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Abstract: In this paper, we studied black string solutions under the consideration of rainbow gravity.
We analytically obtained the solution for four-dimensional black strings in terms of the functions
f (E/Ep) and g(E/Ep) that sets the energy scale where the rainbow gravity becomes relevant. We
also obtained the Hawking temperature for the black string, from which we can see that the rainbow
functions play the role of increasing or decreasing the Hawking temperature for a given horizon
radius depending on the choice of such rainbow functions. We computed the entropy, specific heat
and free energy for the black string. The entropy and specific heat exhibit a rainbow dependence,
whereas the free energy is not modified by the rainbow functions. Finally, we studied the effects of
rainbow gravity in the orbits of massive and massless particles around a black string. We could verify
that neither massive nor massless particles exhibit stable orbits around a black string in the scenario
of rainbow gravity for any configuration of rainbow functions.
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1. Introduction

Black holes are obtained as solutions of Einstein’s equations and play a very relevant
role in physics since such objects can be used to understand how space-time is established
after a gravitational collapse. Although there is a natural tendency to study spherically
symmetric black holes, especially in space-times with a vanishing cosmological constant,
the study of such objects with different topologies has also become something of interest.
Space-times with a negative cosmological constant are the background for the existence of
black holes with cylindrical symmetry. Black strings emerge in this scenario. A cylindrically
symmetric black hole solution, namely a black string, for a four-dimensional Einstein–
Hilbert action was proposed in [1] in the context of the classical theory of gravitation, and
since then, it has received much attention in the literature.

Double special relativity (DSR) arises aiming to describe ultra-energetic particles and
suggests that there is a minimum length scale, which implies a maximum energy scale—the
Planck scale—so that the speed of light is not the only relativistic invariant and that there
is an energy scale (or length) that is independent of the observer. In such models, the
dispersion relation is modified when we consider energies near to the Planck scale [2–5].

The approaches that receive the name of rainbow’s gravity emerge in this scenario and
seek to propose a modification to the classical theory of general relativity by incorporating
aspects of the theory of modified special relativity (DSR). According to this theory, there
is no single classical geometry for the space-time when the energy scale approaches the
Planck scale. These approaches have been studied in several scenarios, such as string
theory [6], loop quantum gravity [7] and non-commutative geometry [8]. Some theoretical
proposals suggest corrections both in the action and in the dispersion relation, such as
in [9].

This semi-classical approach allows some phenomena to be explained, such as ultra-
high-energy cosmic rays that are currently observed but still have unknown origin, sug-
gesting that the dispersion relation is indeed modified. In astrophysics, the influence of the
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rainbow’s gravity on the properties of a black hole has been studied in several scenarios,
including its thermodynamics [10–20], and also in the study of cosmic strings [21–23]. In
addition, in order to understand the early universe, in which the energies involved were
close to the Planck scale, such a modified theory of gravity plays an important role in
avoiding an initial singularity [24–29]. Finally, in general field theory, there have been many
recent developments regarding rainbow gravity in the context of Bose–Einstein conden-
sation [30], Klein–Gordon oscillation [29], the Landau–Aharonov–Casher effect [31] and
particle production [32], among others.

In this paper, we studied black string solutions under the consideration of rainbow
gravity. We analytically obtained the solution for four-dimensional black strings in terms
of the functions f (E/Ep) and g(E/Ep) that sets the energy scale where the rainbow gravity
becomes relevant. We also obtained the Hawking temperature and other thermodynamic
quantities for the black string. We also investigated the orbits for massive and mass-
less particles.

This paper is organized as follows. In Section 2, we present a brief review of rainbow
gravity in which we present the most common ansatz for the rainbow functions investigated
in the literature. In Section 3, we obtain the black string solution in the context of rainbow
gravity while, in Section 4, we investigate the black string thermodynamics under the
influence of rainbow gravity. The orbits for massive and massless particles are studied in
Section 5 and, in Section 6, we present our conclusions.

2. Rainbow Gravity Review

Rainbow gravity was first proposed over a decade ago, it being studied within the
scope of double special relativity (DSR). This approach emerges assuming that there is
no single classical geometry for spacetime; however, the geometry may depend on the
energy of a particle moving in it. This means that particles with different energies distort
spacetime differently. One result that follows from this is the emergence of a modified
energy–momentum dispersion relation. Such a modification is usually written in the
form [4,33,34]

E2 f 2(E/EP)− p2c2g2(E/EP) = m2c4, (1)

where f (E/EP) and g(E/EP) receive the generic name of rainbow functions, and these
functions are parameterized by the ratio E/EP, where E is the total energy of the particle or
system of particles measured by a free falling observer and EP is the energy on the Planck
scale. These functions are constructed so that, in the low energy limit, they converge to
a unit.

Since the spacetime geometry changes according to the energy in the test particle
in it, there is no single spacetime dual to the momentum space, i.e., there is a family of
energy-dependent metrics, according to [34], that will be parameterized by the rainbow
functions. The construction of the metric must be carried out in such a way that it is
covariant in relation to the non-linear representation of the Lorentz transformations; thus,
the Minkowski spacetime becomes

ds2 =
dt2

f 2(E/EP)
− 1

g2(E/EP)
δijdxidxj. (2)

In order to study the rainbow gravity effects on the Friedmann–Robertson–Walker
(FRW) universe [12,24], the following rainbow functions were considered (case I):

f (E/EP) = 1, g(E/EP) =
√

1− ξ(E/EP)s, (3)

where s > 1 and ξ is a dimensionless free parameter of the model that we will consider the
same as the other rainbow functions to facilitate comparison between the employed models.
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Another interesting choice for the rainbow functions is the following (case II):

f (E/EP) = g(E/EP) =
1

1− ξ(E/EP)
. (4)

Such rainbow functions were considered in [4,33] (and references therein) in studying
possible nonsingular universe solutions, and also in [34]. Since it assures a constant light
velocity, it may provide a solution for the horizon problem.

A last choice of rainbow functions of great interest is given by (case III)

f (E/EP) =
eξ(E/EP) − 1

ξ(E/EP)
, g(E/EP) = 1. (5)

This choice of rainbow functions was originally considered in [35] in the context of
gamma ray bursts. Later, this same choice was also addressed in [24,36] in connection with
FRW solutions.

3. Black String Solution in Rainbow Gravity

First, let us review the black string solution for Einstein’s equations with a negative
cosmological constant obtained by Lemos in [1] within the scenario of the classical theory
of gravitation. Let us consider the following line element:

ds2 = −A(r)dt2 +
dr2

A(r)
+ r2dφ2 + α2r2dz2, (6)

where −∞ < t < ∞ and 0 ≤ r < ∞, 0 ≤ φ ≤ 2π and −∞ < z < ∞ define the radial,
angular and axial coordinates, respectively. The parameter α is such that α2 ≡ −Λ/3 > 0,
where Λ is the cosmological constant. For the black string, the Einstein–Hilbert effective
action requires the cosmological constant contribution; thus,

Su =
1

2κ2

∫
d4x
√
−g(R− 2Λ). (7)

where κ = 8πG and R is the Ricci scalar. We must use the metric given in (6) to calculate
the components of the Einstein tensor, where, in our case, we only need the component
G0

0, from which we obtain the following expression:

G0
0 =

1
r2

d
dr

[rA(r)], (8)

Then, we can solve Einstein’s equations, which, for this case, will be adapted to

Gµ
ν + δ

µ
ν Λ = 8πTµ

ν . (9)

Assuming that T0
0 = 0 to r 6= 0, we obtain

1
r2

d
dr

[rA(r)] + Λ = 0. (10)

Solving the above differential equation, we obtain the following usual solution defined
in [1]:

A(r) = α2r2 − 4µ

αr
, (11)

where µ is the linear mass of the black string. The event horizon can be determined by
performing A(r) = 0, whose solution is

r ≡ rh =
(4µ)1/3

α
. (12)
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It is important to note that there is a singularity at αr = 0 and that, when r → ∞, the
spacetime of the black string is anti-de-Sitter.

Let us now consider the rainbow gravity effects so that we have the following line
element for the black string:

ds2 = − A(r)
f (E/Ep)

dt2 +
1

g(E/Ep)A(r)
dr2 +

r2

g(E/Ep)
dφ2

+
α2r2

g(E/Ep)
dz2, (13)

The non-vanishing components of the Einstein tensor for the black string in rainbow
gravity are:

Gt
t = Gr

r =
g(E/Ep)2(rA′(r) + A(r))

r2 (14)

Gφ
φ = Gz

z =
g(E/Ep)2(rA′′(r) + 2A′(r))

2r
(15)

Hence, the EFE for this ansatz gives us

Gt
t − 3α2 = [g(E/Ep)]

2
[

1
r

dA(r)
dr

+
A(r)

r2

]
− 3α2, (16)

We can see that the energy–momentum tensor for the ansatz of Equation (13) is
Tµ

ν = −ρ(r) diag(1, 1, 0, 0) + pl(r) diag(0, 0, 1, 1), where pl = pφ = pz = (2πr)−1δ(r). This
way, we can find A(r) by solving Gt

t − 3α2 = −κ2ρ(r), where ρ(r) = µ(2πr)−1δ(r), so that
we find

A(r) =
α2r2

[g(E/Ep)]2
− 4µ

αr
. (17)

The above solution for the black string in the rainbow gravity scenario recovers the
usual black string solution (11) when g(E/Ep) = 1.

Notice also that the rainbow gravity modification does not affect the regularity of the
solution since the rainbow functions do not explicitly depend on the radius. The energy
conditions are also unaffected by the rainbow gravity.

The behavior of the black string solution in rainbow gravity is depicted in Figure 1 for
cases I and II. Note that case III for the rainbow functions does not give us any modification
in the black string solution since g(E/Ep) = 1.

Let us briefly discuss the role played by the rainbow gravity scenario in the black string
solution. As we can see in Figure 1, as we increase the value of the energy E, approaching
the Planck energy scale, we also increase the value of the horizon radius for cases I and II
of the rainbow functions.

In order to analyze the conical defect due to the black string in the rainbow scenario,
let us power expand the solution (11) around rα = 1/α; that is,

A(r) = 1− 4µ +O
(

r− 1
α

)
. (18)

By using (12), we can ensure that rα > rh as long as 4µ < 1. Thus, we can now write
the line element (13) at a leading order as

ds2 = − (1− 4µ)dt2

f (E/Ep)
+

dr2

g(E/Ep)(1− 4µ)
+

r2dφ2

g(E/Ep)

+
dz2

g(E/Ep)
. (19)
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Now, applying the rescalings ds2/(1− 4µ) → ds̃2, dt2 → dt̃2 dr2/(1− 4µ)2 → dr̃2,
dφ2/(1 − 4µ) → dφ̃2 and dz2/(1 − 4µ) → dz̃2, we find the metric of a conical defect
given by

ds̃2 = − dt̃2

f (E/Ep)
+

dr̃2

g(E/Ep)
+

(1− 4µ)2r̃2dφ̃2

g(E/Ep)

+
dz̃2

g(E/Ep)
. (20)

At the limit of f (E/Ep) = g(E/Ep) = 1, we recover the well-known metric due to a
cosmic string in the Minkowski form with a deficit angle of ∆φ̃ = 8πµ in the regime of
µ� 1; that is, a solution obtained from the Einstein equations in a weak gravitational field
approximation for the energy–momentum tensor [37]

Tν
µ = µ δ(x)δ(y)diag(1, 0, 0, 1). (21)

Furthermore, the limit µ� 1 implies that rα � rh, which is also consistent with α� 1.

ϵ=0.2

ϵ=0.5

ϵ=0.8

Black String

4 6 8 10
r

-40

-20

20

40

A(r)

(a)

ϵ=0.2

ϵ=0.5

ϵ=0.8

Black String

4 6 8 10
r

-20

20

40

A(r)

(b)
Figure 1. Black string solution in rainbow gravity. For this plot, we consider Ep = 1, s = 1, ξ = 0.4,
α = 0.5 and µ = 0.7. In (a), we consider case I for the rainbow functions whereas, in (b), we consider
case II.

4. Black String Thermodynamics in Rainbow Gravity

The second law of black holes states that, for any physical process, the surface area
A of a black hole’s event horizon obeys the relation δA ≥ 0, where δA = 0 for stationary
processes, and thus the increase in the area of the event horizon is caused by non-stationary
processes. In an analogous way, the entropy of a system of particles, defined by the second
law of thermodynamics, follows the relation δS ≥ 0, with δS = 0 for reversible processes.
Although this seems just a mere coincidence since the second law for black holes comes from
general relativity while entropy is a consequence of the fact that a physical system has many
degrees of freedom, it is possible to find a parallel between all the laws of thermodynamics
and the laws that black holes satisfy, showing that this relation is fundamental and not just
a coincidence [38].

Our black string solution in the rainbow gravity scenario has horizon curves defined
by A(r̃h) = 0; thus, the linear mass can be written as

µ =
α3r̃h

3

4g(E/Ep)2 . (22)

Here, r̃h = rh [g(E/EP)]
2/3, where rh is the horizon radius of the usual general

relativity solution for the black string. Then, the expression (22) becomes

µ =
α3r3

h
4

. (23)
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Thus, this linear mass has no modification due to the rainbow gravity.
In possession of the solution for the static black string in the rainbow gravity scenario

given by (17), we are able to study the thermodynamics of the black string by computing
the Hawking’s temperature by means of TH = A′(r̃h)

4π . Thus, we obtain

T̃H =
3α2 rh

4π [g(E/EP)]4/3 . (24)

The behavior of the Hawking temperature for cases I and II is depicted in Figure 2. For
both cases (I and II), the same linear behavior of the usual Hawking temperature for black
strings is present. However, some slight differences between the cases must be highlighted.
For case I (Figure 2a), we can see that, for a given horizon radius, the Hawking temperature
is greater when we consider the effect of rainbow gravity. The opposite occurs for case II
(Figure 2a), where, for a given horizon radius, the Hawking temperature is smaller when
we consider the effect of rainbow gravity.

Black String

ϵ = 0.2

ϵ = 0.5

ϵ = 0.8

4 6 8 10
rh

0.2

0.4

0.6

0.8

1.0

T


H

(a)

Black String

ϵ = 0.2

ϵ = 0.5

ϵ = 0.8

4 6 8 10
rh

0.2

0.4

0.6

0.8

1.0

T


H

(b)
Figure 2. Hawking temperature for black string solution in rainbow gravity. For this plot, we consider
Ep = 1, s = 1, ξ = 0.4, α = 0.5 and µ = 0.7. In (a), we consider case I for the rainbow functions
whereas, in (b), we consider case II.

In order to properly understand the thermodynamics of the black string in the rainbow
gravity context, it is necessary to compute the entropy, specific heat and free energy. The
entropy can be computed directly from the expression dS = dµ

T̃H
, in which we obtain

S̃ =
π α r2

h [g(E/EP)]
4/3

2
. (25)

Clearly, this recovers the usual black string result S = 1
2 παr2

h when g(E/EP) = 1.
As we can see in Figure 3, for both cases, we have the same quadratic dependence of the
horizon radius that the usual black string entropy exhibits. However, differently from the
Hawking temperature, case I promotes a decrease in the entropy for a given horizon radius
whereas case II promotes an increase in the entropy for a given horizon radius.

The specific heat can be calculated by C̃v = dµ

dT̃H
, from which we obtain

C̃v = παr2
h [g(E/EP)]

4/3 (26)

Similar to entropy, in case I, for a given horizon radius, the specific heat is smaller
when we consider the effect of rainbow gravity. The opposite happens for case II. When
g(E/EP) = 1, we obtain Cv = παr2

h, i.e., the usual black string specific heat in general
relativity. The behavior of the specific heat for cases I and II of the rainbow functions is
depicted in Figure 4. As is widely known, the thermodynamic stability of black holes
(black strings for our case) is directly related to the sign of the heat capacity. A positive
heat capacity indicates that the system is thermodynamically stable, whereas its negativity
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implies thermodynamic instability. Therefore, the result for the specific heat in the context
of rainbow gravity indicates a thermodynamically stable black string.

Black String

ϵ = 0.2

ϵ = 0.5

ϵ = 0.8
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0.6

0.8
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(a)

Black String
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ϵ = 0.5

ϵ = 0.8
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0.2

0.4

0.6

0.8

1.0

S


(b)
Figure 3. Entropy for black string solution in rainbow gravity. For this plot, we consider Ep = 1,
s = 1, ξ = 0.4, α = 0.5 and µ = 0.7. In (a), we consider case I for the rainbow functions whereas, in
(b), we consider case II.
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(b)
Figure 4. Specific heat for black string solution in rainbow gravity. For this plot, we consider Ep = 1,
s = 1, ξ = 0.4, α = 0.5 and µ = 0.7. In (a), we consider case I for the rainbow functions whereas, in
(b), we consider case II.

On the other hand, the rainbow gravity presents no modification in the free energy
F = µ− THS, therefore yielding the usual black string result

F = −
α3r3

h
8

. (27)

5. Geodesics and Circular Orbits

Another important result that we can obtain is the possible circular orbits for this black
string solution. We can investigate such orbits through the effective potential energy (Vr) of
a system formed by the black string and a massive particle and a system formed by the
black string and a photon. A stable orbit is defined as one whose V′′e f f > 0; that is, in the
vicinity of the equilibrium point, the curve’s concavity is up, whereas an unstable orbit has
V′′r < 0; that is, in the vicinity of the equilibrium point, the curve’s concavity is down [39].

The particle’s geodesic in orbit around a static black string is given by

ṙ2 = ω2 − A(r)
(

L2

r2 + m2
)

, (28)

where ω is the particle’s energy, L is the angular momentum and m is the particle’s mass.
Thus, the effective potential is defined as

Vr = A(r)
(

L2

r2 + m2
)

. (29)
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The circular geodesics occur at the points rc satisfying 1
2 ṙ2

c = 0 and V′r (rc) = 0. In
Figure 5, we depict the effective potential of massless and massive particles for the black
string in the rainbow gravity scenario. It is shown that there is no case where circular orbits
are stable, similarly to the usual black string solution. Therefore, the rainbow gravity does
not significantly modify the results for geodesics and circular orbits in comparison to the
usual black string.

ϵ=0.2

ϵ=0.4

ϵ=0.6

4 6 8 10

r

-0.0010

-0.0005

0.0005

0.0010

V[r]

(a)

ϵ=0.2

ϵ=0.4

ϵ=0.6

4 6 8 10

r

-0.002

-0.001

0.001

0.002

V[r]

(b)
Figure 5. Effective potential (a) for massless particles and (b) for massive particles. For this plot, we
consider Ep = 1, s = 1, ξ = 0.4, α = 0.5, µ = 0.7 and L = 0.1.

6. Conclusions

In this paper, we studied black string solutions under the consideration of rainbow
gravity. We analytically obtained the solution for four-dimensional black strings in terms
of the functions f (E/Ep) and g(E/Ep) that sets the energy scale where the rainbow gravity
becomes relevant. We could verify that the black string solution depends only on the
function g(E/Ep) and, consequently, that all the thermodynamic parameters will depend
only on g(E/Ep). We plotted the behavior of the black string solution in (Figure 1) and
could see that, as we increase the value of the energy E, approaching the Planck energy scale,
we also increase the value of the horizon radius for cases I and II of the rainbow functions.

We also obtained the Hawking temperature for the black string, from which we could
see that the rainbow functions play the role of increasing or decreasing the Hawking
temperature for a given horizon radius depending on the choice of such rainbow functions.
We computed the entropy, specific heat and free energy for the black string. The entropy
and specific heat exhibit a rainbow dependence, whereas the free energy is not modified by
the rainbow functions.

Finally, we studied the effects of the rainbow gravity in the orbits of massive and
massless particles around a black string. We could verify that neither massive nor massless
particles exhibit stable orbits around a black string in the scenario of rainbow gravity for
any configuration of rainbow functions.
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