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Abstract: We conduct a detailed study of the electromagnetic field produced by a massive point
particle undergoing hyperbolic (uniformly accelerated) motion in Minkowski space-time. Starting
from the Liénard–Wiechert solution and using a covariant notation, we obtain and analyse the main
quantities that describe this field. We identify the space-time region to which this solution is restricted
and write a solution valid in the whole of space-time. Finally, we verify that this solution satisfies
Maxwell’s equations in the sense of distributions.
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1. Notation

The physics described in this paper takes place in Minkowski space-time, a four-
dimensional affine space endowed with a Lorentzian metric η (det η < 0) with null curva-
ture tensor (flat). The chosen signature is (− + ++).

Tensors, whether expressed in contravariant or covariant components, including
4-vectors and 1-forms, will be denoted by Latin letters (such as F, T or e, h, s). To avoid the
risk of confusing a vector with a coordinate, position vectors (x, x′, y), the charge 4-velocity
(u′) and the 4-acceleration (a′) will be shown in Roman font (x is the position 4-vector
and {t, x, y, z} the Cartesian coordinates). u = t − x and v = t + x will denote inertial
null coordinates. Vectors in three dimensions, referred to an inertial observer, will be
distinguished with an arrow (such as ~E and ~H).

Tensor indices will be indicated by Greek letters. However, η will always be reserved
for the metric tensor and ρ and χ for the cylindrical coordinates on the (y, z) plane.

We denote by u[ = −dt the one-form metrically equivalent to the inertial observer
u] = ∂t. From now on, the symbols [ and ] will be suppressed (and we will write u = −dt
and u = ∂t) because, in general, the covector or vector character is clear from the context or
does not need to be specified. More generally, a sole and same letter will denote a vector
and its metrically equivalent covector without distinction.

A point above a coordinate will indicate the derivative with respect to the proper time
τ (as in ṫ′).

The partial derivative of a coordinate u will be denoted by ∂u (= ∂
∂u ), the exterior

differential of a 1-form A or a 2-form F will be denoted by dA or dF, the symmetrized tensor
product by ⊗̃ (x⊗̃y = x⊗ y + y⊗ x) and the exterior product by ∧ (x∧ y = x⊗ y− y⊗ x).
If α is a p-form and β a q-form, an interesting property is d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

The dual (Hodge) operator is denoted by ∗. Acting on a 2-form F, [∗F]αβ = 1
2 ωαβγδFγδ,

with ωαβγδ = −
√∣∣det ηµν

∣∣εαβγδ the metric volume element, det ηµν the determinant of the

metric tensor η in the coordinate system considered {xα}3
α=0 and εαβγδ the Levi-Civita

symbol with the convention ε0123 = 1.
To denote the contraction of a vector u with a 2-tensor tensor F we will write i(u)F if

it takes place from the left ([i(u)F]β = uαFαβ)) and F(u), from the right ([F(u)]α = uβFαβ).
We will denote the left and right contraction by T(u, u′) (= uαu′βTαβ).
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The system of units is the natural one, where the speed of light in vacuum c = 1 and
where Maxwell’s Equations (our starting point) are written dF = 0 and ∇ · F = −J, with F
the 2-form of the electromagnetic field and J the 4-current.

2. Introduction

The problem of the electromagnetic field produced by a massive point charge in
arbitrary motion, not subjected to an external electromagnetic field, was solved within a
few years of the publication of Maxwell’s theory by A. Liénard [1] and, independently,
by E. Wiechert [2]. M. Born [3] was the first to particularise the problem to uniformly
accelerated motion by calculating the field produced by a point electron in hyperbolic
motion. Since then and up to the present day, several authors have dedicated their time
and effort to this problem, focusing on its various complications. One of them concerns the
validity of the field obtained from the Liénard–Wiechert potential. G. A. Schott [4] was the
first to realise that Born’s solution was only valid in the region1 x + t > 0, and that, in fact,
the field vanishes in x + t < 0. The problem arises at the boundary between these two
regions, regarding the application of Maxwell’s divergence law (∇ · F = −J, in components
∇αFαβ = −Jβ). The charge in hyperbolic motion presents other complications, such as the
question of whether there is a radiation reaction or the implications that this would have
for the equivalence principle [5–8].

What strikes us about many of the articles we have consulted is that they use a three-
dimensional notation. In this work, we have proposed to calculate the field (and the quantities
related to it) always following a covariant tensor notation, taking advantage, as far as possible,
of the tools of exterior calculus. In addition to other advantages, the expressions obtained
would facilitate the approach of this same problem in curved space-time (in environments with
gravity), without forgetting, of course, the difficulties that this would entail.

In Section 3, we briefly review the Liénard–Wiechert solution, in Section 4 we particu-
larise it to hyperbolic motion and analyse its main features (Sections 4.2–4.6). In Section 5,
we discuss the region of validity of the solution thus obtained and write the correct ex-
pression of the field valid in the whole of the space-time considered. The conclusions are
summarised in Section 6 and calculations are detailed in the Appendix A.

3. Liénard–Wiechert Solution (Retarded Potentials)

Every electromagnetic field must satisfy Maxwell’s equations which, in their covariant
version, for external sources located in vacuum, are written simply2:

dF = 0, (1)

∇ · F = −J, (2)

where J is the 4-current, which encompasses the charge density ρ and the current den-
sity~j and F is the 2-form of the electromagnetic field: an antisymmetric 2-tensor whose
components, referred to an inertial observer, are the electric (~E) and magnetic (~H) fields.

From (1) we already see that F is a closed 2-form and therefore, by the Poincaré lemma,
it can be expressed as the exterior differential of a 1-form, in this case, the electromagnetic
4-potential A:

F = dA. (3)

We can now write (2) explicitly in terms of the contravariant components of A and J:

� Aβ − ∂β(∂α Aα) = −Jβ, (4)

where � is the Laplace–Beltrami operator in flat space-time (� = ηµν∂µ∂ν). The general
solution to this equation, which is obtained starting from the Lorenz (gauge) condition



Universe 2023, 9, 286 3 of 17

∂α Aα = 0 and applying Green’s functions (see [9,10]), gives the potential generated by a
charged particle3:

Aα(x) =
∫

d4y Dr(x− y) Jα(y), (5)

where Dr(x− y) is the retarded Green’s function4 and Jα the current density produced by
the own motion of the point particle with charge q:

Jα(y) = q
∫

dτ ẋ′α(τ) δ(y− x′(τ)), (6)

with ẋ′(τ) the 4-velocity of the charge and τ its proper time.
If we carry out carefully5 the two integrals included in (5), we finally obtain the

expression of the Liénard–Wiechert potential:

Aα(x) = − q ẋ′α

(x− x′)β ẋ′β

∣∣∣∣∣
τ=τ1

, (7)

where x′ is the position 4-vector of the charge and the vertical line indicates that the right-
hand side must be evaluated at a proper time τ1 such that x− x′(τ1) is a light-like vector
and t− t′(τ1) > 0, i.e., the potential we measure must have originated at an earlier instant
(t′) called the retarded time. We will call these conditions, respectively, the first and the
second condition of causality.

This potential can be expressed in tensor notation without indices, with A and u′

considered either as vector fields or as the respective 1-forms (mapped by the metric):

A = − q u′

` · u′ , (8)

where u′ = ẋ′ is the charge 4-velocity and ` := x− x′ the light-like vector defined by the
position of the charge x′ and the point x where we measure the field.

In Appendix A.1, of the appendix we set out the steps to obtain the 2-form of the
Liénard–Wiechert field from (8). Using a covariant notation, we obtain:

F = − q
(` · u′)2 ` ∧

(
a′ − 1 + ` · a′

` · u′ u′
)

, (9)

where a′ is the 4-acceleration of the charge. We can already see that F is a simple 2-form,
that is, it results from the exterior product of two 1-forms. For future convenience we can
write (9) as:

F = − q
(` · u′)2 ` ∧ ζ,

with ζ := a′ − 1 + ` · a′
` · u′ u′.

(10)

The general expression (9) can be rewritten as follows:

F = Fcoul + Frad, (11)

with
Fcoul :=

q
(` · u′)3 ` ∧ u′ (12)

the Coulombian part, which only depends on the velocity, and

Frad := − q
(` · u′)2 ` ∧

(
a′ − ` · a′

` · u′u
′
)

(13)
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the radiative part. What is interesting is that the Coulombian part never vanishes (as long
as q 6= 0), while the radiative part only contributes when the particle is accelerated (a′ 6= 0).

4. Field of the Maxwellian Hyperbolic Charge
4.1. Intersection of the Light Cone at the Observation Point with the Charge’s World Line

We are ready to calculate the field of the hyperbolic charge using either (8) or directly (9).
We will first use the former. Consider that, relative to an inertial observer, the hyperbolic
motion of the charge occurs in the x direction, that is, at the intersection between the (x, y)
and (x, z) planes. If α is the constant modulus of the charge 4-acceleration (a′) and β and
γ any two constants, we can parametrise the motion as a function of its proper time τ
(x′ = x′(τ)):

t′ =
1
α

sinh(ατ), x′ =
1
α

cosh(ατ), y′ = β, z′ = γ. (14)

By eliminating the proper time τ, we can describe this hyperbolic motion only in terms
of the coordinates measured by the inertial observer:(

x′
)2 −

(
t′
)2

=
1
α2 , y′ = β, z′ = γ. (15)

We want to express the variables appearing in (8) as a function of x in order to calculate
the exterior differential of the potential (with respect to x) and thus obtain the field F. To do
this, it is sufficient to solve the system of equations composed of Equations6 (15) and the
equation of a light cone centred at x′:

−(t− t′)2 + (x− x′)2 + (y− y′)2 + (z− z′)2 = 0. (16)

If we analyse Figure 1, we can obtain valuable information about the field we are
looking for, even before we try to solve this system of equations. Since the particle’s
trajectory is confined to the region defined by |t|+ x > 0 (region I in Figure 1), this system
of equations is only solvable for x in regions I, II, and IV, so we conclude that the field
vanishes in region III (|t|+ x < 0).

Figure 1. Charge trajectory and division of space-time into 4 regions (I, II, III, and IV). The two
represented instants of the trajectory (τ1 and τ2, with τ2 > τ1) are on the light cone with vertex at x.
However, only at the instant τ1 can a measurable field in x be created. Two spatial dimensions have
been omitted in the figure.
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Moreover, being a quadratic system, we expect to obtain two possible solutions, x′(τ1)
and x′(τ2), for a given x. One of them is interpreted as the one in which x lies in the past
light cone of x′ (x′(τ2)) and, therefore, any light signal emitted in x′ would not affect the
field measured in x. The other solution describes the reverse situation: here x lies in the
future light cone of x′ (x′(τ1)). We must choose the latter, since it is the one that satisfies the
second causality condition (t > t′). Still looking at Figure 1, we see that in region II and
region IV there can only be one possible solution for each x. Moreover, in region IV the
solution does not satisfy the second causality condition, so the field will be equal to zero
also in that region. Therefore, at this point we can already say that the field we are going to
obtain will have a nonzero value only in regions I and II, that is, for x + t > 0. Later we
will discuss what happens at the boundary between regions I and IV and between II and
III (x + t = 0).

In Appendix A.2, we write the two solutions (x′ = x′(x)) of the system of Equations (15)
and (16), with x′ > 0, and select the one that satisfies t′ < t (A11). In this way we obtain
the correct expression of the light-like vector ` as a function of t, x, y and z (A14). Now we
only need the 4-velocity u′ of the charge. Considering that u′ = ẋ′, based on Equation (14),
we obtain:

ṫ′ = α x′, ẋ′ = α t′, ẏ′ = 0, ż′ = 0. (17)

Now we also have u′ as a function of t, x, y and z (A15) and we can write (8).

4.2. The 1-Form A Related with the Vector Potential

In Appendix A.3 we explicitly write (8). The expression we obtain invites us to make
the following change of coordinate system:

u = t− x, v = t + x, ρ2 = (y− β)2 + (z− γ)2, χ = arctan
(

z− γ

y− β

)
. (18)

From now on, we will work in coordinates7 (u, v, ρ, χ), with the Minkowski metric
expressed as:

η = −1
2

du⊗̃dv + dρ⊗ dρ + ρ2dχ⊗ dχ, (19)

where we have used du⊗̃dv = du⊗ dv + dv⊗ du.
Later, in order to calculate the divergence of F, it will be useful to know that√

|detη| = ρ

2
. (20)

This change to a cylindrical coordinate system8 is due to the azimuthal symmetry of
the field, as we will see.

In these coordinates, the potential, written as 1-form, reads:

A =
q

2 f 1/2

{
1
u
[1 + α2(ρ2 − uv)− f 1/2]du− 1

v
[1 + α2(ρ2 − uv) + f 1/2]dv

}
θ(v), (21)

with9

f := α4(ρ2 − uv)2 + 2α2(ρ2 + uv) + 1. (22)

In (21) we have added the Heaviside step function10 θ(v) to limit this result to its
region of validity (I and II), the potential vanishing in the other regions. However, as it is
written, the potential is not valid in the light-like 3-plane v = 0. In Section 5, we will obtain
the complete field by adding a term to (25).

We see that this potential is singular when the function f goes to zero. This occurs
precisely when we are on the point charge, i.e., when u v = −1/α2 and ρ = 0. In addition,
the potential appears to exhibit another singularity when u→ 0 with v > 0. However, we
verify that when u → 0, the numerator [1 + α2(ρ2 − uv)− f 1/2] → 0, resulting in a finite
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limit. On the other hand, when v → 0+ the potential is singular and here we see that in
this border things get complicated. We will discuss this in Section 5.

4.3. The Field F and Its Dual

To calculate the electromagnetic field we obtain the exterior differential of the
potential (21), separating the step function so that A := Ã θ(v):

F = dA = dÃ θ(v) + Ã ∧ dθ(v). (23)

Let us look at the second term of (23). Taking into account that Ã has only u and v
components and that the 1-form11 dθ(v) = δ(v) dv, where δ(v) is the Dirac distribution,
the only component that will survive the exterior product will be:

Ã ∧ dθ(v) =
q

2 f 1/2u
[1 + α2(ρ2 − uv)− f 1/2] δ(v) du ∧ dv. (24)

The presence of the Dirac delta selects, in the sense of a distribution, the value v = 0.
It is easy to check that then this term vanishes12. Therefore, to obtain the field, we only
have to calculate the exterior differential of Ã and then add the step function.

In this way, we obtain the 2-form of the electromagnetic field of a point charge in
hyperbolic motion for the region v 6= 013:

F =
2qα2

f 3/2 [(1 + α2(ρ2 + uv))du ∧ dv− 2α2vρ du ∧ dρ + 2α2uρ dv ∧ dρ] θ(v). (25)

To continue, it is convenient to calculate the (Hodge) dual of F:

∗F =− 4qα2ρ

f 3/2 [α2ρvs. du ∧ dχ + α2ρu dv ∧ dχ− (1 + α2(ρ2 + uv))dρ ∧ dχ] θ(v). (26)

Now we obtain the electric field e and the magnetic field h with respect to the inertial
observer u = − 1

2 (du + dv):

e = −i(u)F = −2qα2

f 3/2 [(1 + α2(ρ2 + uv))(du− dv)− 2α2ρ(u− v)dρ] θ(v), (27)

h = −i(u) ∗ F = −4qα4(u + v)
f 3/2 ρ2 dχ θ(v). (28)

Now we can write their non-vanishing contravariant components:

ex =
4qα2

f 3/2

(
1 + α2(ρ2 + t2 − x2)

)
θ(t + x),

eρ =− 8qα4

f 3/2 xρ θ(t + x),

hχ =− 8qα4

f 3/2 t θ(t + x).

(29)

With these results we can check that the algebraic decomposition of F (and ∗F) in
terms of these relative quantities is satisfied:

F = u∧ e− ∗(u∧ h), ∗F = u∧ h + ∗(u∧ e). (30)

Furthermore, we calculate the scalar invariants of the field:

f :=
1
2

trF2 = e2 − h2 =
16q2α4

f 2 θ(v),

f̃ :=
1
2

tr(F× ∗F) = 2 e · h = 0.

(31)
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It is therefore a regular field. This result is also evident from the general expression of
the Liénard–Wiechert field (9). Recall that a regular field is one with at least one nonzero
invariant, which can be generally decomposed as:

F = µ n ∧ k + ν ∗ (n ∧ k), (32)

with n and k the principal directions of F, which are necessarily light-like. These are the
eigenvectors of F with respective eigenvalues µ and −µ (they are also the eigenvectors of
∗F with respective eigenvalues −ν and ν). We take them on the same half of the light cone,
with n · k = −1. In our case, since the second invariant is equal to zero (31), necessarily14

ν = 0 and (32) reads:
F = µ n ∧ k, (33)

where now µ = f , with f the nonzero invariant of the field F given in (31).
Looking at the expression (10), since ` is light-like by definition, we might be tempted

to think that ζ is also light-like and that ` and ζ are the two principal directions of F.
However, this is not the case, since ζ is not light-like. However, it is striking that ` · ζ = −1,
as required for the two principal directions of a regular field15. It is easy to check that the
vector defined as

k = ζ +
1
2

ζ2` (34)

is light-like with k · ` = −1 and, furthermore, that

` ∧ k = ` ∧ ζ, (35)

as it appears in the general expression of the Liénard–Wiechert field (10).
Now we have the two principal directions, ` and k, of our regular field, also called

a non-radiative field alluding to the set of observers, those located on the 2-plane (`, k),
for whom the Poynting vector is zero and therefore do not see an energy flux.

4.4. The Stress-Energy Tensor T

Let us now calculate the stress-energy tensor of the electromagnetic field, defined as

T = −F2 +
1
4

trF2η. (36)

In the present case, using the coordinate system (18), we obtain (expressed as a
contravariant 2-tensor):

T =
8q2α4

f 3

{
8α4ρ2 (u2 ∂u ⊗ ∂u + v2 ∂v ⊗ ∂v) + 2(1 + α2(uv + ρ2))2 ∂u⊗̃∂v+

+ 4α2ρ (1 + α2(uv + ρ2))(u ∂u⊗̃∂ρ + v ∂v⊗̃∂ρ) +

+
f

ρ2 ∂χ ⊗ ∂χ + ( f + 8α4uvρ2) ∂ρ ⊗ ∂ρ

}
θ(v).

(37)

From the stress-energy tensor, we calculate the quantities relative to the inertial ob-
server u, the electromagnetic energy ρ̃ and the Poynting vector s:

ρ̃ = T(u, u) =
1
2
(e2 + h2)

=
8q2α4

f 3

{
(1 + α2(ρ + uv))2 + 2α4ρ2(u2 + v2)

}
θ(v),

(38)

s = −[i(u)T]⊥

=
16q2α6(u + v)

f 3

{
α2(u− v)ρ2(∂u − ∂v)− (1 + α2(uv + ρ2))ρ ∂ρ

}
θ(v),

(39)

where [ ]⊥ denotes the orthogonal projection onto the observer’s reference space.
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Here we read the contravariant components of s:

sx =
128 q2α8txρ2

f 3 θ(v),

sρ = −32q2α6t ρ

f 3 (1 + α2(t2 − x2 + ρ2))θ(v).
(40)

Here we see that at t = 0 the Poynting vector is zero. This is discussed in the
next section.

4.5. Characteristics of the Electric and Magnetic Field

From the expressions (27) and (28) we see that both the electric field e and the magnetic
field h have azimuthal symmetry (their components do not depend on χ). Moreover, the h
field has only an azimuthal component, while the e field does not, so that e · h = 0 at each
instant t.

Figure 2 shows the lines of the field e on the plane (x, ρ) at t = 0 and at t > 0. We see
how the lines form circles centred on the ρ axis that pass through the position of the charge.
To calculate the centre of these circles we must find the family of functions ρi = ρi(x)
representing the field lines, solving for each t the following differential equation:

dρi
dx

=
eρ

ex =
−2α2ρi x

1 + α2(ρ2
i + t2 − x2)

, (41)

where we have used (29) for the contravariant components of the electric field, eρ and ex.

Figure 2. Electric field lines at t = 0 (left) and t′ > 0 (right). At t = 0 the charge is closer to the
observer (here at x = 1). The cutting of the lines on the ρ axis is due to the fact that at t = 0 the field
vanishes for x < 0 (we will discuss the field at x + t = 0 in the next sections). In the image on the
right that cut occurs at x < −t′. The third space-like coordinate χ has been omitted.

The solution to this differential equation reflects the circular shape, centred on the
ρ-axis, of these field lines:

(ρi − Ci)
2 + x2 =

1
α2 + t2 + C2

i , (42)

where each solution ρi is determined by the value of Ci ∈ R+, the integration constant.
The discontinuity in the light-like 3-plane v = 0 of the F field (25) causes an interrup-

tion of the electric field lines on the ρ axis, as seen in Figure 2 for t = 0 (left). The interesting
part is that, if we approach that boundary from v > 0 (v→ 0+), the electric field has a finite
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(nonzero) value. Let us see it explicitly for t = 0. In that case, by making t = 0 and x → 0+

in (29), we obtain the nonzero component:

ex =
4qα2

f 3/2
t=0,x→0+

(
1 + α2ρ2

)
=

4qα2

(1 + α2ρ2)2 .

(43)

Therefore, on the right-hand side of the boundary t + x = 0, the electric field has
a nonzero component, the x component. We can integrate the flow of these field lines
through the (differential) circular crown 2πρdρ centred on the x axis, whose normal vector
n is directed in the direction of this axis, covering the whole space. In this case we have:

8πqα2
∫ ∞

0

ρ

(1 + α2ρ2)2 dρ = 4πq (44)

This is the result we expected16 according to Gauss’ law of divergence. Since we are
dealing with a point charge, the volume integral of the charge distribution in the half-space
x > 0 is equal to the charge q of the particle. On the other hand, the flux of the electric
field through the edge x = 0 of this half-space, is the integral that we have calculated
in (44). We can say that the field lines do not disappear at the discontinuity v = 0, but
remain within the region v > 0. In Section 5, we will add a term to (25) so that the F field
satisfies Maxwell’s divergence law ∇ · F = −J in accordance with this result.

Another interesting property is that the magnetic field h cancels out at the instant
t = 0 (⇔ u + v = 0)17. At this instant the Poynting vector s (40) is also zero. This property
is what sparked the debate about whether a uniformly accelerated charge radiates energy
or not. Some authors, W. Pauli [12] among them18, maintained that the hyperbolic charge
did not radiate energy, arguing that by successive changes of the inertial system one could
continuously place oneself in an inertial system so that s = 0 at each instant. Other authors
such as H. Bondi and T. Gold [6] and T. Fulton and F. Rohrlich [13] refuted this argument
years later.

In this regard we will say that, from a more algebraic perspective, we are dealing with
a regular field, so that for an observer located on the 2-plane formed by the two principal
directions {`, k}, the Poynting vector is always zero. It is easy to verify that, in our case,
at instant t = 0, the 2-plane formed by {`, k} is oriented in such a way that our observer u
is precisely on it and, therefore, sees no energy flow at that instant. Therefore, the question
of whether the field of a charge in hyperbolic motion radiates energy or not could be
reformulated in the sense of whether a regular field such as this one radiates energy or not.

4.6. The Function f

We have said that the function f (22) is interesting and it is so for several reasons. This
function appears in all our expressions, starting with the solution x′ = x′(x) (A11) to the
system of Equations (15) and (16) and, from there, in all the quantities we have obtained,
always in the denominator and raised to different powers. As we have pointed out, it
vanishes when we place ourselves on the charge’s world line, giving rise, as expected,
to singular expressions in that case. However, the property that catches our attention is
that the nonzero scalar invariant of the field, f , is proportional precisely to f−2 (see (31)).

To study this function we will analyse the causal character of the level 3-surfaces
f = constant according to the values of uv and ρ2. In the following analysis we must not
forget that, although the function f is defined for all v, our field vanishes at v < 0.

We know that d f is the 1-form giving an orthogonal direction to the surfaces
f = constant:

d f =2α2(1− α2v(ρ2 − uv)) du + 2α2(1− α2u(ρ2 − uv)) dv

+ 4α2ρ(1 + α2(ρ2 − uv)) dρ.
(45)
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To obtain the causal character we calculate the square of d f :

η(d f , d f ) =16α4(ρ2 − uv)(α4(ρ2 − uv)2 + 2α2(ρ2 + uv) + 1)

=16α4(ρ2 − uv) f .
(46)

Furthermore, we check the sign of (46), so that if η(d f , d f ) = 0 the 3-surfaces are light-
like, if η(d f , d f ) > 0 they are time-like and if η(d f , d f ) < 0 they are space-like. Looking
at (22) we realize that the function f can be written as the following sum of squares:

f =
(

α2(uv− ρ2) + 1
)2

+ 4α2ρ2. (47)

Therefore, f ≥ 0 for all uv and ρ2, so the sign of η(d f , d f ) will be determined by the
sign of ρ2 − uv.

Table 1 summarises the causal character of the 3-level surfaces f = constant. In
Figure 3 we try to visualise these regions (see Appendix A.4 for more details).

Table 1. Causal character of the level surfaces f = constant according to the values of uv and ρ2.

uv = 0 uv > 0 uv = ρ2 uv < 0

ρ2 = 0 Space-like Time-like

ρ2 > 0 Time-like Light-like

ρ2 > uv Time-like

ρ2 < uv Space-like

Figure 3. Trying to visualise the regions of Table 1 (left). Three of these regions (those with coloured
initial letter) are shown on the right. The light cone corresponds to uv = ρ2. Colour coding: Time-like
Space-like Light-like.

5. Region of Validity of the Field

As already anticipated, the expression of the field (25) is not valid on the light-like
3-plane v = 0. The reason, as we shall see, is that at that boundary, where the field goes
from having a finite value to being zero, Maxwell’s equations are not satisfied. However,
why are they not satisfied if precisely those equations have been our starting point? As
explained in [14]19, the Green’s functions method used to obtain the potential, which we
have briefly described here, fails when the trajectory tends asymptotically to a light-like
trajectory, as occurs in our case in t → −∞. If we look at the expression (8), we see that
the denominator (` · u′) vanishes when the charge velocity four-vector u′ is light-like (as
it occurs in t → −∞) and collinear with the light-like vector of the point of observation
` (as it can occur when we measure at a point on the 3-surface v = 0), giving rise to a
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singularity. As explained by Bondi and Gold [6], the problem is that the contributions to
the field from these distant regions do not attenuate fast enough, leading to a divergent
term at that boundary.

Let us see explicitly that (25) does not satisfy Maxwell’s equations in the region v = 0.
The presence of the Heaviside distribution in (25) already tells us that we are now dealing
with tensor distributions, so we must reinterpret Maxwell’s equations in the sense of
distributions20.

When we are not on the charge’s trajectory (ρ 6= 0 and u vs. 6= − 1
α2 ) and, therefore,

J = 0, Maxwell’s second Equation (2) in component notation says:

∇µFµν = 0. (48)

For the following calculations it is convenient to write the contravariant components
of F:

Fuv =− Fvu = −8qα2

f 3/2 (1 + α2(ρ2 + uv)) θ(v),

Fuρ =− Fρu = −8qα4uρ

f 3/2 θ(v),

Fvρ =− Fρv =
8qα4vρ

f 3/2 θ(v).

(49)

If we separate the function θ(v) from the components (49) such that:

Fµν := F̃µν θ(v), (50)

we have:
∇µFµν = ∇µ(F̃µν) θ(v) + F̃µν(∇µθ(v)). (51)

To calculate the first term of (51), when working with curvilinear coordinates, we must
take into account that

∇µ(F̃µν) =
1√
|detη|

∂µ(
√
|detη| F̃µν), (52)

where the factor with the metric determinant has already been calculated in (20).
With this we verify that ∇µ(F̃µν) = 0, i.e., in the region v > 0, where F = F̃, ∇ · F = 0

is satisfied. This does not surprise us because we know that our solution, as written above,
is valid in v > 0 and, therefore, satisfies Maxwell’s equations in that region.

To calculate the second term of (51) we define:

Jν := F̃µν(∇µθ(v)). (53)

Bearing in mind that ∇µθ(v) = δv
µ δ(v), we obtain the following nonzero components

of J:

Ju
=− 8qα2

f 3/2 (1 + α2(ρ2 + uv)) δ(v),

Jρ
=

8qα4vρ

f 3/2 δ(v).
(54)

These expressions can be simplified by taking into account that the Dirac delta selects,
in the sense of a distribution, the value v = 0, so that the only nonzero component of J is:

Ju
=− 8qα2

(1 + α2ρ2)2 δ(v). (55)

This term, which we can see as an effective current density at the 3-surface v = 0,
is what prevents the second Maxwell equation from being satisfied at that boundary.
Therefore, to obtain the correct expression of the field we need to add a term whose
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divergence cancels this effective current and only comes into play at v = 0. Based on
Boulware’s article [7], we prove that this term, written as a contravariant 2-tensor, is:

F = − 4qα2ρ

1 + α2ρ2 δ(v)
[
∂u ⊗ ∂ρ − ∂ρ ⊗ ∂u

]
. (56)

Let us see explicitly that this term is the one we are looking for. Since F only depends
on ρ and v, the only nonzero component of ∇µFµν is the u-component:

[∇ · F]u =
1
ρ

∂ρ(ρFρu
) =

1
ρ

∂ρ

[
4qα2ρ2

1 + α2ρ2

]
δ(v) +

4qα2

1 + α2ρ2 ∂ρ[δ(v)]. (57)

The second summand of (57) is zero under conmutation of the partial derivative21 and
therefore:

[∇ · F]u =
8qα2

(1 + α2ρ2)2 δ(v) = −Ju. (58)

We can now write the components of the field F = F̃ θ(v) + F of the hyperbolic charge
which satisfies Maxwell’s equations also in the half-space v ≥ 0:

Fuv =− Fvu = −8qα2

f 3/2 (1 + α2(ρ2 + uv)) θ(v),

Fuρ =− Fρu = −4qα2ρ

[
2α2u
f 3/2 θ(v) +

δ(v)
1 + α2ρ2

]
,

Fvρ =− Fρv =
8qα4vρ

f 3/2 θ(v).

(59)

With the correct field, we recalculate the electric field e and obtain its contravariant
components ex and eρ:

ex =
4qα2

f 3/2

(
1 + α2(ρ2 + t2 − x2)

)
θ(t + x),

eρ =− 8qα4

f 3/2 xρ θ(t + x) +
2qα2ρ

1 + α2ρ2 δ(t + x).
(60)

For the magnetic field we obtain:

hχ = −8qα4

f 3/2 t θ(t + x)− 2qα2

1 + α2ρ2 δ(t + x). (61)

We see that the x-component of the electric field does not change. The term that we have
added to eρ and hχ only intervenes at x + t = 0 and comes from the effective current J.

6. Conclusions and Perspectives

In this article we have analysed the electromagnetic field produced by a massive
point charge in hyperbolic motion in Minkowski space-time. We have started from the
Liénard–Wiechert potential as a solution to Maxwell’s equations for the electromagnetic
field generated by a point charge in arbitrary motion. We have particularised this potential
to hyperbolic motion and obtained, in covariant notation, the quantities that characterise
this field.

We have analysed the electric and magnetic field (referred to an inertial observer) of
the charge in hyperbolic motion, drawn the electric field lines at two instants and verified
that Gauss’ law of divergence is satisfied at the critical boundary {x = 0, t = 0}, concluding
that the field lines do not disappear at that boundary, but remain within the region x+ t > 0.
We have briefly addressed the problem of whether a uniformly accelerated charge radiates
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energy or not: for an observer on the 2-plane formed by the principal directions of a regular
electromagnetic field, such as the Liénard–Wiechert field, the Poynting vector is always
zero. At t = 0 our observer is precisely on that plane and sees no energy flux. Furthermore,
we have noticed that the non-vanishing scalar invariant of the field, f , is proportional
to the function f = f (u, v, ρ) which appears in the denominator of all quantities that we
have calculated (the vector potential, the field, the stress-energy tensor, . . . ). We have
analysed this function in detail: we have studied the causal character of the level surfaces
f = constant and tried to visualize these causal regions, as well as the level surfaces.

We have realised that, since there is a discontinuity in the field of the charge in
hyperbolic motion, the Liénard–Wiechert solution only gave us the field in a certain region,
precisely the one that excludes that discontinuity. Reinterpreting Maxwell’s equations in
the sense of distributions we have found a solution that satisfies these equations in all the
space-time considered.

The study we have carried out allows us to pose this same problem in curved space-
time. We believe that we will be able to take advantage of the covariant nature of the
expressions obtained. However, there will be concepts that we will have to define carefully,
such as the light-like vector ` defined by the position of the charge x′ and the point x where
we measure the field—to mention one of them.

The techniques we have learned in this analysis, such as the approach of the inter-
section of the light cone with vertex at x with the trajectory of the charge (the system
of equations composed of (15) and (16)), can be used to enter the field of relativistic
positioning [16,17]. For example, we could consider the case of four hyperbolic emitters
in different time-like planes and solve the resulting system of equations to obtain an ex-
pression of the coordinates (with respect to an inertial observer) as a function of the proper
time of each of these emitters.
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Appendix A

In this appendix we include those expressions and calculations which, due to their
extension, should be placed in a separate section so as not to hinder the reading of
the manuscript.

The order of the sections in this appendix is determined by the main text itself.

Appendix A.1. Deduction of the Liénard–Wiechert Field from the Potential in Covariant Notation

To obtain the F field from (8):

F = dA =
q

(` · u′)2 d(` · u′) ∧ u′ − q
` · u′ du′. (A1)

Let us first calculate d(` · u′) in components:

[d(` · u′)]α = (∂α`
µ)u′µ + `µ(∂αu′µ). (A2)

Let us see if we can express the partial derivatives that appear in (A2) in terms of other
more practical quantities.
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From the definition of ` = x− x′:

∂α`
µ = δ

µ
α − ∂αx′µ. (A3)

Since ` is light-like:

0 = `2 = ηµν(xµ − x′(τ)µ)(xν − x′(τ)ν),

differentiating:

0 = 2ηµν(dxµ − dx′µ
dτ dτ)(xν − x′(τ)ν)

⇔ 0 = ηµν(dxµ − u′µdτ)`ν = `µdxµ − (` · u′)dτ

⇒ dτ =
`

` · u′ . (A4)

Now:

dx′µ = u′µdτ = u′µ
`

` · u′

⇔ ∂αx′µ =
u′µ`α

` · u′ . (A5)

Therefore, (A3) reads:

∂α`
µ = δ

µ
α −

u′µ`α

` · u′ . (A6)

Let us continue with the second summand of (A2):

du′µ = a′µdτ = a′µ
`

` · u′

⇔ ∂αu′µ =
a′µ`α

` · u′ , (A7)

where a′ = u̇′ = ẍ′ is the 4-acceleration of the charge.
Now we can rewrite (A2):

[d(` · u′)]α =

[
δ

µ
α −

u′µ`α

` · u′

]
u′µ + `µ

[
`αa′µ
` · u′

]
. (A8)

Since u′2 = −1, we can simplify (A8) and write it as 1-form:

d(` · u′) = u′ +
1 + ` · a′
` · u′ `. (A9)

It is now easy to calculate du′ as it appears in (A1) using the definition of the exterior
derivative, [du′]αβ = ∂αu′β − ∂βu′α , and (A7):

du′ =
` ∧ a′

` · u′ . (A10)

Finally, we substitute (A9) and (A10) into (A1) to obtain the Liénard–Wiechert field:

F = − q
(` · u′)2 ` ∧

(
a′ − 1 + ` · a′

` · u′ u′
)

.

Appendix A.2. Expression of the Retarded Coordinates x′ as a Function of the Point x Where the
Field Is Measured

The system of equations consisting of (15) and (16) has the following two solutions
(which differ in the sign of the square root of f ):
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t′1 =−
α2t
(
ρ2 − t2 + x2)+ t− x f

1
2

2α2(t2 − x2)
,

x′1 =
α2x
(
ρ2 − t2 + x2)+ x− t f

1
2

2α2(x2 − t2)
,

(A11)

t′2 =−
α2t
(
ρ2 − t2 + x2)+ t + x f

1
2

2α2(t2 − x2)
,

x′2 =
α2x
(
ρ2 − t2 + x2)+ x + t f

1
2

2α2(x2 − t2)
,

(A12)

with
f := α4(ρ2 − t2 + x2)2 + 2α2(ρ2 + t2 − x2) + 1, (A13)

and where for both solutions y′1,2 = β and z′1,2 = γ and where we have defined ρ2 =

(y− β)2 + (z− γ)2.
Comparing both solutions, we find that the solution that satisfies the second causality

condition, t′ < t, in the regions where the field does not vanish (I and II in Figure 1), is the
one given by (A11).

We can now give the contravariant components of `:

`t =
α2t
(
ρ2 + t2 − x2)+ t− x f

1
2

2α2(t2 − x2)
,

`x =
α2x
(
ρ2 + t2 − x2)− x + t f

1
2

2α2(t2 − x2)
,

`y =y− β,

`z =z− γ.

(A14)

And also those of u′:

u′t =
α2x
(
ρ2 − t2 + x2)+ x− t f

1
2

2α(x2 − t2)
,

u′x =
α2t
(
ρ2 − t2 + x2)+ t− x f

1
2

2α(x2 − t2)
.

(A15)

Finally, we check that:

` · u′ = − f
1
2

2α
. (A16)

Appendix A.3. Potential A in Cartesian Coordinates

Once we have ` and u′ as a function of x, we obtain the following expressions for the
covariant components of the potential using (8):

At =−
q
(

α2x
(
ρ2 − t2 + x2)+ x− t f

1
2

)
(x2 − t2) f

1
2

,

Ax =
q
(

α2t
(
ρ2 − t2 + x2)+ t− x f

1
2

)
(x2 − t2) f

1
2

,

(A17)

with ρ2 = (y − β)2 + (z − γ)2. This definition already induces a change to cylindrical
coordinates, where x is the height and ρ the radial coordinate, so that the expressions do
not depend on the azimuthal coordinate. The expressions are considerably simplified if,
in addition, we use light-like coordinates defined as u = t− x and v = t + x. In (21) we
express the potential in this coordinate system.
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Appendix A.4. Graphic Representation of the Function f

Figure A1. Representation of the 2-surfaces fρ = fρ(u, v) considering ρ as a parameter. In the figure
on the top left (green) we have taken ρ = 0 and in the figure on the right, ρ > 0 (red). Both surfaces
are shown below including the intersections between them. The third space-like coordinate χ has
been omitted.

Figure A2. Perspective from below (below the ρ = 0 plane, with the ρ axis being the vertical axis) of the
level surfaces of f for different values. The envelope surface (magenta colour) represents the highest value
of f , the hyperbolas in black located in the foreground represent the lowest value f = 0, coinciding with
the trajectory of the charge (here the symmetric trajectory at v < 0 is also represented).

Notes
1 In fact, for Schott this solution was valid in x + t ≥ 0.
2 These equations are reduced to the traditional ones when they refer to an inertial observer:

∇ · ~E = ρ, ∇ · ~H = 0, ∂t~E = ∇× ~H −~j, ∂t ~H = −∇× ~E.
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3 In the absence of external fields, see [10], pp. 614–615.
4 Dr(x− x′) = 1

2π θ(t− t′)δ[(x− x′)2].
5 See [9], p. 166.
6 This equation defines two hyperbolas, we take the one with x′ > 0.
7 With u, v ∈ R, ρ ≥ 0 and χ ∈ [0, 2π].
8 The coordinate representing the height x being included in u y v.
9 This interesting function is analysed in Section 4.6.

10 θ(v) = 1 for v ≥ 0 and θ(v) = 0 for v < 0. Strictly speaking, this is the Heaviside distribution. See [11].
11 Where we have used the property ∂µθ(v) = δv

µδ(v). See [11] for all the mathematical rigour that such a symbolic expression
requires.

12 From (22) it can be proved that the limiting value of f in the light-like 3-plane v = 0 is equal to (1 + α2ρ2)2.
13 All the quantities that we are going to calculate from this field are valid in v 6= 0, in Section 5 we deduce the expressions of the

electric and magnetic field for any value of v.
14 It being a simple 2-form.
15 Recall that, on the other hand, a singular field generally decomposes as F = n ∧ k, with n light-like and k space-like and n · k = 0.
16 The factor 4π results from our choice of units.
17 Although the charge is at rest at t = 0, we must not forget that the field we measure at t = 0 originated at an earlier instant with

the charge in motion.
18 Pauli relied on Born’s solution (valid at v > 0).
19 pp. 225 et seq.
20 See [14], pp. 44–45, and also [15] for an analysis in three-dimensional notation.
21 ∂ρδ(v) = ∂ρ∂vθ(v) = ∂v∂ρθ(v) = 0. See [11] for all the mathematical rigour that such a symbolic expression requires.

References
1. Liénard, A. Champ électrique et magnétique produit par une charge électrique concentrée en un point et animée d’un mouvement

quelconque. L’Éclairage Électrique 1898, XVI, 5–14, 53–59, 106–112.
2. Wiechert, E. Elektrodynamische Elementargesetze. Ann. Phys. 1901, 309, 667–689. [CrossRef]
3. Born, M. Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Ann. Phys. 1909, 335, 1–56. [CrossRef]
4. Schott, G.A. Electromagnetic Radiation and the Mechanical Reactions Arising from It; Cambridge University Press: Cambridge, UK, 1912.
5. Drukey, D. Radiation from a uniformly accelerated charge . Phys. Rev. 1949, 76, 543. [CrossRef]
6. Bondi, H.; Gold, T. The field of a uniformly accelerated charge, with special reference to the problem of gravitational acceleration.

Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 229, 416–424.
7. Boulware, D.G. Radiation from a uniformly accelerated charge. Ann. Phys. 1980, 124, 169–188. [CrossRef]
8. Eriksen, E.; Grøn, Ø. Electrodynamics of Hyperbolically Accelerated Charges: II. Does a Charged Particle with Hyperbolic

Motion Radiate? Ann. Phys. 2000, 286, 343–372. [CrossRef]
9. Barut, A.O. Electrodynamics and Classical Theory of Fields & Particles; Courier Corporation: North Chelmsford, MA, USA, 1980.
10. Jackson, J.D. Classical Electrodynamics; John Wiley & Sons Inc.: New York, NY, USA, 1999.
11. Dray, T. Tensor distributions in the presence of degenerate metrics. Int. J. Mod. Phys. D 1997, 6, 717–740. [CrossRef]
12. Pauli, W. Relativitätstheorie, Encyklopädie der Mathematischen Wissenschaften; BG Teubner: Leipzig, Germany, 1921; Volume 19.
13. Fulton, T.; Rohrlich, F. Classical radiation from a uniformly accelerated charge. Ann. Phys. 1960, 9, 499–517. [CrossRef]
14. Lechner, K. Classical Electrodynamics; Springer: Berlin/Heidelberg, Germany, 2018.
15. Idemen, M. The Maxwell’s equations in the sense of distributions. IEEE Trans. Antennas Propag. 1973, 21, 736–738. [CrossRef]
16. Coll, B.; Ferrando, J.J.; Morales-Lladosa, J.A. Positioning systems in Minkowski spacetime: From emission to inertial coordinates.

Class. Quantum Gravity 2010, 27, 065013. [CrossRef]
17. Coll, B.; Ferrando, J.J.; Morales-Lladosa, J.A. Positioning systems in Minkowski space-time: Bifurcation problem and observational

data. Phys. Rev. D 2012, 86, 084036. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/andp.19013090403
http://dx.doi.org/10.1002/andp.19093351102
http://dx.doi.org/10.1103/PhysRev.76.543
http://dx.doi.org/10.1016/0003-4916(80)90360-7
http://dx.doi.org/10.1006/aphy.2000.6095
http://dx.doi.org/10.1142/S0218271897000431
http://dx.doi.org/10.1016/0003-4916(60)90105-6
http://dx.doi.org/10.1109/TAP.1973.1140572
http://dx.doi.org/10.1088/0264-9381/27/6/065013
http://dx.doi.org/10.1103/PhysRevD.86.084036

	Notation
	Introduction
	Liénard–Wiechert Solution (Retarded Potentials) 
	Field of the Maxwellian Hyperbolic Charge
	Intersection of the Light Cone at the Observation Point with the Charge's World Line
	The 1-Form A Related with the Vector Potential
	The Field F and Its Dual
	The Stress-Energy Tensor T
	Characteristics of the Electric and Magnetic Field
	The Function f

	Region of Validity of the Field
	Conclusions and Perspectives
	
	Deduction of the Liénard–Wiechert Field from the Potential in Covariant Notation
	Expression of the Retarded Coordinates x' as a Function of the Point x Where the Field Is Measured
	Potential A in Cartesian Coordinates
	Graphic Representation of the Function f

	References

