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Abstract: In the QCD-like effective model, the Polyakov linear-sigma model, the isospin sigma
field (σ̄3 = fK± − fK0 ) and the third generator of the matrix of the explicit symmetry breaking
[h3 = m2

a0
( fK± − fK0)] are estimated in terms of the decay constants of the neutral ( f 0

K) and charged
Kaon ( fK± ) and the mass of a0 meson. Both quantities σ̄3 and h3 are then evaluated, at finite baryon (µB),
isospin chemical potential (µI), and temperature (T). Thereby, the dependence of the critical temperature
on isospin chemical potential could be mapped out in the (T − µI) phase diagram In the QCD-like
effective model, the Polyakov linear-sigma model, the isospin sigma field (σ̄3 = fK± − fK0 ) and the
third generator of the matrix of the explicit symmetry breaking [h3 = m2

a0
( fK± − fK0)] are estimated

in terms of the decay constants of the neutral ( f 0
K) and charged Kaon ( fK± ) and the mass of a0 meson.

Both quantities σ̄3 and h3 are then evaluated, at finite baryon (µB), isospin chemical potential (µI), and
temperature (T). Thereby, the dependence of the critical temperature on isospin chemical potential
could be mapped out in the (T− µI) phase diagram. The in-medium modifications of pseudoscalars
(Jpc = 0−+), scalars (Jpc = 0++), vectors (Jpc = 1−−), and axial-vectors (Jpc = 1++) meson states are
then analyzed in thermal and dense medium. We conclude that the QCD phase diagram (T− µI) is
qualitatively similar to the (T− µB) phase diagram. We also conclude that both temperature and isospin
chemical potential enhance the in-medium modifications of the meson states a0, σ, η′, π, f0, κ, η, K,
ρ, ω, κ∗, φ, a1, f1, K∗, and f ∗1 . Regarding their chemical potential, at high temperatures the various
meson states likely dissolve into colored partonic phase. In this limit, the meson masses form a universal
bundle. Thus, we conclude that the increase in the chemical potential similar to temperature derives the
colorless confined meson states into the colored deconfined parton phase.

Keywords: chiral symmetries; isospin asymmetry; chiral phase structure; in-medium modifications
of meson masses

PACS: 11.30.Rd; 11.10.Wx; 12.39.Fe; 21.10.Hw

1. Introduction

We analyze the genuine finite density and thermal in-medium effects on QCD-like
effective theories coupled with the Polyakov-loop potentials for light and strange quark
flavors, the quark-hadron phase structure of QCD matter from SU(4) [1,2], thermodynamics
and magnetization [3], chiral phase structure and meson masses in finite magnetic field [4],
and the in-medium modification of sixteen mesonic states [5]. We introduce the isospin
chemical potential to the Polyakov linear-sigma model and present a genuine estimation
of the isospin sigma field as well as the third generator of the matrix of the explicit sym-
metry breaking. Due to the spontaneous symmetry breaking in this QCD-like effective
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nonperturbative approach, the mean value of the Polyakov fields Φ, 〈Φ〉, and 〈Φ†〉 could
be related to the quantum numbers of the vacuum [6]. Thereby, we find that the expectation
values of π̄a vanish, while those of the quark condensates σ̄a are finite, so that the diagonal
generators U(3) correspond to the expectation values σ̄0 6= σ̄3 6= σ̄8 6= 0 . In this regard, we
emphasize that finite µI likely forms a Bose–Einstein Condensate (BEC) phase, especially
at the chemical potential aceeding the pion mass, µc ∼ mπ . In the SU(2) formulation,
the solution for the minimum of the free energy is achieved for a nonzero value of the
pion field, i.e., finite pions condense. In the SU(3) formulation, the same is also likely for
kaons. There is abundant evidence and results about the phase of both condensations
in the lattice QCD simulations and also in the theoretical models [7–14]. As the present
analysis only remains below BEC, we did not calculate BEC, although some of the relevant
features concerning finite muI would also happen in the BEC phase. Such an analysis shall
be carried out elsewhere.

In SU(3), the finite diagonal components of the matrix H = Ta ha, where Ta = λ̂a/2
and a ∈ {0, 1, · · · , 8} are nine U(3) generators, namely, h0, h3, h8, lead to finite quark con-
densates σ̄0, σ̄3 and σ̄8 corresponding to the three quark flavors. These are the expectation
values. Thereby, the masses of the three quark flavors are no longer degenerate, namely,
mu 6= md 6= ms. From the orthogonal basis transformation of the original basis, σ0, σ3,
and σ8 to pure up (σu), down (σd), and strange (σs) quark flavor basis, the light and strange
quark condensates, respectively, could be converted asσ̄u

σ̄d
σ̄s

 =
1√
3


√

2 1 1√
2 −1 1

1 0 −
√

2

σ̄0
σ̄3
σ̄8

. (1)

In this regard, we emphasize that the strange quark chemical potential is determined
under the condition of the vanishing strange quantum number, i.e., equal strange and
anti-strange number densities [15–18]. The corresponding masses are given as mu = gσu/2,
md = gσd/2, and ms = gσs/

√
2, where g is the Yukawa coupling constant. For non-

vanishing σ̄3, i.e., σu = σl + σ3 and σd = σl − σ3, the effects of finite isospin asymmetry on
the u- and d-quark condensates can be studied. This allows one to estimate the pure mesonic
potential of N f quark flavors, Equation (9), in thermal and dense medium. The derivation
of h3, the third generator of the matrix of the explicit symmetry breaking H = Ta ha, and the
isospin sigma field σ̄3, are introduced in references [19,20]. This is the theoretical framework
for the thermal and dense dependence of both quantities, h3 and σ̄3.

At nonzero µI , T, µS, µB, a chiral perturbation theory framework with quite compelling
results compared to lattice simulations has been reported [7–14]. The Polyakov linear-
sigma model (PLSM) as a QCD-like approach is well developed [21–30]. The author
contributed extensive studies of the higher-order moments [31,32], the QCD matter at finite
magnetic field [33–35], the chiral QCD phase transition [36], the bulk and shear viscosity
properties [37], the conductivity properties [38], the chiral magnetic properties [39,40],
the chiral phase structure of the sixteen meson states [41], and a comparison between
mean-field approximation and optimized perturbation theory [42]. The present script aims
at analyzing

• How to properly include finite isospin asymmetry in the QCD-like effective model,
PLSM;

• The thermodynamics and QCD phase structure in PLSM; and
• The in-medium modifications of the pseudoscalars (Jpc = 0−+), scalars (Jpc = 0++),

vectors (Jpc = 1−−), and axial-vectors (Jpc = 1++) meson states.

The present script is organized as follows. The formalism is introduced in Section 2.
In Section 2.1, we first review the QCD-like effective model, as well as the SU(3) Polyakov
linear-sigma model (PLSM) , at vanishing h3. The generalization to finite isospin asymmetry
is discussed in Section 2.2. In Section 2.3, the in-medium modifications of pseudoscalars,
scalars, vectors, and axial-vectors meson states are derived. In Section 3, the results are
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discussed. The results of thermodynamics and chiral phase transition are introduced in
Section 3.1. In Section 3.2, the in-medium modifications of a0, σ, η′, π, f0, κ, η, K, ρ, ω, κ∗,
φ, a1, f1, K∗, and f ∗1 meson states in thermal and dense medium are presented. Section 4 is
devoted to the conclusions.

2. Formalism
2.1. PLSM with Finite Chemical Potentials and Vanishing Isospin Asymmetry

The Lagrangian of the linear-sigma model (LSM) with N f quark flavors and the
Polyakov-loop potential can be summarized as LPLSM = Lψ + Lm −U (φ, φ̄, T), where Lψ

represents the quark (fermion) part, Lm stands for the meson (boson) part, and U (φ, φ̄, T)
is the Polyakov-loop contribution to the PLSM potential.

The contributions of the quarks (fermions) to the PLSM potential can be expressed as

Lψ = ∑
f

ψ f (iγ
µDµ − g Ta(σa + iγ5πa))ψ f , (2)

where ψ are the Dirac spinor fields; f = [u, d, s] are the quark flavors; and Dµ, µ, γµ

represent the covariant derivative, Lorentz index, and chiral spinors. The contributions of
the mesons (bosons) to the PLSM potential are given as

Lm = Tr(∂νΦ†∂νΦ−m2Φ†Φ)− λ1 [Tr (Φ†Φ)]2 − λ2 Tr(Φ†Φ)2

+ c[Det(Φ) + Det(Φ†)] + Tr[H(Φ + Φ†)], (3)

where Φ is the nonet meson (3× 3)-matrix,

Φ̄ =

N2
f−1

∑
a=0

Ta(σ̄a + iπ̄a). (4)

and Ta = λ̂a/2 is a generator operator in U(3) algebra. Ta can be determined from the
Gell–Mann matrices λ̂a [43].

Before we outline the third type of contribution to the PLSM potential, a few remarks
are in order. In LSM, there are different parameters to be fixed, m2, hl , hs, λ1, λ2, and c,
depending on the sigma meson mass mσ [44]. Table 1 summarizes the values of these
parameters used in the present calculations, at mσ = 800 MeV [44]. The definitions of ha
are given in Equations (21)–(23).

Table 1. The LSM parameters which are fixed at mσ = 800 MeV and h3 = 0 [44].

mσ [MeV] c [MeV] hud [MeV3] h3 [MeV3] hs [MeV3] m2 [MeV2] λ1 λ2

800 4807.84 (120.73)3 0 (336.41)3 −(306.26)2 13.49 46.48

The third type of contribution to the PLSM Lagrangian is from the Polyakov-loop
potentials, the gluonic degrees of freedom responsible for the dynamics of the quark-
gluon interactions, U (φ, φ̄, T). There is no pure theoretical prediction of the Polyakov-loop
potentials. These potentials are rather suggested from the QCD symmetries in pure-gauge
theory [22,23,28,45,46]. From the strong coupling simulations including the higher-order
Polyakov-loop variables,

UFuku(φ, φ̄, T) = −b T
[
54 φ φ̄ exp(−a/T) + ln(1− 6φφ̄− 3(φφ̄)2 + 4(φ3 + φ̄3))

]
, (5)

has been suggested in Ref. [22]. The thermal expectation value of the color traced Wilson
loop, the Polyakov-loop variable, is then given as



Universe 2023, 9, 276 4 of 16

φ = (Trc P)/Nc, φ̄ = (Trc P†)/Nc, (6)

where P represents the Polyakov loops.
Now, we formulate the PLSM grand-canonical potential in either mean-field approx-

imation [31] or optimized perturbation theory [42]. From here onward, the expectation
values of the σ-fields shall be written unbarred.

Ω(T, µ f ) =
−T · ln [Z ]

V
= Ωψ̄ψ(T, µ f ) + U(σu, σd, σs) + UFuku(φ, φ̄, T), (7)

where µ f is the chemical potentials of the three quark flavors. µ f counts for all types of
chemical potentials and therefore plays a crucial role in the present study. It should be
emphasized that U(σu, σd, σs) also depends on both T and µ f through the quark conden-
sations. For the sake on completeness, it is worth mentioning that the analytic form of
the partition function, Equation (7), is indeed justified. Since the result resembles the free
fermion gas, at least, without the Polyakov corrections, the perturbation theory in the QCD
coupling constant has been assumed.

For the conserved quantum numbers, baryon B, strangeness S, electric charge Q,
and isospin I, the quark chemical potentials are constructed as

µu =
µB
3

+
2µQ

3
+

µI
2

, µd =
µB
3
−

µQ

3
− µI

2
, µs =

µB
3
−

µQ

3
− µS. (8)

This allows one to define the mesonic contributions to the LSM potential U(σu, σd, σs).
By substituting Equation (4) into Equation (3), we obtain

U(σu, σd, σs) =
m2

4

[
σ2

u + σ2
d + 2σ2

s

]
− c

2
√

2
σu σd σs +

λ1

16

(
σ2

u + σ2
d + 2σ2

s

)2

+
λ2

16

(
σ4

u + σ4
d + 4σ4

s

)
− hud

σu + σd
2

− hsσs − h3
σu − σd

2
. (9)

The second line expresses the h3 term contributing to the isospin asymmetry. An estimation
of h3 shall be derived in Section 2.2.

The quark and antiquark contributions are then given as [22,47–49]

Ωψ̄ψ(T, µ f ) = −2 T ∑
f=u,d,s

∫ ∞

0

d3~P
(2π)3 ln

[
1 + nq, f (T, µ f )

]
+ ln

[
1 + nq̄, f (T, µ f )

]
.(10)

where the number density is given as

nq, f (T, µ f ) = 3
(

φ + φ̄e−
E f −µ f

T

)
× e−

E f −µ f
T + e−3

E f −µ f
T , (11)

where E f = (~P2 + m2
f )

1/2, the energy-momentum dispersion relation corresponds to the
quark and antiquark, and m f is the mass of f -th quark flavor . Both nq̄, f (T, µ f ) and
nq, f (T, µ f ) are identical if −µ f is replaced by +µ f and φ, the order parameter of the
Ployakov-loop field, by its conjugate φ̄ or vice versa .

2.2. PLSM with Finite Chemical Potentials and Isospin Asymmetry

In SU(2), the isospin asymmetry is broken at non-vanishing σ̄3 [6]. Moreover σ̄3,
the potential of mesonic contributions in SU(N f ) [50],

U(σ̄) =

(
m2

2
− ha

)
σ̄a − 3Gabcσ̄b σ̄c −

4
3
Fabcd σ̄b σ̄cσ̄d, (12)

also breaks the isospin asymmetry. Both coefficients Gabc and Fabcd are given as [50]
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Gabc =
c
6

[
dabc −

3
2
(d0bcδa0 + da0cδb0 + dab0δc0) +

9
2

d000δa0δb0δc0

]
, (13)

Fabcd =
λ1

4
[δabδcd + δadδcd + δacδbd] +

λ2

8
[dabndncd + dadndnbc + dacndnbd]. (14)

We remark that the meson potential is only included at tree level. On the other hand,
the perturbation in the λ1 couplings is meant to give rise to large contributions. When
limiting the discussion to the non-perturbative regime, i.e., the regime covered by the
non-perturbative lattice QCD simulations, the consistency of this framework is guaranteed.

The symmetry breaking terms, h0, h3, and h8, are to be determined from the mini-
mization of the PLSM potential, Equation (12). On a tree level, we assume ∂U(σ̄)/∂σ̄a = 0.
We remark that h0 and h8 could be determined from the partially conserved axial current
(PCAC) relations. For h3, we recall that the generator operator T̂a = λ̂a/2 in U(3) can be
obtained from the Gell–Mann matrices λ̂a [43],[

T̂a, T̂b
]
= i fabcT̂c,

{
T̂a, T̂b

}
= idabcT̂c, (15)

where fabc and dabc are the standard antisymmetric and symmetric structure constants of
SU(3),

dabc =
1
4

Tr
[{

λ̂a, λ̂b
}

λ̂c
]
, dab0 =

√
2
3

δab. (16)

In the PCAC relation, the decay constant fa is related to the symmetric structure constant
fa = daabσ̄a.

The decay constants of charged and neutral pion mesons ( fπ± = f1, fπ0 = f3) and of
Kaon mesons ( fK± = f4, fK0 = f6) can be summarized as

fπ0 = fπ± =

√
2
3

σ̄0 +
1√
3

σ̄8, (17)

fK± =

√
2
3

σ̄0 +
1
2

σ̄3 −
1

2
√

3
σ̄8, (18)

fK0 =

√
2
3

σ̄0 −
1
2

σ̄3 −
1

2
√

3
σ̄8. (19)

Then, we algebraically deduce the isospin sigma field, σ̄3. This is obtained as the difference
between the decay constants of neutral and charged Kaon mesons,

σ̄3 = fK± − fK0 . (20)

From the recent experimental and lattice simulations of the physical constants [51–53], we
find that fπ± = fπ0 = 92.4 MeV and fK± = 113 MeV, fK0 = 113.453 MeV. Then, for h0
and h8, the following expressions are suggested,

h0 =
1√
6

(
m2

π fπ + 2m2
K fK

)
, h8 =

2√
3

(
m2

π fπ −m2
K fK

)
. (21)

The third generator of the matrix of the explicit symmetry breaking of the matrix
H = Taha, as well as the explicit symmetry breaking term, h3, can then be derived from
∂U(σ̄)/∂σ̄3 = 0,

h3 =

[
m2 +

c√
6

σ̄0 −
c√
3

σ̄8 + λ1

(
σ̄0

2 + σ̄3
2 + σ̄8

2
)

+ λ2

(
σ̄0

2 +
σ̄3

2

2
+

σ̄8
2

2
+
√

2σ̄0σ̄8

)]
σ̄3, (22)

where the square brackets [· · · ] are nothing but the squared mass of the a0 meson [19,20].
Then, with Equation (20)
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h3 = m2
a0
( fK± − fK0) (23)

2.3. PLSM: In-Medium Modifications of Pseudoscalars, Scalars, Vectors, and Axial-Vectors
Meson States

The meson (hadron) states that could be generated in PLSM are related to the degrees
of freedom integrated in. Accordingly, Equation (2) could be generalized as [5],

L f = q̄
[
i∂/− g Ta

(
σa + i γ5 πa + γζVζ

a + γζ γ5 Aζ
a

) ]
q. (24)

Additionally, Equation (3) could be extended to count for the various nonet states, the inter-
actions, and the possible anomalies,

Lm = LSP + LVA + LInt + LU(1)A
, (25)

where LSP stands for scalars (Jpc = 0++) and pseudoscalars (Jpc = 0−+), while LAV
represents vectors (Jpc = 1−−) and axial-vectors (Jpc = 1++) meson states. LInt represents
the interactions, from which an anomalous term emerges, LU(1)A

,

LSP = Tr
[
(DµΦ)† (DµΦ)−m2Φ†Φ

]
− λ1[Tr(Φ†Φ)]2 − λ2Tr(Φ†Φ)2

+ Tr[H(Φ + Φ†)], (26)

LAV = −1
4

Tr(L2
µν + R2

µν) + Tr

[(
m2

1
2

+ ∆

)
(L2

µ + R2
µ)

]
+ i

g2

2
(Tr{Lµν[Lµ, Lν]}+ Tr{Rµν[Rµ, Rν]})

+ g3[Tr(LµLνLµLν) + Tr(RµRνRµRν)] + g4[Tr
(

LµLµLνLν
)
+ Tr

(
RµRµRνRν

)
]

+ g5 Tr
(

LµLµ
)

Tr(RνRν) + g6[Tr(LµLµ) Tr(LνLν) + Tr(RµRµ) Tr(RνRν)], (27)

LInt =
h1

2
Tr(Φ†Φ)Tr(L2

µ + R2
µ) + h2 Tr[|LµΦ|2 + |ΦRµ|2] + 2h3 Tr(LµΦRµΦ†), (28)

LU(1)A
= c[Det(Φ) + Det(Φ†)] + c0[Det(Φ)−Det(Φ†)]2 + c1[Det(Φ)

+ Det(Φ†)]Tr[ΦΦ†]. (29)

The scalars σa, i.e., JPC = 0++; pseudoscalars πa, i.e., JPC = 0−+; vectors Vµ
a , i.e.,

JPC = 1−−; and axial-vectors Aµ
a , i.e., JPC = 1++ can be deduced from

Φ =

N2
f−1

∑
a=0

Ta(σa + iπa), Lµ =

N2
f−1

∑
a=0

Ta (V
µ
a + Aµ

a ), Rµ =

N2
f−1

∑
a=0

Ta (V
µ
a − Aµ

a ). (30)

For chiral symmetry breaking in U(3)L ×U(3)R = U(3)V ×U(3)A

H =
8

∑
a=0

Taha, ∆ =
8

∑
a=0

Taδa. (31)

The explicit symmetry breaking stems from

• The finite quark masses in the (pseudo)-scalar and (axial)-vector sectors,
• Breaking U(3)A if H0, ∆0 6= 0, and
• Breaking U(3)V → SU(2)V ×U(1)V if H8, ∆8 6= 0.

The covariant derivative, DµΦ = ∂µΦ − i g1(LµΦ − ΦRµ), can be associated with
the degrees of freedom of (pseudo-)scalar and (axial-)vector. For simplicity, the isospin
asymmetry is neglected. Then, the special choice of ha as h0 6= 0, h3 = 0, and h8 6= 0, as
well as of δa as δ0 6= 0, δ3 = 0, and δ8 6= 0, leads to
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Ta σa =


1√
2

a0
0 +

1√
6

σ8 +
1√
3

σ0 a−0 κ−

a+0 − 1√
2

a0
0 +

1√
6

σ8 +
1√
3

σ0 κ̄0

κ+ κ0 −
√

2
3 σ8 +

1√
3

σ0

, (32)

Ta πa =


1√
2

π0 + 1√
6

π8 +
1√
3

π0 π− K−

π+ − 1√
2

π0 + 1√
6

π8 +
1√
3

π0 K̄0

K+ K0 −
√

2
3 π8 +

1√
3

π0

, (33)

Ta Vµ
a =


ω0+ρ0
√

2
ρ+ K?+

ρ− ω0−ρ0
√

2
K?0

K?− K̄?0 ω8


µ

, (34)

Ta Aµ
a =


f10+a0

1√
2

a+1 K+
1

a−1
f10−a0

1√
2

K0
1

K−1 K̄0
1 f18


µ

. (35)

The right hand side of each of these expressions is to multiplied by 1√
2

. As we are limiting
the current calculations to the non-perturbative regime, the perturbative contributions to
the thermal dependence of meson masses can be discussed elsewhere.

The second derivative of the equation of motion with respect to a specific hadron
field determines the mass of that hadron state. We assume that the equation of motion
is encoded in the generalized free energy Ω(T, µ f , ζ) = −T lnZ/V, which apparently
encodes details about that hadron state, whose meson field is represented by ζ. Ω(T, µ f , ζ)
is the generalization of Equation (7). For vanishing quark-antiquark potential contributions
to the vacuum Lagrangian, the meson potential, from which the mass matrix is deduced, is
expressed as

mi,ab =
∂2Ω(T, µ f , ζ)

∂ζi,a∂ζi,b
. (36)

where i represents the (pseudo)scalar and (axial)vector meson states and a, b ∈ {0, 1, · · · , 8}.
Equation (36) counts for:

• The vacuum contributions, i.e., the meson masses are related to the strange σs and
nonstrange σl sigma fields (the finite isospin asymmetry σl is then replaced by the
distinguishable σu and σd) and

• The in-medium modifications of the meson masses are given as

m2
i,ab = νc ∑

f=l,s

∫ d3 p
(2π)3

1
2Eq, f

[(
nq, f + nq̄, f

)(
m2

f ,ab −
m2

f ,am2
f ,b

2E2
q, f

)

−
(

bq, f + bq̄, f

)(m2
f ,am2

f ,b

2Eq, f T

)]
, (37)

from which the quark mass derivative with respect to the meson fields, m2
f ,a ≡ ∂m2

f /∂ζi,a,

and the derivative with respect to the meson fields, m2
f ,ab ≡ ∂m2

f /∂ζi,a∂ζi,b, are
listed in Table 1 in Ref. [5]. Then, the antiquark function bq̄, f (T, µ f ) = bq, f (T,−µ f ),
and bq, f (T, µ f ) = nq, f (T, µ f )(1− nq, f (T, µ f )). The parameter νc = 2Nc counts for the
color degrees of freedom. The in-medium meson mass modifications can be deter-
mined from the quark-antiquark contributions to the potential, Equation (10), and the
diagonalization of the resulting quark mass matrix [54],
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m2
i,ab = νc ∑

f=l,s

∫ d3 p
(2π)3

1
2Eq, f

[
(Nq, f + Nq̄, f )

(
m2

f ,ab −
m2

f ,am2
f ,b

2E2
q, f

)

+ (Bq, f + Bq̄, f )

(
m2

f ,am2
f ,b

2Eq, f T

)]
, (38)

where

Nq, f =
Φe− Eq, f /T + 2Φ∗e−2 Eq, f /T + e−3 Eq, f /T

1 + 3(φ + φ∗e−Eq, f /T)e−Eq, f /T + e−3Eq̄, f /T , (39)

Nq̄, f =
Φ∗e−Eq̄, f /T + 2Φe−2Eq̄, f /T + e−3Eq̄, f /T

1 + 3(φ∗ + φe−Eq̄, f /T)e−Eq̄, f /T + e−3Eq̄, f /T , (40)

Cq, f =
Φe− Eq, f /T + 4Φ∗e−2 Eq, f /T + 3e−3 Eq, f /T

1 + 3(φ + φ∗e−Eq, f /T) e−Eq, f /T + e−3Eq̄, f /T , (41)

Cq̄, f =
Φ∗e−Eq̄, f /T + 4Φe−2Eq̄, f /T + 3e−3Eq̄, f /T

1 + 3(φ∗ + φe−Eq̄, f /T) e−Eq̄, f /T + e−3Eq̄, f /T . (42)

As defined in Ref. [54], Bq, f = 3(Nq, f )
2−Cq, f represents quarks and Bq̄, f = 3(Nq̄, f )

2−
Cq̄, f represents antiquarks.

3. Results
3.1. PLSM: Thermodynamics and QCD Phase Structure at Finite Isospin Asymmetry

Equation (7) expresses the grand canonical potential of PLSM in either mean-field
approximation [31] or optimized perturbation theory [42], from which the various physical
quantities can be derived. Thereby, the QCD thermodynamics and phase structure can be
analyzed in thermal and dense medium. To this end, the thermal and dense dependence of
the chiral quark condensations is conjectured to play an essential role. The left-hand panel
of Figure 1 depicts the thermal dependence of the normalized chiral quark condensates.
The dependence of the normalized chiral quark condensates on the isospon chemical
potential, µI , is presented in the right-hand panel. The legends are applied to all panels.
At vanishing µI , both σu/σ0

u and σd/σ0
d are apparently identical (solid curve). This is no

longer the case at the finite µI middle and bottom panels, where the consequences of the
finite isospin parameters, σ3 and h3, are switched on. With increasing µI , the difference
between both curves likely increases, especially as the temperature approaches the region
of the phase transition. σs/σ0

s is not affected by µI .
The dependence of normalized chiral quark condensates on the isospin chemical po-

tential looks qualitatively similar to the thermal dependence (left-hand panel). The increase
in the isospin chemical potential is accompanied by a decrease in the normalized chiral
quark condensates. This finding does not necessarily describe a linear and/or uniform
dependence. In the hadronic phase, at T = 100 MeV, we find that σu/σ0

u and σs/σ0
s are

almost not affected. Only at large µI , the µI-impacts are set . σd/σ0
d seems to be affected,

earlier, namely, at lower values of µI . It is noteworthy to highlight that even σs/σ0
s seems

to respond to finite µI . Its response, a decrease with an increase in µI , emerges, at large µI .
We also find that the response of σd/σ0

d appears much earlier than that of σu/σ0
u . From this

phenomenological observation, we draw the conclusion that

• To each of the normalized chiral quark condensates, one could assign a critical isospin
chemical potential so that

µ
(c)
I

∣∣∣
u
< µ

(c)
I

∣∣∣
d
< µ

(c)
I

∣∣∣
s
, (43)

and this is also valid in both the hadronic and partonic phases, as well as in the region
of the phase transition, and
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• The increasing temperature allows the phase transition related to the increasing isospin
chemical potential to take place earlier and

T(c)
χ

∣∣∣
u
< T(c)

χ

∣∣∣
d
< T(c)

χ

∣∣∣
s
. (44)
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Figure 1. The dependence of the normalized chiral quark condensates on temperatures (left-hand
panel) are compared with their dependence on the isospin chemical potentials (right-hand panel).
The left-top panels show the results, at vanishing isospin chemical potential. The left-middle and
left-bottom panels depict the results, at muI = 50 and 100 MeV, respectively. The right panels show
the dependence on muI , at T = 100 MeV (right-top), T = 150 MeV (right-middle), and T = 180 MeV
(right-bottom).

For the thermodynamic quantities, we start with the PLSM thermodynamic po-
tential Ω(T, µ f ), Equation (7). For example, the thermodynamic pressure is given as
p(T, µ f ) = −Ω(T, µ f ). The left-hand panel of Figure 2 presents the PLSM calculations of
the thermodynamic pressure as a function of the temperature T normalized to Tχ, the criti-
cal temperature, at vanishing isospin chemical potential. In this regard, we recall that at
least two approaches are utilized in determining the chiral critical temperatures. The first
one is the intersection point of the light quark and gluon condensates. The second one is the
peak of the particle susceptibility. For more details, references [19,39,42] are recommended
to interested readers.
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Figure 2. (a) Left-hand panel: the thermal dependence of the PLSM thermodynamic pressure
compared with recent lattice simulations [55], at vanishing isospin chemical potential. (b) Right-hand
panel compares the PLSM results at vanishing and finite isospin chemical potential.
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The PLSM calculations at vanishing µI are compared with the recent lattice QCD
simulations [55]. The right-hand panel depicts the same but at different isospin chemical
potentials. We conclude that

• PLSM pressure agrees well with the lattice QCD results in both the hadronic and
partonic phases,

• Both types of the phase transition in PLSM and lattice QCD are apparently identical
and rapid crossover, and

• PLSM and lattice QCD seem to have comparable critical temperatures characterizing
the hadron-quark phase transition.

In this regard, we recall that the PLSM critical temperature seems to be averaged from
the various types of chiral quark condensations, σf , and the Polyakov-loop variables, Φ
and Φ̄. The right-hand panel of Figure 2 compares the PLSM results at µI = 0 MeV (slid
curve), µI = 50 MeV (dotted curve), and µI = 100 MeV (dash-double-dotted curve). Al-
though fixed temperatures are assumed, the increase in the isospin chemical potential seems
to derive the colorless hadron system through crossover into the colored parton system.

3.2. In-Medium Modifications of a0, σ, η′, π, f0, κ, η, K, ρ, ω, κ∗, φ, a1, f1, K∗, and f ∗1
Meson States

The top panels of Figure 3 present the PLSM results on the thermal modifications of
the scalar states a0 (dashed curve) and σ (dotted curve) and the pseudoscalar states η′ (solid
curve) and π (dashed-dotted curve). The middle panels depict the same but for the scalars
f0 (horizontal dashed curve) and κ (vertical dashed curve) and the pseudoscalars η (dotted
curve) and K (solid curve). The bottom panels present the thermal dependence of the
vector mesons ρ and ω (solid curve), κ∗ (long-dotted curve), and φ (dotted curve) and the
axial-vector mesons a1 = f1 (dashed-dotted curve), K∗ (dotted curve), and f ∗1 (short dashed-
dotted curve). The results at µB = 0 MeV are depicted in the left-hand panel, while those at
µB = 300 MeV are depicted in the right panel . We observe no general tendency. However,
in the partonic phase, i.e., at temperatures higher than the critical temperatures, we find
that almost all masses increase with increasing temperature. The dense medium (right-
hand panels) enhances the increase in the meson mass. We conclude that the temperature
evolution of the various meson states, at high temperatures, forms a universal curve. In the
hadronic phase, i.e., at temperatures below the critical values, we find that some meson
masses remain constant, some decrease, and others seem to increase with the temperature.
The dense medium largely contributes to this non-monotonic dependence. It is noteworthy
to highlight that in the region of the phase transition, whose range of temperatures varies
with the meson species, there is a prompt change in the meson masses.

Figure 4 presents the same mesons states as in Figure 3, a0, σ, η′, π, f0, κ, η, K, ρ, ω, κ∗,
φ, a1, f1, K∗, and f ∗1 , but here in dense medium, at fixed temperatures. The dependence
on the baryon chemical potential is presented, at T = 10 MeV in the left-hand panel
and at T = 200 MeV in the right-hand panel. Additionally, here we notice that the
in-medium modifications of the meson masses vary with the meson species. At low
densities, almost all meson masses slightly change with the increase in the baryon chemical
potential. At large densities, there is a global tendency that the meson masses raise with
the increase in the baryon chemical potential. We also observe that the density, i.e., the
baryon chemical potential, seems to play almost the same role as that of the temperature,
namely, deriving the colorless meson states through a region of phase transition, whose
width varies with the meson species, into the colored partonic phase. Within the region
of the phase transition, there is a prompt change in the meson masses. Of course, this
phenomenon is especially apparent at low temperatures, i.e., in the bounded colorless
meson states. At T = 200 MeV, the meson states are likely dissolved into the colored
partonic phase, and therefore the increase in the masses is no longer depending on the
meson species. We also find that the various mesons states seem to form a universal bundle,
at large densities.
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Figure 3. The in-medium medications of a0, σ, η′, π (top panels); f0, κ, η, K (middle panels); and
ρ, ω, κ∗, φ, a1, f1, K∗, and f ∗1 meson masses. The left-hand panel depicts the in-medium thermal
modifications of the meson masses, at µB = 0 MeV. The left-hand panel presents the same but at
µB = 300 MeV.
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Figure 4. The same mesons states as in Figure 3, but here they are dependent on the baryon chemical
potential, at T = 10 MeV (left-hand panel) and T = 200 MeV (right-hand panel).

3.3. QCD Phase Diagram at Finite Isospin Asymmetry

We find that the isospin asymmetry enhances the PLSM thermodynamic quantities,
such as the pressure, especially at high temperatures. This observation can be analyzed
by studying the dependence of the PLSM critical temperatures on the isospin chemical
potential. Figure 5 depicts the T − µI phase diagram. The PLSM results are compared
with the recent lattice QCD simulations [56–58]. It is apparent that the PLSM results
agree well with the lattice QCD simulations. We also find that similar to T − µB phase
diagram, the PLSM critical temperature decreases with the increase in the isospin chemical
potential. For a reliable comparison, both temperature and isospin chemical potential
are normalized to the corresponding critical temperature and pion mass, respectively.



Universe 2023, 9, 276 13 of 16

For lattice QCD [56,57]: mπ = 400.0 MeV and TµI=0
χ = 164 MeV. For PLSM: mπ = 138 MeV

and TµI=0
χ = 210 MeV. When comparing Figure 5 with the QCD phase structure in (T− µB)-

plane reported in references [3,31,39,41], an excellent similarity, at least qualitative, could
be concluded.
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T
/T
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µI/ mπ
 

Phys. Rev. D  97, 054514 (2018)
     Phys. Rev. D 85, 094512 (2012)

PLSM

Figure 5. The QCD phase diagram of critical temperature and finite isospin chemical potential,
at vanishing baryon chemical potential. The PLSM results (solid curves) are compared with the recent
lattice QCD calculations (symbols) [56,57].

4. Conclusions

In studying QCD phase structure, thermodynamics and in-medium modifications of
the masses of a0, σ, η′, π, f0, κ, η, K, ρ, ω, κ∗, φ, a1, f1, K∗, and f ∗1 meson states, we utilized
the Ployakov linear-sigma model with three quark flavors. The medium is QCD matter
characterized by finite temperatures, baryon chemical potentials, and isospin chemical
potentials. The finite isospin asymmetry causes the emergence of nonvanishing diagonal
generators, namely, σ0 6= σ3 6= σ8 6= 0 of the mean sigma-fields σ̄a, where a ∈ {0, 1, · · · , 8}.
This means that the SU(2) isospin asymmetry is broken through σ3, i.e., σu = σl + σ3
and σd = σl − σ3 [50,59,60]. The inclusion of interactions in the PLSM approach causes
the emergence of the U(1)A anomaly. From the thermal and dense dependence of the
chiral quark condensates σu, σd, and σs, the QCD phase structure could be characterized.
These quantities are to be estimated by minimizing the thermodynamic potential, Ω(T, µ f ),
Equation (7). The excellent agreement between the present PLSM thermodynamics and
recent lattice QCD simulations, at finite isospin chemical potential, promotes the conclusion
that PLSM helps in obtaining a clear picture of the finite baryon-density QCD, at least
qualitatively. We conclude that the dependence of the critical temperatures on the isospin
chemical potentials, the phase diagram of finite-isospin-QCD, looks very similar to the
dependence of the critical temperatures on the baryon chemical potentials, the phase
diagram of finite-baryon-dense-QCD.

From the QCD thermodynamics, we conclude that PLSM thermodynamic quantities,
for example, the pressure, agree with the lattice QCD simulations over the entire range
of temperature combining both the hadronic and partonic phases. We also conclude that
the type of the phase transition in the PLSM and lattice QCD simulations is similar, rapid
crossover . In this regard, we find that PLSM and lattice QCD have comparable critical
temperatures characterizing the hadron-quark phase transition.

From the in-medium modifications of the masses of a0, σ, η′, π, f0, κ, η, K, ρ, ω, κ∗,
φ, a1, f1, K∗, and f ∗1 meson states, we conclude that the thermal and dense dependence
of the meson masses is nonmonotonic. We find that, at large temperatures and chemical
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potentials, the confined meson states likely dissolve into deconfined parton matter so that
the various meson masses form a universal bundle combining most of the meson states.
We also conclude that the increase in the chemical potential derives the colorless confined
meson states into colored deconfined parton matter. Within the temperatures or chemical
potentials range of phase transition, the change in the meson masses is large.
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