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Abstract: We consider the central configurations of the 1 + N-body problem, where N bodies are
infinitesimal and the remaining one body is dominant. For regular polygon central configurations,
we prove that the masses of all the infinitesimal bodies are equal when N is odd and the masses of the
alternate infinitesimal bodies must be equal when N is even. Moreover, in the case of N being even,
we present the relationship of the mass parameters between two consecutive infinitesimal bodies.
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1. Introduction

The N-body problem is related with the motions of N bodies moving under mutual
gravitational attractions and is one of the basic problems in celestial mechanics. Practically,
N-body problems can be described by ordinary differential equations [1] as follows:

mk q̈k =
∂U(q)

∂qk
= ∑

j 6=k

Gmkmj(qj − qk)∣∣qj − qk
∣∣3 , k = 1, 2, · · · , N,

where qk = (xk, yk, zk) ∈ R3 is the position of the kth body with mass mk > 0 and U(q) is
the Newtonian potential function

U(q) = ∑
1≤k<j≤N

Gmkmj∣∣qj − qk
∣∣ , q = (q1, q2, · · · , qN) ∈ R3N .

However, for N ≥ 3, this system is very complex and difficult TO SOLVE and there
ARE no general solutions; so, people try to search for particular solutions. Central config-
urations of the N-body problem is one of the most classical topics in celestial mechanics.
Central configurations [2] allow us to construct exact solutions for the N-body problem.
Collapse orbits and parabolic orbits have relations with the central configurations, and cen-
tral configurations also have other interesting properties; so, finding central configurations
is very important. Central configurations are configurations such that the total Newtonian
acceleration of every body is equal to a constant multiplied by the position vector of this
body with respect to the center of mass of the configurations.

Definition 1. A configuration q = (q1, q2, · · · , qN) ∈ X is called a central configuration if q
satisfies the following equations:

N

∑
j=1,j 6=k

mj(qj − qk)

|qj − qk|3
+ ω(qk − c) = 0, k = 1, 2, · · · , N,

Universe 2023, 9, 254. https://doi.org/10.3390/universe9060254 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9060254
https://doi.org/10.3390/universe9060254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-8728-0863
https://doi.org/10.3390/universe9060254
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe9060254?type=check_update&version=2


Universe 2023, 9, 254 2 of 11

where ω is some positive constant and assuming the gravitational constant G = 1.
X = {(q1, q2, · · · , qN) ∈ R3N |qi 6= qj, i 6= j} is called the configuration space and c is the

center of mass, which can be fixed at the origin in the inertial coordinate system.

In this work, we concentrate our interest on the central configurations of the planar
restricted 1 + N-body problem (N ≥ 3), where one body is dominant and the other N
bodies are infinitesimal, on a plane. Maxwell, J.C. [3] first proposed this problem when he
studied Saturn’s rings.

In 1994, Casasayas, J. et al. [4] gave a new derivation of the equations for the central
configuration of the 1 + N body problem. In the case of equal masses, they showed that
for a large enough N there exists only one solution. Their lower bound for N improves by
several orders of magnitude the one previously found by Hall. In the same year, Moeckel,
R. [5] provided a criterion for the linear stability of relative equilibria of the 1 + N-body
problem with N small but not necessarily equal masses. Moreover, he presented several
stable periodic orbits of this problem. In 2004, Renner, S. and Sicardy, B. [6] obtained results
about the inverse problem—that is, given a configuration, finding the mass parameters
and making it a central configuration. They also studied the linear stability and suggested
that the presence of co-orbital satellites might explain, at least partly, the confinement of
Neptune’s ring arcs. Cors, J. et al. [7] analytically found all the central configurations of
the 1 + N-body problem if the infinitesimal bodies have equal mass when 2 ≤ N ≤ 4.
Numerically, they provided evidence that when N ≥ 9 the only central configuration is
the regular N-gon with the large mass in its barycenter; they also provided evidence of
the existence of an axis of symmetry for every central configuration. In 2009, Albouy, A.
and Fu, Y. [8] proved that any central configuration of the 1 + 4 body problem must be
symmetric if the four infinitesimal bodies have equal masses. They also proved rigorously
that there are only three such central configurations. In 2011, Corbera, M. et al. [9]
considered the 1 + 3-body problem and found two different classes exhibiting symmetric
and nonsymmetric configurations. Further, when two infinitesimal masses are equal,
they provided evidence that the number of central configurations varies from five to
seven. In 2013, Oliveira, A. [10] showed that, for the planar 1 + 4-body problem where the
satellites have different infinitesimal masses and two of them are diametrically opposite,
the configurations are necessarily symmetric and the other satellites have the same mass.
Moreover, he proved that the number of central configurations is, in general, one, two, or
three, and in the special case where diametrically opposite satellites have the same mass,
they proved that the number of central configurations is one or two and gave the exact
value of the ratio of the masses that provides this bifurcation. Xu, X. [11] obtained that
there exist at most two kinds of infinitesimal bodies arranged alternately at the vertices
of a regular N-gon when N is even, and only one set of identical infinitesimal bodies
when N is odd. When N ≥ 14 and N is even, he found that the regular N-gon relative
equilibrium is shown to be linearly stable. When N = 4, in 2019, Deng, C. et al. [12]
considered symmetric central configurations where the symmetry axis does not contain
any infinitesimal mass. Under certain assumptions, they found analytically some central
configurations for suitable positive masses and also obtained some numerical results of
symmetric central configurations where infinitesimal masses are not necessarily equal. In
2020, Chen, J. and Yang, M. [13] provided criteria for the number of central configurations in
the general case, where the masses of the two diametrically opposite satellites are unequal,
and drew the bifurcation diagrams. In 2022, Su, X. and Deng, C. [14] studied the relationship
between the masses of five infinitesimal bodies and the given symmetric configurations.
Under certain assumptions, they found analytically some central configurations for suitable
positive masses. Furthermore, they presented some numerical results for configurations
and derived the positive masses for these infinitesimal bodies such that these configurations
became central configurations.

Next, we will derive the conditional equations for central configuration of the planar
1 + N-body problem by the method that Moeckel, R. [5] used. Suppose that the dominant
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body is located at q0 with mass m0 = 1; the remaining N infinitesimal bodies with positions
qk have masses mk = σµk (k = 1, 2, · · · , N), where µk > 0 and σ > 0 is a small parameter
that tends to zero. Assume again that the center of mass c is at the origin and q =
(q0, q1, · · · , qN) is the limiting configuration of the central configuration sequence q =

(q0, q1, · · · , qN) ∈ R2(N+1) when σ tends to zero; then,

q0 = −σ
N

∑
k=1

µkqk,

so, the limiting position q0 of the dominant body is at the origin when σ tends to zero.
Notice in Definition 1 that by re-scaling a central configuration we will obtain another

one with a different positive constant ω and there is always a re-scaling factor making
ω = 1. So, the central configuration equations of the 1 + N-body system become

N

∑
j=0,j 6=k

mj(qj − qk)

|qj − qk|3
+ qk = 0, k = 0, 1, 2, · · · , N. (1)

If k 6= 0, taking the inner product of Equation (1) with qk gives

|qk|2(1−
1

|qk − q0|3
) = O(σ).

Since qk 6= (0, 0)(k 6= 0) and |qk − q0| = |qk|+ O(σ), it follows that

|qk| = 1 + O(σ), |qk| = 1,

so, in all central configurations of this restricted version, the infinitesimal bodies lie on a
circle centered at the dominant body, which is at the origin. Let qk = (cosϕk, sinϕk), k 6= 0,
where ϕk is the angle defined by the position of qk. Taking the inner product of Equation (1)
with (−sinϕk, cosϕk), dividing by σ, and taking the limit yields

N

∑
j=1,j 6=k

µjsin(ϕj − ϕk)(1−
1
|rkj|3

) = 0, k = 1, 2, · · · , N,

where |rkj| = 2sin| ϕj−ϕk
2 | is the distance between qk and qj.

Take the angles θi (i = 1, 2, · · · , N) between two consecutive infinitesimal bodies as
coordinates, then

θi = ϕi+1 − ϕi (i = 1, 2, · · · , N − 1), θN = 2π −
N−1

∑
i=1

θi.

In these coordinates, the equations characterizing the central configurations of the
restricted 1 + N-body problem are

µ2 f (θ1) + µ3 f (θ1 + θ2) + · · ·+ µN f (θ1 + θ2 + · · ·+ θN−1) = 0,

µ3 f (θ2) + µ4 f (θ2 + θ3) + · · ·+ µ1 f (θ2 + θ3 + · · ·+ θN) = 0,

µ4 f (θ3) + µ5 f (θ3 + θ4) + · · ·+ µ2 f (θ3 + θ4 + · · ·+ θN + θ1) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
µN f (θN−1) + µ1 f (θN−1 + θN) + · · ·+ µN−2 f (θN−1 + θN + · · ·+ θN−3) = 0,

µ1 f (θN) + µ2 f (θN + θ1) + · · ·+ µN−1 f (θN + θ1 + · · ·+ θN−2) = 0,

θ1 + · · ·+ θN = 2π, θi > 0.

(2)

where f (θ) = sin(θ)[1− 1
8 sin3(θ/2)

], 0 < θ < 2π, and f (2π − θ) = − f (θ).
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For the regular polygon central configuration of the restricted 1 + N body problem
(see Figure 1), the angles θi = 2π/N (i = 1, 2, · · · , N) and Equation (2) become

µ2 f (2π/N) + µ3 f (4π/N) + · · ·+ µN f (2(N − 1)π/N) = 0,

µ3 f (2π/N) + µ4 f (4π/N) + · · ·+ µ1 f (2(N − 1)π/N) = 0,

µ4 f (2π/N) + µ5 f (4π/N) + · · ·+ µ2 f (2(N − 1)π/N) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
µN f (2π/N) + µ1 f (4π/N) + · · ·+ µN−2 f (2(N − 1)π/N) = 0,

µ1 f (2π/N) + µ2 f (4π/N) + · · ·+ µN−1 f (2(N − 1)π/N) = 0.

(3)

Figure 1. Configuration of a regular polygon. The blue dots represent the infinitesimal bodies and
red dotted line used in the image represents the co-orbital circle.

For the dynamical system (3), we will prove the following:

(i) When N is odd, the mass parameters of all the infinitesimal bodies must be equal, i.e.,
µ1 = µ2 = · · · = µN ;

(ii) When N is even, the mass parameters of the alternate infinitesimal bodies are equal,
i.e., µ1 = µ3 = · · · = µN−1 and µ2 = µ4 = · · · = µN .

This result was obtained by Xu, X. [11] in 2013. He focused his attention on the
eigenvalues of the coefficient matrix of system (3); however, the proof is a little obscure and
needs calculating software to provide evidence in some places. Here, we will prove the
relevant results of eigenvalues in detail by presenting some propositions, corollaries, and
lemmas. In addition, we will show in detail how these eigenvalues affect the values of the
mass parameters of this system. At the same time, we will give the relationship of the mass
parameters between two consecutive infinitesimal bodies when N is even.

2. Propositions and Corollaries

Definition 2. If an N × N matrix A = (ai,j) satisfies ai,j = ai−1,j−1, 1 ≤ i, j ≤ N, and
ai,0 = ai,N , a0,j = aN,j, then A is called a circulant matrix is [15].

According to the definition above, a circulant matrix

A =


a11 a12 · · · a1N−1 a1N
a1N a11 · · · a1N−2 a1N−1

...
...

...
...

...
a13 a14 · · · a11 a12
a12 a13 · · · a1N a11

.
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Using powers of the fundamental circulant matrix

P =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 1
1 0 · · · 0 0

,

every circulant matrix A can be represented as

A = a11 I + a12P + a13P2 + · · ·+ a1N PN−1 =
N

∑
j=1

a1jPj−1,

where I = P0 = PN is the identity matrix.
The characteristic polynomial of the fundamental circulant matrix P is

|λI − P| =

∣∣∣∣∣∣∣∣∣∣∣

λ −1 0 · · · 0
0 λ −1 · · · 0
0 0 λ · · · 0
...

...
...

...
−1 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣
= λN − 1 = 0,

so, the fundamental circulant matrix P has the eigenvalues

λk(P) = ρk−1, k = 1, 2, · · · , N,

and the corresponding eigenvectors

υk(P) = (ρk−1, ρ2
k−1, · · · , ρN

k−1)
T , k = 1, 2, · · · , N,

where ρk = cos
2kπ

N
+ i sin

2kπ

N
(i =

√
−1) is the kth power of the Nth root of unity.

Proposition 1. The eigenvalues and the corresponding eigenvectors of an N × N circulant matrix
A = (ai,j) are

λk(A) =
N

∑
j=1

a1,jρ
j−1
k−1, υk(A) = (ρk−1, ρ2

k−1, · · · , ρN
k−1)

T , k = 1, 2, · · · , N. (4)

Proof. According to the discussion above, the eigenvalues of A can be obtained by the
eigenvalues of the fundamental circulant matrix P:

λk(A) = a11 + a12λk(P) + a13(λk(P))2 + · · ·+ a1N(λk(P))N−1 =
N

∑
j=1

a1jρ
j−1
k−1.

The eigenvectors of A are exactly the same as the eigenvectors of P.

Proposition 2. The eigenvectors υk = (ρk−1, ρ2
k−1, · · · , ρN

k−1)
T (k = 1, 2, · · · , N) of any N×N

circulant matrix form a basis of CN .

Proposition 3. The jth power of the Nth root of unity ρj (j = 1, 2, · · · , N) satisfy

N

∑
j=1

ρk
j =

N

∑
j=1

ρ
j
k =

{
N, k ≡ 0 mod N,
0, k 6≡ 0 mod N.

(5)
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This proposition suggests the following formula:

N

∑
j=1

cos
2jkπ

N
=

N

∑
j=1

sin
2jkπ

N
= 0 (k 6≡ 0 mod N). (6)

Corollary 1.
N
∑

j=1
sin2 jπ

N
= N/2.

Proof. Because
N
∑

j=1
(sin2 jπ

N
+ cos2 jπ

N
) = N, and by Proposition 3, when k = 1

N
∑

j=1
cos

2jπ
N

=
N
∑

j=1
(cos2 jπ

N
− sin2 jπ

N
) = 0, the corollary holds.

Corollary 2.
N
∑

j=1
sin

2jπ
N

sin
2jkπ

N
= 0 (k = 2, 3, · · · , N − 2, N).

Proof. The left-hand side equals
1
2
[

N
∑

j=1
cos

2j(k− 1)π
N

−
N
∑

j=1
cos

2j(k + 1)π
N

], by Equation (6),

and the two terms of above formula are all zero; thus, the corollary holds.

3. Preliminary

Define a N × N circulant matrix A = (ai,j) as follows:

ai,j =


f (

2(j− i)π
N

) for j > i,

0 for j = i,

f (
2(N − i + j)π

N
) for j < i.

(7)

i.e.,

A =



0 f (
2π

N
) f (

4π

N
) · · · f (

2(N − 1)π
N

)

f (
2(N − 1)π

N
) 0 f (

2π

N
) · · · f (

2(N − 2)π
N

)

...
...

...
. . .

...

f (
4π

N
) f (

6π

N
) f (

8π

N
) · · · f (

2π

N
)

f (
2π

N
) f (

4π

N
) f (

6π

N
) · · · 0


, (8)

now, Equation (3) is equivalent to
Aµ = 0, (9)

where the mass parameters vector µ = (µ1, µ2, · · · , µN)
T is considered to be unknown.

According to Proposition 1, the eigenvalues of A are

λk(A) =
N

∑
j=1

a1,jρ
j−1
k−1 =

N

∑
j=2

f (
2(j− 1)π

N
)ρ

j−1
k−1

=
N−1

∑
j=1

f (
2jπ
N

)ρ
j
k−1 (k = 1, 2, · · · , N).

(10)

Lemma 1. (i) When N is even, the eigenvalues of A are

λk(A) =
N/2−1

∑
j=1

f (
2jπ
N

)(ρ
j
k−1 − ρ

−j
k−1) (k = 1, 2, · · · , N). (11)
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(ii) When N is odd, the eigenvalues of A are

λk(A) =
(N−1)/2

∑
j=1

f (
2jπ
N

)(ρ
j
k−1 − ρ

−j
k−1) (k = 1, 2, · · · , N). (12)

Proof. If N is even, by Equation (10),

λk(A) =
N/2−1

∑
j=1

f (
2jπ
N

)ρ
j
k−1 + f (π)ρN/2

k−1 +
N−1

∑
j=N/2+1

f (
2jπ
N

)ρ
j
k−1,

because f (π) = 0 and f (2π − θ) = − f (θ), the second term vanishes and the third term

N−1

∑
j=N/2+1

f (
2jπ
N

)ρ
j
k−1 =

N/2−1

∑
j=1

f (
2(N − j)π

N
)ρ

N−j
k−1 = −

N/2−1

∑
j=1

f (
2jπ
N

)ρ
−j
k−1,

thus, Formula (11) holds. Similarly, one can prove that Formula (12) also holds when N is
odd.

Actually, regardless of whether N is even or odd, the eigenvalues of A can be expressed
as

λk(A) =
[(N−1)/2]

∑
j=1

f (
2jπ
N

)(ρ
j
k−1 − ρ

−j
k−1) (k = 1, 2, · · · , N), (13)

where [ ] represents the biggest integer that is no greater than the number inside the
symbol.

By Lemma 1, it is easy to draw the following corollaries.

Corollary 3. λ1(A) = 0.

Corollary 4. λk(A) = −λN−k+2(A) (k = 2, 3, · · · , N).

Proof. When k 6= 1, by Formula (13),

λN−k+2(A) =
[(N−1)/2]

∑
j=1

f (
2jπ
N

)(ρ
j
N−k+2−1 − ρ

−j
N−k+2−1)

=
[(N−1)/2]

∑
j=1

f (
2jπ
N

)(ρ
j
N−(k−1) − ρ

−j
N−(k−1))

=
[(N−1)/2]

∑
j=1

f (
2jπ
N

)(ρ
−j
k−1 − ρ

j
k−1) = −λk(A).

Corollary 5. When N is even, λN/2+1(A) = 0.

Proof. By Corollary 4, λN/2+1(A) = −λN−(N/2+1)+2(A) = −λN/2+1(A), which implies
λN/2+1(A) = 0.

Remark 1. These three corollaries mean that we only need to consider the eigenvalues of A for
k = 2, 3, · · · , [(N + 1)/2] in the following content, where [ ] is the same as above.
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Corollary 6.

λk(A) = i
N−1

∑
j=1

f (
2jπ
N

) sin
2j(k− 1)π

N
(i =

√
−1, k = 1, 2, · · · , N). (14)

Proof. The conjugate of λk(A) is denoted by λk(A); then, λk(A) = −λk(A) by For-
mula (13), which means that the real part of λk(A) equals to 0. Recall that

ρ
j
k−1 = cos

2j(k− 1)π
N

+ i sin
2j(k− 1)π

N
,

so, from Formula (10),

λk(A) =
N−1

∑
j=1

f (
2jπ
N

)ρ
j
k−1 =

N−1

∑
j=1

f (
2jπ
N

)(cos
2j(k− 1)π

N
+ i sin

2j(k− 1)π
N

)

= i
N−1

∑
j=1

f (
2jπ
N

) sin
2j(k− 1)π

N
,

and the proof is completed.

This corollary also suggests that

N−1

∑
j=1

f (
2jπ
N

) cos
2j(k− 1)π

N
= 0.

Because f (θ) = sin(θ)[1− 1
8 sin3(θ/2)

],

λk(A) = i
N−1

∑
j=1

sin
2jπ
N

sin
2j(k− 1)π

N
(1− 1

8 sin3(jπ/N)
)

= i
N−1

∑
j=1

(sin
2jπ
N

sin
2j(k− 1)π

N
−

sin
2jπ
N

sin
2j(k− 1)π

N

8 sin3 jπ
N

).

(15)

Let

rk =
N−1

∑
j=1

sin
2jπ
N

sin
2j(k− 1)π

N
−

N−1

∑
j=1

sin
2jπ
N

sin
2j(k− 1)π

N

8 sin3 jπ
N

, (16)

therefore, λk(A) = irk.

Lemma 2. For k = 2, 3, · · · , [(N + 1)/2] (Roberts, G.E. [16]),

N−1

∑
j=1

sin
2jπ
N

sin
2j(k− 1)π

N

8 sin3 jπ
N

> 0. (17)

Lemma 3. N/2− 1
2

N−1
∑

j=1
csc

jπ
N

+
1
2

cot
π

2N
6= 0 (Roberts, G.E. [16]).
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4. Theorems and Proofs

According to the discussion in Section 3, we already know that the equations of regular
polygon central configuration of the restricted 1 + N body problem (3) are equivalent to

Aµ = 0, (18)

where A is defined by (8) and µ = (µ1, µ2, · · · , µN)
T ∈ RN+ is considered to be unknown.

In this section, we will study positive real solutions of the linear Equation (18).

Theorem 1. When N is odd, λk(A) 6= 0 except k = 1; when N is even, λk(A) 6= 0 except k = 1
and k = N/2 + 1.

Proof. (i) From Corollaries 3 and 5, we already obtain that λ1(A) = 0 for every N ≥ 3
and λN/2+1(A) = 0 for even N. Then, by Corollary 4, we just need to study λk(A) for
k = 2, 3, · · · , [(N + 1)/2].

(ii) From the definition of rk, when k = 2, we have that

r2 =
N−1

∑
j=1

sin2 2jπ
N
−

N−1

∑
j=1

sin2 2jπ
N

8 sin3 jπ
N

,

the first term equals to N/2 by Corollary 1 and the second term reduces to

1
2

N−1

∑
j=1

csc
jπ
N
− 1

2

N−1

∑
j=1

sin
jπ
N

, (19)

because
N−1
∑

j=1
sin

jπ
N

= cot
π

2N
; so,

r2 = N/2− 1
2

N−1

∑
j=1

csc
jπ
N

+
1
2

cot
π

2N
,

by Lemma 3, r2 6= 0, i.e., λ2(A) 6= 0.
(iii) For k = 3, 4, · · · , [(N + 1)/2],

rk =
N−1

∑
j=1

sin
2jπ
N

sin
2j(k− 1)π

N
−

N−1

∑
j=1

sin
2jπ
N

sin
2j(k− 1)π

N

8 sin3 jπ
N

,

by Corollary 2, the first term equals to zero, and by Lemma 2, the second term is greater
than zero, which means that rk < 0, i.e., λk(A) 6= 0. Now, the theorem is proven.

Theorem 2. For N ≥ 3, the equations of regular polygon central configuration of the restricted
1 + N body problem (3) or (18) hold if and only if µ1 = µ2 = · · · = µN = c ∈ R+ when N is odd,
and µ1 = µ3 = · · · = µN−1 = c1 − c2 ∈ R+, µ2 = µ4 = · · · = µN = c1 + c2 ∈ R+ when N is
even, where c1 > c2 and c1 + c2 > 0.

Proof. Because f (2π − θ) = − f (θ) and f (π) = 0, it is easy to check that µ1 = µ2 =
· · · = µN ∈ R+ is a solution of (18) for odd N and µ1 = µ3 = · · · = µN−1 ∈ R+,
µ2 = µ4 = · · · = µN ∈ R+ is a solution of (18) for even N by direct substitution.

By Theorem 1, when N is odd, λk(A) 6= 0 except that λ1(A) = 0, which means the
rank of A equals to N − 1; so, the general solution of Equation (18) has the form

µ = cυ1(A) = c(1, 1, · · · , 1)T , ∀ c ∈ C,
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which is in RN+ only if c > 0, i.e., µ1 = µ2 = · · · = µN ∈ R+.

When N is even, λk(A) 6= 0 except that λ1(A) = 0 and λN/2+1(A) = 0—that is, the
rank of A equals to N − 2—so, the general solution of Equation (18) has the form

µ = c1υ1(A) + c2υN/2+1(A) = c1(1, 1, · · · , 1)T + c2(−1, 1, · · · ,−1, 1)T , ∀ c1, c2 ∈ C,

which is in RN+ only if c1 > c2 and c1 + c2 > 0, i.e., µ1 = µ3 = · · · = µN−1 = c1 − c2 and
µ2 = µ4 = · · · = µN = c1 + c2. The proof is completed.

5. Conclusions

Using the properties of the circulant matrix, we analyzed the eigenvalues of the
coefficient matrix of the equations of regular polygon central configuration of the restricted
1 + N body problem (18) and obtained the positive real solutions of this system. The
solutions tell us that for this system, the mass parameters of all the infinitesimal bodies
must be equal when N is odd (see Figure 2, all the blue points are equal) and the mass
parameters of the alternate infinitesimal bodies are equal when N is even (see Figure 3,
alternate blue points need to be equal), these results are a little bit different from the
central configuration of regular polygon with a body located at the center for general N-
body problems [17]. These results also suggest that geometric symmetry implies physical
(mass) symmetry.

Figure 2. Central configuration for odd N. The blue dots represent the infinitesimal bodies and red
dotted line used in the image represents the co-orbital circle.

Figure 3. Central configuration for even N. The blue dots and red dotted line used in the image are
as above.
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Central configurations of the restricted 1 + N-body problem are found in several
instances in the Solar System. Examples are found in the Saturnian system: one satellite
(Helene) librates near the L4 point of Dione; two satellites, Telesto and Calypso, librate near
the L4 and L5 of Tethys, respectively; and the co-orbital satellites, Janus and Epimetheus,
oscillate in horseshoe orbits around their mutual L3 point. The presence of co-orbital
infinitesimal bodies might explain, at least partly, the confinement of Neptune’s ring arcs.
However, central configurations of the restricted 1 + N-body problem do not apply to
stellar systems, at least for the entire Solar System. Does it apply to other stellar systems?
The answer to this question will be left to future astronomical discoveries.
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