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Abstract: We investigate two physical systems within a spacetime region affected by the nontrivial
topology. The set-up for our analysis is a Minkowski metric perturbed by elements reflecting the
topological nontriviality. These elements arise when exploring Cartan’s spinorial approach along
with the exotic spinors counterpart. This evinced nontrivial topology corrections in the free particle
dynamics and charged particles coupled to an external electromagnetic field. As a complement, we
show the appearance of a magnetic monopole-like effect.

Keywords: nontrivial topology; exotic spinors; Poincarè symmetry violation; magnetic monopole-
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1. Introduction

The idea that physically reasonable spacetimes must exhibit the capability of admitting
spinor fields that are globally defined was argued a long time ago [1–3]. Such spacetimes
are said to have a spinor structure [2,4]. However, an important but less-mentioned fact
about spinor structures is that they are not generally unique, in a sense that we shall
formally define in the next section. The topology of the underlying spacetime manifold
dictates this property. When a spacetime is not simply connected, meaning that it is not
path-connected or its fundamental group is not trivial [5], there is no unique way to define
the spinors. Instead, there are inequivalent possibilities, each of which is in a one-to-one
correspondence with a certain cohomology group of spacetime. If the cohomology group
associated with a spacetime is nontrivial, the spinors associated with that spacetime are
said to be exotic. The term “exotic” here does not mean strange or unusual but instead
refers to the fact that these spinors are not equivalent to the standard one defined in simply
connected spacetimes. In this paper, we are interested in some physical implications of the
nontriviality of the spacetime relating to the existence of an exotic structure.

Another way to obtain mathematical and physical intuition about spinors is through a
protocol first introduced by Cartan regarding how spinors are understood as the square root
of the geometry. Cartan’s approach says nothing about nontrivial topologies. Therefore,
merging its view with exotic spinors demands input corrections from nontrivial topology
formalism somewhere. Thus, the background question we may ask, motivating the de-
velopments to be reported here, is the following: What kind of geometry would result
from using square exotic, instead of regular, spinors? By considering the formalism of
spinors in the presence of a nontrivial spacetime topology [6–9], the exotic spinors, along
with Cartan’s viewpoint of spinors [10,11], we were able to evince geometrically, so to
speak, nontrivial topology effects, arriving at a quadratic form taking into account such
effects [12]. The basic idea is to express the differentials in terms of a basis considering a
derivative correction entering into the appreciation of exotic spinors. Then, by understand-
ing the quadratic form as an element of (TM)∗ ⊗ (TM)∗, we can study the implications of
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the additional terms. In [12], after setting the motivations coming from the formalism, a
physical effect was studied in which the nontrivial topology influenced the field modes
as an external source, leading to a quasinormal-like behavior. Recently, with the aid of
a deformed left contraction, it was also possible to glance at spinors’ classification in a
scenario involving a nontrivial topology [13], such as the one presented in [12].

There are potentially numerous physical effects that warrant further exploration in
the scenario of a nontrivial topology. The purpose of this paper is to investigate two such
effects, which have been extensively studied in the standard case of a trivial topology as
documented in various field theory textbooks. The first effect pertains to the dynamics of a
massive point-charged particle, including its coupling with an external electromagnetic
field. While we are interested in setting up the effects on general grounds, several particular
systems may be derived from this analysis. The second effect concerns modifications
in the homogeneous Maxwell equations. The alluded modifications appear as a natural
consequence of implementing nontrivial topology effects into (exterior) derivatives. As a
result, we found additional terms in the standard electromagnetic field strength, arising
then as side effects of introducing a nontrivial topology. Furthermore, we observe the emer-
gence of a magnetic monopole-like effect, which could provide another perspective on the
interplay between a nontrivial topology and electromagnetic interaction. By investigating
these effects, we hope to contribute to understanding the fundamental implications and
importance of considering the topological properties of spacetime.

We organized this paper as follows. The next section is devoted to setting the essential
mathematical background, from exotic spinors to the corrections in the quadratic form,
as introduced in [12]. This was written to give a path to be followed within the algebraic
or topological mathematical formalism. Since it stands for a more formal section, we
start exploring a more physical system presenting an analog idea. Section 3 covers an
investigation into the aforementioned physical systems. The correction in the geodesic
motion of a massive particle with and without an external electromagnetic field is presented.
Even when dealing with more or less familiar cases, we take care of them openly and discuss
all the steps, calling attention to the modifications imputed to the corrected quadratic form.
This section also presents a magnetic monopole-like effect due exclusively to the nontrivial
topology terms. In the last section, we conclude the paper.

2. Mathematical Preliminaries

Before revising the basic steps of formalism, and since we shall go through some
pieces of algebraic topology in a broad brush, let us observe some insightful aspects of
metric correction terms due to a nontrivial topology through the nonlinear sigma model
analogy. The base manifold is the usual Minkowski space R1+3, upon which we consider
a set of N + 1 scalar fields ϕM(x), M = m, N + 1 and m = 1, · · · , N. The fields are
subject to the constraint ∑M ϕM(x)ϕM(x) = 1, which can trivially be solved by ϕN+1 =

±
[
1− ∑m ϕm(x)ϕm(x)

]1/2
. This constraint is sufficient to set the so-called target space

mapping:

R1+3 → SN ∼= SO(N + 1)/SO(N)

xµ 7→ ϕm(x).

The target space has a trivial topology, but the geometrical constraint shall induce
corrections upon a metric given in terms of the fields. Let us start from the free Lagrangian
density (with a sum over all indexes assumed) Lfree = 1

2 ∂µ ϕM(x)∂µ ϕM(x), which is simply
decomposed as

Lfree =
1
2

∂µ ϕm(x)∂µ ϕm(x) +
1
2

∂µ

(
±
√

1− ϕm(x)ϕm(x)
)

∂µ
(
±
√

1− ϕn(x)ϕn(x)
)

. (1)

By rewriting the first term and performing the derivatives, one arrives at
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Lfree =
1
2

(
δmn +

ϕm(x)ϕn(x)
1− ϕk(x)ϕk(x)

)
∂µ ϕm(x)∂µ ϕn(x) ≡ 1

2
gmn(ϕ)∂µ ϕm(x)∂µ ϕn(x) (2)

In addition, a metric correcting the δmn term is reached due to a geometrical constraint.
The parallel we will see is that a region with a nontrivial spacetime topology shall induce a
metric correction very much as in the spirit just shown via this nonlinear sigma model.

More than one spinorial structure arises in a spacetime that is not simply connected [7].
Spinors belonging to a different spinorial structure from the usual one are called exotic
spinors [6,7]. The appropriate steps for connecting exotic spinors to a corrected spacetime
metric were developed and motivated in [12]. Here, we shall pinpoint some steps to a
certain context. Let ∪i∈N∗Ui be a simple covering of the spacetime endowed with a non-
trivial topologyM. Since we are interested in spinorial representations, consider hij to
be functions relating the intersections between the coverings to the Spin(1, 3) group (i.e.,
hij : Ui ∩ Uj ⊂ M → Spin(1, 3)). The different patching in the spacetime (due to the
nontrivial topology) is reflected in the existence of h̃ij, also mapping Ui ∩Uj → Spin(1, 3)
such that h̃ij(x) = hij(x)Cij(x) for x ∈ Ui ∩Uj, where Cij ∈ Z2 ↪−→ Spin(1, 3) are the transi-
tion functions. As the spacetime is not simply connected by the relation between the de
Rham and Čech cohomologies for base differential manifolds [14], the transition functions
represent the cocycle Cij : Ui ∩Uj → Z2. A spinor field onM, ψ, is a section of the frame
bundle PSpin(1,3) ×σ C4, where σ = {(1/2, 0), (0, 1/2), (1/2, 0)⊕ (0, 1/2)}. Conceivably,
P̃Spin(1,3) ×σ C4 3 ψ̃ for the exotic spinors. By denoting with Cl(1, 3) the Clifford algebra
and M(4,C) the set of 4 complex matrices, one can define the linear mapping

ρ : Spin(1, 3) ⊂ Cl(1, 3) → M(4,C)

and functions (assumed to exist for the general properties of Ȟ(M,Z2))

ξi ∈ U(1) : Ui → C. (3)

If x ∈ Ui ∩Uj, then ξi(x) = ρ(Cij)ξ j(x). Since ρ is faithful such that ρ(Cij) = ±1, the
local spinorial sections are connected by

ψi = ρ(hij)ψj, (4)

This is similar for local exotic spinors; that is, ψ̃i = ρ(h̃ij)ψ̃j. Now, from h̃ij(x) =
hij(x)Cij(x), we have ψ̃i = ρ(hij)ρ(Cij)ψ̃j. Notice that ξ j(x) = ρ(Cji)ξi(x) = ρ(Cij)ξi(x),
and by inserting ρ(ξi) in the left and right sides in the above expression of ψ̃, we arrive at

ρ(ξi)ψ̃i = ρ(hij)ρ(ξ j)ψ̃j. (5)

When comparing Equations (4) and (5), we readily obtain ψk = ρ(ξk)ψ̃k in the same
local chart Uk of a simple covering of M. As a matter of fact, ξ2

i = ξ2
j in Ui ∩Uj, and

therefore, there is a global uniquely defined function, say ξ : M → C, such that ξ(x) =
ξ2

i (x). This is the final piece to write for a globally defined relation between the usual and
exotic spinors, given in a straightforward fashion by

ψ = ρ(ξ)ψ̃. (6)

From this last expression, it is possible to compute the dynamics of an exotic spinor
very similar to a covariant derivative in standard gauge theories, requiring that ∂ψ =
ρ(ξ)∇̃ψ̃ (see, for instance, [13]). This reasoning immediately leads to

∇̃ = ∂ + ρ−1(ξ)∇ρ(ξ). (7)
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There are two points to be stressed. First, notice that had we worked a representation
mapping Z2 into the identity, then Equation (6) would present no difference between the
exotic and usual fields. That is why fermionic fields are the only ones with inequivalent
exotic counterparts. Secondly, and more important to our purposes, when acting upon a
spinor, the derivative in Equation (7) shall ultimately operate (with the correction term) in
spinor entries. This last point is particularly relevant when contrasting exotic spinors with
Cartan’s construction.

It is a well-known fact that, via Cartan’s formalism, a given spacetime point P =
(t, x, y, z) may be expressed as

√
2P = (ζζ∗+ ξξ∗, ζξ∗+ ξζ∗, i(ξζ∗− ζξ∗), ζζ∗− ξξ∗), where

ζ and ξ are the spinor entries [3]. This fact is quite remarkable, and we shall explore this
fact along with the formalism of exotic spinors. All the details are discussed in [12], but
some steps may be pinpointed here.

Recall the standard procedure for finding differentials. Denoting with {ei} the basis
of Rn and {dxj} the basis of (Rn)∗, consider a vector field, say h ∈ Rn, upon which
the differential of a smooth function f acts in x0 ∈ Rn (i.e., d f (x0)(h) = ∑i[∂ f /∂xi]x0 hi).
Through the usual linear orthogonal projections πi : Rn → R, such as dπ(h) = dxi(h) = hi,
the differential expression may be written abstractly independent of acting upon h. This is
the crevice we shall explore to incorporate exotic effects. According to Cartan, xµ ∝ (ξξ∗),
leading to dπµ = dxµ ∝ d(ξξ∗)µ = ∂µ(ξξ∗)dxµ = (∂µ(ξ)ξ∗ + ξ∂µ(ξ∗))dxµ, and without
exotic spinor considerations, no effect is felt, since we may rewrite the expression backward.
The situation changes if we consider exotic spinor entries, for which derivatives are shifted
due to the nontrivial topology. Motivated by Equation (7), we shall perform ∂µ 7→ ∂µ + ∂µθ
for θ ∈ R, by means of which (with a simple rescaling in θ) it can be readily verified that
dπµ = dxµ + xµdθ (with dθ = ∂µθdxµ), culminating in

d f (x0) = ∂µ f |x0 dxµ + ∂µ f |x0 xµdθ. (8)

In every step of the above reasoning (and from now on), as long as θ is (or may be
regarded as) constant, the effects of the nontrivial topology are disregarded. Whenever
this is the case, the standard expressions are recovered. The shift dxµ 7→ dxµ + xµdθ is at
the heart of the effects we shall explore in this paper. Upon careful examination, it is now
apparent that the customary spacetime transformations cannot be regarded as universal
symmetries within the current context. This is mainly due to the inclusion of θ terms in the
metric, which fundamentally undermine the notion of inertial frames. We started noticing
that this brings about important consequences when investigating the quadratic form1

η̃ = ηµν(dxµ + xµdθ)⊗ (dxν + xνdθ) (9)

whose action upon the base vectors η̃(eµ, eν) yields

η̃µν = ηµν + xµ∂νθ + xν∂µθ + x2∂µθ∂νθ. (10)

The introduction of the derivative of θ within η̃µν might point toward a curved space-
time rather than a flat one. Although exploring this avenue of investigation appears
promising, we shall defer it to future research, as explicitly indicated in Section 4. We
have argued (see [12,13]) that the θ corrections may be interpreted as follows: a correction
necessary in a certain region, say R̃1+3, with a trivial topology but near enough to the non-
trivial topology region. For this idea, we may think of the nontrivial topology localized in a
finite regionR ⊇ R× (R2 × S1). When we say near enough, we mean that the nontrivial
topology affects physical systems in a given neighborhood V ofR (V ⊃ R) such that the
net effect perturbs the usual case in V\R ' R̃1+3 but may be neglected in other domains
of the spacetime. Yet, in R̃1+3, the first θ(x) derivative shall be taken as a small value so
that terms such as ∂2θ and (∂θ)2 are negligible. Incidentally, we note that in natural units (θ
is dimensionless), the correction terms ∂θ scale as (length)−1, and the θ correction terms
can then be thought of as a high-energy effect.
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3. Physical Effects

In order to establish the set-up for our further analysis, notice that η̃(∆xµ, ∆xµ), where
∆xµ stands for spacetime displacements. This leads, in the infinitesimal limit, to

ds̃2 = ds2 + 2xµ∂αθdxµdxα, (11)

in R̃1+3, where ds2 = ηµνdxµdxν as usual. The explicit appearance of xµ terms in the
quadratic form requires due care. This term breaks the Poincarè symmetries, and its conse-
quences need to be investigated case by case (including special attention to experimental
bounds [15,16]). In [12], it is shown that several considerations may taken to appreciate
the physical consequences without possible ambiguity coming from these factors in some
cases. Regarding the general analysis we are about to conduct, it is relevant to note that for
an observer for which d~x is null, we are left with ds̃2 = (1 + 2tθ̇)dt2, where a dot stands for
a derivative with respect to time. Hence, as can be seen, the very concept of proper time is
cumbersome here. Nevertheless, for reinforcing that the dimension of ds̃ is lenght, we shall
adopt a somewhat pragmatic posture, bearing in mind that when θ → cte, all the usual
concepts and interpretations apply. This allows us to deal with the consequences of the θ
terms in the line element.

It may be helpful to keep in mind that, since we are in R̃1+3, the nontrivial topology
effects act as a kind of external source, disturbing the physical system at hand. In what
follows, we shall evince two interesting situations in which this happens.

3.1. Relativistic Massive Particle Dynamics in R̃1+3

Let us begin proposing an action borrowing its functional form from the usual massive
relativistic particle dynamics but with ds̃ as an element to be integrated; in other words,
we have

S̃ = κ
∫
(α)

ds̃, (12)

where the integration is performed along a lineworld in R̃1+3 and κ is a constant to be
determined. We shall extremize Equation (12) to reach the relativistic particle equation of
motion. Notice that, of course, δds̃2 = 2ds̃δds̃, while on the other hand, we have

δds̃2 = δ{(ηµν + 2xµ∂νθ)dxµdxν} ≡ δ(η̃αβdxαdxβ) (13)

and therefore

δds̃ = η̃αβ
dxα

ds̃
δdxβ +

1
2

δη̃αβ
dxα

ds̃
dxβ

ds̃
ds̃. (14)

Within the discussed approximations δη̃αβ ≈ 2δxα∂βθ and the variation in Equa-
tion (12), when taking into account Equation (14), the result reads as follows:

δS̃ = κ
∫
(α)

{
η̃αβ

dxα

ds̃
δdxβ + δxα∂βθ

dxα

ds̃
dxβ

ds̃
ds̃
}

. (15)

The first term under integration may be rewritten as

η̃αβ
dxα

ds̃
δdxβ = d

(
η̃αβ

dxα

ds̃
δxβ
)
− dη̃αβ

dxα

ds̃
δxβ − η̃αβd

(dxα

ds̃

)
δxβ. (16)

Upon integration, since the endpoints are fixed, the first term of Equation (16) vanishes.
Aside from that, dη̃αβ ≈ 2dxα∂βθ, and a bit of usual algebra leads to

δS̃ =
∫
(α)

{
− κη̃αβ

d2xα

ds̃2 − 2κ∂βθ
dxα

ds̃
dxα

ds̃
+ κ∂αθ

dxα

ds̃
dxβ

ds̃

}
δxβds̃. (17)

The imposition δS̃ = 0, ∀ δxβ, along with the expression for η̃αβ, leads to
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−κ

[
d2xβ

ds̃2 + 2∂βθ
(

xα
d2xα

ds̃2 +
dxα

ds̃
dxα

ds̃

)]
+ κ∂αθ

dxα

ds̃
dxβ

ds̃
= 0. (18)

It is worth noticing that if ∂θ → 0, then ds̃ → ds, and we recover the standard case
for κ = −m. This straightforward procedure sets up the κ constant. Moreover, the term in
parenthesis may be recast in a simple form so that we are left with

m
d2xβ

ds̃2 = m∂αθ
dxα

ds̃
dxβ

ds̃
−m∂βθ

d2(xαxα)

ds̃2 , (19)

as the dynamical equation for the massive particle. As evident from the equation of motion,
the effect of the nontrivial topology engenders an external force term (even for the free
particle case). This effect is the pure particle dynamical counterpart of the quasinormal-like
behavior reported in [12] in the context of fields.

It is common to couple the particle to an external electromagnetic field to recover
the Lorentz force term, driving the dynamics in the presence of an external field. Let us
investigate this case in detail. Along with the discussion in the preceding section, we shall
also expect additional terms from the nontrivial topology.

We start with an electromagnetic action coupling a particle with a charge e to the
electromagnetic potential. To accomplish this, we start with Ã = Aµdx̃µ and implement
the previously obtained shift, arriving at Ã = Aµ(dxµ + xµdθ). Since dθ = ∂αθdxα, after
adequately relabeling the indices of the second term, we have Ã = (Aµ + Aαxα∂µθ)dxµ.
Therefore, the action is given by

S̃em = −e
∫
(α)

Ã, (20)

where the −e constant factor was introduced by following the same reasoning establishing
κ = −m in our previous analysis. The variation in Equation (20) may be written as

δS̃em = δSem − e δ
∫
(α)

Aαxα∂µθdxµ, (21)

where δSem stands for the usual textbook case

δSem = −e
∫
(α)

Fβδ
dxδ

ds̃
δxβds̃, (22)

with Fβδ denoting the standard electromagnetic field strength. The last term of Equation (21)
will be analyzed here. It can be expressed as

δ
∫
(α)

Aαxα∂µθdxµ =
∫
(α)

[
∂Aα

∂xβ
xα∂µθ

dxµ

ds̃
+ Aβ∂µθ

dxµ

ds̃

]
δxβds̃ +

∫
(α)

Aαxα∂µdδxµ. (23)

In turn, the last integral may be recast, noticing that

d(Aαxα∂µθ) = ∂β Aαdxβxα∂µθ + Aαdxα∂µθ (24)

Therefore, as the left-hand side vanishes under integration, we have∫
(α)

Aαxα∂µθdδxµ = −
∫
(α)

∂µ Aαxα∂βθ
dxµ

ds̃
ds̃δxβ −

∫
(α)

Aα∂βθ
dxα

ds̃
ds̃δxβ. (25)

Inserting Equation (25) back into Equation (23) leads to

δ
∫
(α)

Aαxα∂µθdxµ =
∫
(α)

{
(∂β Aα∂µθ − ∂µ Aα∂βθ)xα dxµ

ds̃
+ (Aβ∂αθ − Aα∂βθ)

dxα

ds̃

}
δxβds̃ (26)
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The electromagnetic coupling action variation in Equation (21) is given by
Equations (22) and (26). As can be seen from the equation above, if no correction comes
from the nontrivial topology terms, then the only contribution is the standard one. There-
fore, apart from the pure dynamical “external force” corrections in Equation (19), in the
presence of an electromagnetic field, we also have nontrivial topology effects cascading
down to δS̃em.

When taking all the effects into account (that is, δS̃total = δS̃ + δS̃em = 0 ∀ δxβ),
Equations (17), (22) and (26) give the following complete equation of motion:

m
d2xβ

ds̃2 = eFβα
dxα

ds̃
+ m∂αθ

dxα

ds̃
dxβ

ds̃
−m∂βθ

d2(xαxα)

ds̃2

+ e(∂β Aα∂µθ − ∂µ Aα∂βθ)xα dxµ

ds̃
+ e(Aβ∂αθ − Aα∂βθ)

dxα

ds̃
. (27)

Note that in the absence of ∂θ terms, we are left with the usual Lorentz force equation,
as expected. In R̃1+3, the dynamics of a free particle of mass m and charge e subject to an
external electromagnetic field and under the effects of a nontrivial topology in the presented
context are shown. The resulting equation is quite complicated, and extracting the particle’s
physical motion may be challenging even in simple situations (e.g., external electric and
magnetic constant fields). In any case, deviations from the standard motion are, of course,
expected and may probe, at least argumentatively, the unusual spacetime effects. While
this situation may be simplified for particular linear θ function sub-cases, we would like to
investigate an effect entirely imputed to the electromagnetic field dynamics in R̃1+3.

3.2. Magnetic Monopole-like Effect

From the exterior derivative in R̃1+3, several potentially interesting effects were re-
ported in [12]. Here, we shall pursue a pure electrodynamics effect based on the simple
fact that the new field strength F̃ presents additional terms coming from the nontrivial
topology, which resembles the non-abelian obstructions to the validity of the partial (not
covariant) derivative Jacobi equation in Yang–Mills theory. However, as the additional
terms do not come from any sophistication in the gauge group, there is no need for any
symmetry-breaking mechanism to recover electromagnetism. A similar role, so to speak,
was already performed here by Lorentz symmetry breaking due to the spacetime topology.
In fact, as reported in [12], some expected results of exterior calculus present differences in
R̃1+3. Here, we shall report the most direct consequence of breaking ∇ · (∇× ·) = 0.

From Ã = (Aµ + Aαxα∂µθ)dxµ, and taking into account the correction in the exterior
derivative (see the appendix of [12] for a complete account of that), we have

F̃ = ∂ν(Aµ + Aαxα∂µθ)dxµ ∧ dx̃ν, (28)

from which we see that
F̃ =

1
2

F̃µνdxµ ∧ dxν, (29)

where
F̃µν = Fµν + 2(Aµ + xα∂µ Aα)∂

νθ + ∂α Aνxα∂µθ. (30)

Now, it is possible to read the electric and magnetic field components’ counterparts in
R̃1+3. In particular, the magnetic field components are given by

B̃x = Bx + 2(Az + xα∂z Aα)∂
yθ + ∂α Ayxα∂zθ,

B̃y = By + 2(Ax + xα∂x Aα)∂
zθ + ∂α Azxα∂xθ, (31)

B̃z = Bz + 2(Ay + xα∂y Aα)∂
xθ + ∂α Axxα∂yθ.

The divergence of this vector will lead to ∇ · B, which is zero, but corrections will also
appear due to the ∂θ terms, even in the approximate scenario explored here. After some
standard algebra, the final result reads as follows:
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∇ · B̃ = C1(xα, ∂A)∂xθ + C2(xα, ∂A)∂yθ + C3(xα, ∂A)∂zθ, (32)

where the coefficients are given by

C1(xα, ∂A) = 2∂y Az + xα∂y(∂α Az + ∂z Aα) + ∂z Ay,

C2(xα, ∂A) = 2∂z Ax + xα∂z(∂α Ax + ∂x Aα) + ∂x Az, (33)

C3(xα, ∂A) = 2∂x Ay + xα∂x(∂α Ay + ∂y Aα) + ∂y Ax.

This result suffices to evince a magnetic monopole-like behavior due to spacetime
nontrivial topology effects. There are several points to be addressed. It is interesting to
note that if θ is a function of time (exclusively), then no magnetic monopole-like effect is
expected. When this is not the case, on the other hand, the associated “magnetic charge”
is variable and actually quite involved. This may be an obstacle to handling the physical
effects probing this behavior. Finally, as is well known, magnetic monopoles are not
expected in the breaking SU(2)×U(1)→ Uem(1) [17], but they may have a place in grand
unification schemes. When this is the case, the typical energy scale setting for the monopole
mass is about 1016 GeV [18]. According to the discussion around Equation (11), it is unlikely
that the approach presented here could affect a lower energy scale. In any case, it is also
unclear if this formalism can be applied as an effective theory to low-energy realizations of
spin ice (Dirac) string in materials [19].

4. Discussion and Outlook

The results presented here, along with the analysis in [12,13], cover some exciting and
unexplored physical outputs of nontrivial topologies. In particular, this paper highlights
the effects of a nontrivial topology on the dynamics of some simple but fundamental
physical systems, namely the dynamics of free particles and charged particles coupled
to an electromagnetic field. New phenomena have been shown by investigating the un-
derlying corrections emerging in such systems, including the appearance of a magnetic
monopole-like effect. Aside from incorporating θ terms into the quadratic form, the cor-
rections explicitly bring about spacetime coordinate points. This leads to a scenario of
explicitly broken Lorentz symmetry. Thus, when revisiting the Euler–Lagrange equations,
Hamilton’s principle and other field theory fundamentals would be relevant for the explic-
itly dependent xµ functional. It may be a subtle task to deal with boundaries in such an
endeavor, but it could bypass the problem of implementing nontrivial effects via dynamical
equations. We shall delve into this point in the near future.

The results reported here not only provide a new perspective on the interplay between
a nontrivial topology and electromagnetic interaction but also contribute to our under-
standing of the fundamental implications and importance of considering the local effects of
a globally nontrivial spacetime.

We want to end this paper by pointing out some branches of research we hope to
explore in the near future. We present a somewhat natural unfolding of our analysis points
to curved spacetime physics. Even without curvature sources in spacetime, nontrivial
topological effects incorporated into the metric would lead to a relevant scenario. Of course,
since Poincarè symmetries are lost in the flat case, we do not expect a curved spacetime
theory endowing full diffeomorphism invariance. However, the breaking terms could be
manageable. In a different context, the underlying mathematics supporting a nontrivial
localized topology is exciting and deserves a careful look. Preliminary analysis shows that
a suitable deformation in the map relating the standard and exotic spin bundle, along with
a given set of requirements, may suffice to constrain the nontrivial cocycle to the desired
region from the mathematical point of view.
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