SSB. The main point is that it is physically meaningful and calculable without quantum
gravity. It was found that for all these models

ρvac = −
m2

2 g
(3)

exactly, where m is a physically measurable mass scale and g an interaction coupling. The
main tool that led to this result was Zamolodchikov’s analysis of the Thermodynamic
Bethe Ansatz (TBA) [7–9], which is a relativistic generalization of Yang–Yang thermody-
namics [10]. For many additional references which deal with some specific models, we
refer to [6]. For the massive case, in formula (3) m = m1 which is the physical mass of the
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lightest particle and g is a generalized coupling which is a trigonometric sum over certain
resonance angles of the exact two-body S-matrix for the scattering of this lightest particle
with itself. See, for example, (16) below. This is ultimately a consequence of the S-matrix
bootstrap, which in principle applies in all spacetime dimensions. For massless cases,
which are renormalization group flows between two conformal field theories, m can be the
scale of SSB. We should add that although we have not considered QFT in general curved
spacetime, the TBA formalism that led to (3) does involve QFT on a cylinder, not flat space.

The above 2d results led us to suggest [6] that in 4d,

ρvac = −
m4

2 g
. (4)

In [6], we did not attempt to justify the above 4d proposal in any particular model. In
this paper, we will do so for λφ4 theory. We were encouraged to undertake this study by
some recent results from a very different approach involving charged black holes and the
notion of a Swampland [11,12]. There, it was proposed that

ρvac <
m4

2e2 (5)

where m is the mass of a charged particle, and α = e2/4π is the electromagnetic fine
structure constant. This is weaker than (4) since it is an upper bound rather than an
equality. Remarkably, this is consistent with (4) if m in (5) is the lightest mass particle and
< is replaced with ≤. In other words the novelty of our proposal (4) is that whereas it
is consistent with (5) if m is the lightest mass, it proposes that the lightest mass particle
saturates the inequality, leading to an equality. One intriguing aspect of (4) is that if m
is for the lightest mass particle and g ≈ 1, then the astrophysically measured value of
ρvac ≈ 10−9 Joule/m3 implies the lightest particle has a mass on the order of the expected
neutrino masses (0.03 eV)1.

The main goal of this paper is to understand how to obtain (4) without relying on
integrability, at least in some approximation. We will also demonstrate that a QFT can
have a well-defined cosmological constant even in the absence of spontaneous symmetry
breaking. First of all there is no integrability in 4d and thus no TBA. Secondly, in the TBA
the theory lives on an infinite cylinder of circumference β; in thermal field theory β = 1/T
where T is the temperature. In [6], we proposed that the cosmological constant ρvac is the
β-independent term in the free energy density; however, in the TBA this term is sometimes
tricky to extract since it can mix with terms coming from conformal perturbation theory.
On the other hand, it should be possible to compute ρvac directly in the zero temperature
quantum field theory, and this paper shows how to do this for a simple model, namely the
λφ4 theory, in a weak coupling approximation. We chose to study the latter theory since
this alternative calculation can be compared with exact results for the sinh–Gordon model
at small coupling as a check of the method.

In the next section, we review the exact ρvac for the sinh–Gordon model which was
originally obtained with the help of the TBA. We show how this result can be obtained at
weak coupling from a relatively simple calculation without introducing β and the TBA2.
We then apply this approach to λ φ4 theory in d spacetime dimensions and show how to
obtain both (3) and (4). An interesting feature is that in order to obtain the correct result
one must analytically continue in m2 from a regime where m2 is negative and has SSB to
a physical region with no SSB, since there is no SSB in the sinh–Gordon model. We will
derive a Callan–Symanzik for ρvac based on the renormalization group for the coupling λ,
which leads to an RG flow for g. The two main cases correspond to whether g is marginally
relevant or irrelevant. For the marginally relevant case, the cosmological constant decreases
in the flow to low energies.
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2. Generalities for a Scalar Field in Any Spacetime Dimension

In this article, we only consider models of a single scalar field in d spacetime dimen-
sions. The classical theory can be defined by the action in euclidean space

S =
∫

ddx
(

1
2 (∂µφ)2 + V(φ)

)
. (6)

As usual, we consider the partition function Z = Tr e−βH where β is the inverse
temperature. From Z, we can calculate the free energy density F , energy density E , and
pressure p in the usual manner

F = −p = − 1
βV log Z, E = − 1

V
∂ log Z

∂β
(7)

where V is the d − 1 dimensional spatial volume. For arbitrary β, the above equations
determine an equation of state relating E and p, which generally does not correspond to
a cosmological constant. However, in [6] it was shown that the β-independent term in F
does correspond to a cosmological constant. Let us show this here in a different manner.
First of all, consider an arbitrary shift of V(φ) by a constant v, V(φ)→ V(φ) + v. Whereas
Z depends on v, correlation functions do not, since v cancels in 〈O〉 = (

∫
Dφ e−SO )/Z.

Let us calculate ρvac in a saddle point approximation. In the vacuum, φ has no
dependence on spacetime, so we can ignore the ∂φ terms. The saddle point is then the
value of φ = φ0, satisfying

dV(φ)

dφ

∣∣∣
φ=φ0

= 0. (8)

The action is then

S0 =
∫

ddx V(φ0) = V β V(φ0) =⇒ Z ≈ e−Vβ V(φ0), (9)

since in thermal field theory, euclidean time is a circle of circumference β. This implies a
β-independent free energy density

F = V(φ0). (10)

The equation of state corresponds to a cosmological constant (1) since it implies the
equation of state E = −p:

E = V(φ0), p = −V(φ0). (11)

We adopt the standard convention that a positive E corresponds to negative pressure p:

ρvac = V(φ0) (12)

in this approximation.

3. The 2d Sinh–Gordon Model at Weak Coupling

The sinh–Gordon model is perhaps the simplest integrable and relativistic quantum
field theory. It can be defined by the action

S =
∫

d2x
(

1
8π

(∂µφ ∂µφ) + 2µ cosh(
√

2 bφ)

)
. (13)

The 1/8π normalization of the kinetic term is such that the two point function has the
standard 2d conformal field theory normalization: 〈φ(x)φ(0)〉 = − log x2 when µ = 0. The
operator cosh(

√
2bφ) is then strongly relevant with scaling dimension −2b2. The spectrum
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consists of a single particle of mass m. Parameterizing the energy and momentum of a
particle in terms of a rapidity θ,

E = m cosh θ, p = m sinh θ, (14)

the exact two-body S-matrix is

S(θ) =
sinh θ − i sin πγ

sinh θ + i sin πγ
, γ ≡ b2

1 + b2 . (15)

As explained in [6], the strict 2d analog of the 4d cosmological constant corresponds to
the so-called bulk term in the effective central charge c(βm). The latter can be extracted
from the TBA, but without some level of difficulty [7–9]. In the TBA, one calculates the free
energy on a cylinder of circumference R = β = 1/T, where T is temperature. However, the
exact result is quite simple:

ρvac =
m2

8 sin πγ
. (16)

Since this result depends only on S-matrix parameters, it must be possible to obtain it
directly in the zero temperature quantum field theory, and this is the primary goal of this
paper, since doing so can provide insights into the 4d cosmological constant problem.

Whereas a shift of the potential by a constant v in the last section would appear to
shift the saddle point approximation to ρvac, there is clearly no room for such a shift of the
above-quoted (16) vacuum energy for the sinh–Gordon model on a finite cylinder. Once
given the S-matrix, the TBA equations are determined, and the coefficient of the bulk term
in the free energy on a cylinder is completely fixed. It would be nice to understand this
better; however, we suspect it is due to the finite circumference R of the cylinder that
renders the problem well defined. This leads us to propose the following principle which
eliminates the freedom to shift by v: The only contributions to the stress-energy tensor in
Einstein’s General Relativity are properties that can be measured in a flat space laboratory3.
This rather conservative principle solves the usual fine-tuning problems. Moreover, it is
consistent with the Casimir effect, in that only changes in the vacuum energy density as
a result of changing a geometric modulus, for Casimir it is the separation of the plates,
is measurable, since it leads to measurable force. Indeed, the sinh–Gordon result (16)
is measurable in the finite geometry of a circle of circumference R. In fact it can even
be derived on a lattice [15]. On the other hand the shift by v is in fact not measurable
in flat space by any means whatsoever without gravity. We also wish to repeat that the
TBA calculations that lead to (16) require studying the theory on a cylinder, which is not
flat spacetime.

At small coupling b, one has

lim
b→0

ρvac =
m2

8πb2 . (17)

Note that as the couplling b → 0, this is a free field limit, and there is indeed a
divergence, which is consistent with (1). This can be obtained in a simple way using results
of the last section. The saddle point satisfying (8) is simply φ0 = 0; thus,

ρvac = 2µ. (18)

The above result does not rely on integrability, and is not exact except in the b→ 0 limit.
If one allows results from integrability, then the relation between µ and the physical mass
m and coupling constant b is known exactly [16]. Since the cosh potential has dimension
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−2b2, the scaling dimension of µ is 2 + 2b2; thus, µ ∝ m2+2b2
where m is the renormalized

physical mass. The exact relation is

µ =
1
π

Γ(1− b2)

Γ(b2)
[mZ(γ)]2+2b2

, with Z(γ) = 1
8
√

π
γγ (1− γ)1−γ Γ

(
1−γ

2

)
Γ
( γ

2
)
. (19)

In the limit b2 → 0, Z ≈ 1/4b2 which implies

µ ≈ m2

16π b2 , (20)

and this combined with (18) gives the correct limit (17).
In the b → 0 limit, the result (20) can be obtained in a much simpler way without

using integrability and this will be useful in the sequel. Expanding the cosh and redefining
φ→

√
4πφ, the lagrangian is

L =
1
2
(∂µφ)2 +

m2

2
φ2 +

λ

4!
φ4 + O(φ6), with m2 = 16πb2 µ, λ = 128π2b4 µ. (21)

This naturally leads us to the next section where we consider the cosmological constant
for λφ4 theory in d spacetime dimensions in light of the above understanding.

4. λφ4 Theory in d Spacetime Dimensions

The theory is defined by the euclidean action

S =
∫

ddx
(

1
2
(∂µφ)2 +

m2

2
φ2 +

λ

4!
φ4
)

. (22)

Let [X] denote the scaling dimension of X in mass units. The classical, engineering,
dimensions are

[m] = 1, [φ] = (d− 2)/2, [λ] = 4− d, [ρvac] = d. (23)

4.1. Saddle Point Approximation

The saddle point equation leads to

φ2
0 = −6

m2

λ
=⇒ ρvac = V(φ0) = −

3
2

m4

λ
. (24)

As is well known, a non-zero real solution φ0 only exists if m2 is negative, and there
is spontaneous symmetry breaking of the φ→ −φ symmetry. Although well-known and
simple, what will be new is how to explain the exact result of the sinh–Gordon model from
it. It is important to note that in the small b approximation to the sinh–Gordon model (21),
m2 is positive and there is no spontaneous symmetry breaking, but nevertheless it has a
positive cosmological constant. As we will argue below, in order to explain the 2d result (17)
we will need to analytically continue m2 from negative to positive values4.

Based on the engineering dimensions (23) let us define a dimensionless coupling g

as follows:
λ ≡ 3 m4−d g, (25)

where by definition m is the true physical mass. The above equation is analogous to the
exact sinh–Gordon result (19). Then, ρvac has the desired form stated in the Introduction
for any spacetime dimension d:

ρvac = −
md

2g
. (26)
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One sees that for the saddle point approximation to ρvac in Section 2, the main features
of the exact sinh–Gordon result at small b, including overall factors, are obtained if one
analytically continues m2 → −m2 which makes ρvac positive, and identifies g = 4πb2. The
need to analytically continue in m2 in order to obtain a positive cosmological constant is
not completely clear; however, what is clear is that this is what one needs to do to obtain
the correct sinh–Gordon result from (21) since the m2 has the wrong sign for there to be a
non-trivial φ0.

4.2. Renormalization Group Considerations

The saddle point approximation to ρvac, namely (26), is not a renormalization group
(RG) invariant. For the 2d sinh–Gordon model, with a proper RG prescription, b2 can be
viewed as an RG invariant. In other dimensions, g has a non-trivial RG flow, and one needs
to investigate the implications of this. Renormalization of λφ4 theory is well understood
(see, for instance, [17]); however, its implications for ρvac have not been considered previ-
ously in much detail, at least to our knowledge. Being related to a correlation function (1),
ρvac satisfies an RG differential equation. This involves absorbing divergences into the
parameters m, λ and the normalization of the field φ, which necessarily introduces an
arbitrary mass scale M, and a specific renormalization prescription which defines physical
parameters, such as the actual physical mass of particles. Being a one-point correlation
function which is independent of spacetime coordinates, these RG equations for ρvac are
simpler than for general correlation functions. For our purposes, we want m in (26) to be
the physical, measurable mass of a particle. For this reason, the Callan–Symanzik form
of the RG equation is most suitable, since there the arbitrary renormalization scale M is
the actual physical mass m. In this prescription, m has dimension 1 with no anomalous
corrections 5, and the beta function βλ for the coupling λ only depends on λ and not m.
This RG equation is (

m
∂

∂m
+ βλ

∂

∂λ

)
ρvac = Γρ ρvac (27)

where βλ = m∂mλ, Γρ is the scaling dimension of ρvac, and

βλ(λ) = (4− d)λ + O(λ2). (28)

Indeed, ρvac ∝ m4/λ as in (24) satisfies the above equation to lowest order with
Γρ = d + O(λ). However, the higher-order corrections to βλ imply that the beta function
for the classically dimensionless g is non-zero, and the Callan–Symanzik equation now is(

m
∂

∂m
+ β(g)

∂

∂g

)
ρvac = Γρ ρvac, β(g) ≡ m

∂g

∂m
. (29)

This is consistent with ρvac ∝ md/g and β(g) = 0 classically.
Quantum corrections to 1-loop are known [17]

β(g) = m
dg
dm

= − 9
16π2 g2 + O(g3). (30)

The RG flow toward low energy corresponds to increasing m. Let us fix g = g0 at some
high energy scale m0 such as the Planck scale. Then, integrating the one-loop β function (30)
one has

g(m) =
g0

1 + 9
16π2 g0 log(m/m0)

. (31)

In any spacetime dimension d there are essentially two generic cases to consider:

Marginally irrelevant. Here, g0 > 0, and ρvac is negative. In the flow to low energies
(increasing m), g→ 0 and ρvac → −∞.



Universe 2023, 9, 310 8 of 9

Marginally relevant. Here, g0 < 0, and ρvac is positive. In the flow to low energies, |g|
increases and ρvac slowly flows to ρvac = 0 and reaches there at

m/m0 = e−16π2/9g0 > 1, (32)

then it changes sign. The expononential in (32) implies there can be a very large hierarchy
of scales relating the cosmological constant in the UV and IR.

There are some features that specifically depend on the spacetime dimension d:

d = 2. Here, ρvac = −m2/2g. Recall that for the sinh–Gordon model, ρvac is positive
and there is no spontaneous symmetry breaking. Thus, in order to reproduce the known
exact result in the sinh–Gordon model at weak coupling, one must analytically continue
m2 → −m2, which makes ρvac > 0 and is consistent with no spontaneous symmetry
breaking, i.e., φ0 = 0.

d = 4. Here, ρvac = −m4/2g. Thus the analytic continuation m2 → −m2 does not change
the sign of ρvac. A positive cosmological constant requires a marginally relevant coupling g

that is negative. As explained above, this can occur for asymptotical free theories in the UV,
where g→ 0 and ρvac → ∞ at high energy.

5. Concluding Remarks

We have argued that the quantum vacuum expectation value of the stress energy
tensor can be well-defined in d spacetime dimensions by including interactions. The main
support for our analysis is that it can reproduce the exact, small coupling limit for some
integrable quantum field theories in d = 2, in particular the sinh–Gordon model. This study
could provide insight into the cosmological constant problem since the most well-known
version of the problem is an issue of QFT in flat space, where the source of gravitation is
the vacuum expectation value 〈Tµν〉. There are other versions of the problem mentioned
in the Introduction, and it is not at all clear this is the origin of the observed cosmological
constant, since we have not incorporated gravity. However, the problem studied here
is well-motivated and -posed, and essentially decouples the problem from classical and
quantum gravity.

Based on insights gained in 2d, we studied the problem for λφ4 theory in d spacetime
dimensions and motivated the result ρvac = −md/2g in a saddle point approximation.
This result does not require spontaneous symmetry breaking. This entails a renormaliza-
tion group equation satisfied by ρvac which is naturally of Callan–Symanzik type. For a
marginally relevant coupling g, such as for asymptotically free theories, ρvac can flow from
large positive values to zero, and this flow introduces a large hierarchy of energy scales.

If our analysis proves to be correct, then there are many open avenues for exploration.
It would be interesting to try and extend our results to theories with both bosons and
fermions as in the Standard Model of particle physics. In fact, based on our analysis of
simpler models, conceptually the cosmological constant in the Standard Model is in principle
computable, but difficult; it is non-perturbative, and perhaps can be computed on a lattice
from finite size or temperature effects. The computation of vacuum energy density based
on the TBA described in [6] is actually a finite size effect since the formalism involves
quantum fields on a cylinder. Indeed, it was shown how to obtain exact results for the
vacuum energy density for models such as the sinh–Gordon model from the lattice [15]. In
fact, it can in principle be measured in a laboratory through finite size effects, as for the
usual Casimir effect.

We have not at all explored the consequences of including ρvac in the temporal and
thermal evolution of the Universe; as already stated, we decoupled the cosmological con-
stant problem from gravity itself and thus cosmology. However, we suggested one scenario
wherein g is a negative marginally relevant coupling, for instance, for an asymptotically



Universe 2023, 9, 310 9 of 9

free theory, and ρvac flows to zero at low energies, indicating a kind of “cosmic freedom” in
that the cosmological constant does not dominate at very late times.
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Notes
1 Astronomical data is based on WMAP [13]. The subject of neutrino masses is reviewed in [14].
2 This short article may thus be viewed as an addendum to [6].
3 In plain language, If you can’t relate, you don’t gravitate!
4 Equation (24) together with the λφ4 approximation to the sinh–Gordon model (21) leads to ρvac = −3µ rather than ρvac = 2µ

in (18), however this is clearly due to the approximation of the cosh potential with a λφ4 theory.
5 γm = 0 in the notation in [17].
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