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1. Introduction

In geometric approach [1–3] the evolution operator of physical system obeys the
equation of motion

dσ

dt
= H(t)σ(t), (1)

where H(t) is a linear operator acting in Banach space (or, more, generally, in complete
topological vector space) L. We say that H(t) is the “Hamiltonian” of the physical system.
In what follows we assume that H(t) = H does not depend on time t. This condition
is imposed only to simplify notations; all results can be proved also for time- depen-
dent “Hamiltonian”.

In the standard approach to quantum mechanics the evolution operator acts in Hilbert
space; it obeys the Equation (1) where H(t) is a skew-adjoint operator. It can be represented
by a functional integral. One of the ways to obtain such a representation is based on the
notion of a symbol of an operator; this way was suggested by F. Berezin [4] (see [5] for
details). We use the same ideas to obtain a representation of the evolution operator in
Banach spaces (or in topological vector spaces) in terms of functional integrals. Such a
representation was considered in numerous mathematical papers. (See, in particular, [6–9].
Our approach is close to the ideas of these papers.) Our main result is a construction of
functional integrals in the formalism of L-functionals (Section 5).

A symbol of an operator A is a function A defined on some measure space. It should
depend linearly on A. We assume that the symbol of the identity operator 1 is equal to 1
and the composition of operators corresponds to the operation on symbols denoted by ∗ :
if C = AB then C = A ∗ B.

The simplest way to construct symbols of operators in quantum mechanics is to use
the fact that the Fourier transform of delta-function is a constant. The matrix (the kernel in
the language of mathematics) of the unit operator is 〈q2|1|q1〉 = δ(q1 − q2) in coordinate
representation and 〈p2|1|p1〉 = δ(p1 − p2) in momentum representation. Taking Fourier
transform of matrix 〈q2|A|q1〉 of the operator A with respect to the variable q1 − q2 we
obtain p− q symbol:

Ap−q(p, q) =
∫

dy〈y|A|q〉eip(q−y).
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Similarly taking Fourier transform of 〈p2|A|p1〉 with respect to variable p1 − p2 we
obtain q− p-symbol:

Aq−p(q, p) =
∫

dy〈y|A|p〉e−iq(p−y).

If A is a differential operator with polynomial coefficients we can express it as a
polynomial of operators q̂j (operators corresponding to the coordinates qj) and p̂j =

1
i

∂
∂qj

(momentum operators) Representing A in q− p form (coordinate operators from the left
of momentum operators) and “removing hats” we obtain q− p-symbol. Representing A
in p− q-form (placing momentum operators from the left of coordinate operators) and
“removing hats” we get p− q symbol.

Notice that in our notations h̄ = 1. Sometimes it it is convenient to consider families of
symbols Aq−p

h̄ (q, p) and Ap−q
h̄ (p, q) depending on parameter h̄.

We will describe a very general construction of symbols. We will use this construction
to represent physical quantities in terms of functional integrals. Our results generalize the
results by F. Berezin [4,5] proved for operators in Hilbert spaces. They can be applied also
to coherent states [10] and their generalizations.

We did not try to give rigorous proofs of our results, however imposing some condi-
tions one can make our exposition rigorous (for example, using the ideas of [6–8]). We use
our general results to obtain a representation of physical quantities in terms of functional
integrals in the formalism of L-functionals [11–13].

2. Functional Integrals

Let us consider symbols of linear operators acting in the space L.
The evolution operator can be represented in the form

σ(t) = etH = lim
N→∞

(1 +
tH
N

)N .

For N → ∞ the symbol of the operator 1 + tH
N can be approximated by exp t

N H:

1 +
tH
N

= e
t
N H + O(N−2).

Using this relation we obtain an expression for the symbol of the evolution operator;

σ(t) = lim
N→∞

IN(t), (2)

where
IN(t) = e

t
N H ∗ ... ∗ e

t
N H

(N factors).
In many cases, IN(t) can be interpreted as an approximation of a functional integral.

Notice, however, that even without this interpretation, we can apply the Laplace or station-
ary phase method to the calculation of IN(t). This allows us to obtain some results that
often are obtained in the language of functional integrals without using this language.

Let us consider a class of symbols generalizing q− p symbols and Wick symbols of
quantum mechanics.

We start with complete topological vector space L.
We assume that the symbol of an operator A acting in L is a (generalized) function

A(α, β′) of two variables (a function on M×M′) and that the symbol of the product
C = AB of operators A and B can be expressed in terms of the symbols of operators A and
B by the formula

C(α, β′) =
∫

dγdγ′B(α, γ′)R(γ, γ′)A(γ, β′)ec(α,γ′)+c(γ,β′)−c(α,β′), (3)
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where c(γ, γ′), R(γ, γ′) are functions onM×M′ and dγdγ′ is the measurement on this
space. (We assume thatM×M′ is a measure space. This assumption can be weakened to
allow infinite-dimensional spaces with integration defined for some class of functions on
these spaces.) Taking A = B = C = 1 in (3) we obtain the following restriction on these
functions:

1 =
∫

dγdγ′ec(α,γ′)+c(γ,β′)−c(α,β′)R(γ, γ′). (4)

If R(γ, γ′) is represented in the form

R(γ, γ′) = e−r(γ,γ′)

the formulas ((3) and (4)) can be rewritten as

C(α, β′) =
∫

dγdγ′B(α, γ′)A(γ, β′)ec(α,γ′)+c(γ,β′)−c(α,β′)−r(γ,γ′), (5)

1 =
∫

dγdγ′ec(α,γ′)+c(γ,β′)−c(α,β′)−r(γ,γ′). (6)

It follows that the symbol C(α, γ′) of the product C of N operators A1, ..., AN is given
by the formula

C(γ, γ′) =
∫

dγ1dγ′1...dγN−1dγ′N−1 AN(γ, γ′N−1)...A2(γ2, γ′1)A1(γ1, γ′)eρN , (7)

where
ρN = c(γ, γ′N−1) + c(γN−1, γ′N−2) + ... + c(γ1, γ′)− c(γ, γ′)− r(γ1, γ′1)− ...− r(γN−1, γ′N−1). (8)

We see that in our case

IN(t) =
∫

dγ1dγ′1...dγN−1dγ′N−1e
t
N (H(γ,γ′N−1)+H(γN−1,γ′N−2)+...+H(γ1,γ′))eρN . (9)

Notice that assuming that operators at hand have trace we can express the trace in
terms of symbols:

TrA =
∫

dαdβ′A(α, β′)eτ(α,β′), (10)

where τ(α, β′) = c(α, β′)− r(α, β′). To justify this formula we verify that TrAB = TrBA
using (5). (A trace on an algebra is defined as a linear functional that vanishes on commuta-
tors. We are checking that the RHS of (10) is a trace in this general sense. It seems that in
our situation this property specifies the trace up to a numerical factor).

Using (10) we obtain that

TretH = lim
N→∞

JN(t), (11)

where

JN(t) =
∫

dγdγ′dγ1dγ′1...dγN−1dγN−1 exp(
t
N
(H(γ, γ′N−1) + ... + H(γ1, γ′)))eρ̃N , (12)

ρ̃N = c(γ, γ′N−1) + ... + c(γ1, γ′)− r(γ, γ′)− r(γ1, γ′1)− ...− r(γN−1, γ′N−1). (13)

In the case when c(α, β′) is a quadratic function one can prove that one of solutions of
the relation (6) has the form

c(α, β′) = r(α, β′) + const,

where the constant can be absorbed in the definition of the measure dγdγ′.
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Let us show that one can use (5) to express the symbol of the evolution operator
in terms of functional integrals. We assume thatM andM′ are smooth manifolds, the
function c is differentiable, and r = c). Then the symbol σ(t)(γ, γ′) of operator σ(t) = etH

can be represented as a functional integral:

I(γ, γ′) =
∫

∏ dγ(τ)dγ′(τ)eS[γ(τ),γ′(τ)], (14)

where

S[γ(τ), γ′(τ)] = S0[γ(τ), γ′(τ)]+c(γ(t), γ′)− c(γ, γ′), (15)

S0 =
∫ t

0

(
H[γ(τ), γ′(τ)]− γ̇′(τ)

∂

∂γ′(τ)
c(γ(τ), γ′(τ))

)
dτ. (16)

This integral depends on M-valued function γ(τ) and M′-valued function γ′(τ).
Here 0 ≤ τ ≤ t and we integrate over the set of functions obeying boundary conditions
γ(0) = γ, γ′(t) = γ′. To prove this statement we notice that the expression

t
N
(H(γ, γ′N−1) + H(γN−1, γ′N−2) + ... + H(γ1, γ′)) + ρN

approximates the integral sum for the integral (16). (To define the functional integral we
represent it as a limit of finite-dimensional integrals. This definition depends on the choice
of approximation of functional integral by finite-dimensional integrals).

The last two terms in (15) cancel in the formula for the trace of the operator etH . Using
this remark or formulas (11)–(13) we obtain

Tr(etH) =
∫

∏ dγ(τ)dγ′(τ)eS0[γ(τ),γ′(τ)], (17)

where S0 is given by the formula (16).
(We integrate over the set of functions obeying boundary conditions γ(0) = γ(t),

γ′(0) = γ′(t)).
It is easy to check that the formula (3) is valid for p− q-symbols in n-dimensional

space with:

γ = p; γ′ = q; c(γ, γ′) = −i(p, q); r(γ, γ′) = −i(p, q); dγdγ′ = dnpdnq/(2π)n

and for q− p-symbols with:

γ = q; γ′ = p; c(γ, γ′) = i(p, q); r(γ, γ′) = i(p, q).

Using (9) we can get functional integrals of quantum mechanics.
One more case when it is possible to obtain functional integrals from (9) and (11) is the

situation whenM =M′, R(α, β′) = δ(α, β′) and c(γ, γ) ≡ 0. In this situation we have

IN(t) =
∫

dγ1...dγN−1 exp(
t
N
(H(γ, γN−1) + H(γN−1, γN−2) + ... + H(γ1, γ′)))eρN , (18)

where
ρN = c(γ, γN−1) + c(γN−1, γN−2) + ... + c(γ1, γ′)− c(γ, γ′)). (19)

When N → ∞
c(γ, γ′) = c(γ, γ + ∆γ) ≈ ∆γ

∂

∂γ̃
c(γ, γ̃)|γ̃=γ

IN(t) '
∫

dγ1...dγN−1 exp(
t
N ∑

i
(H(γi, γi) +

t
N ∑

i
γ̇i

∂

∂γ̃
c(γi, γ̃)|γ̃=γi − c(γ, γ′)). (20)
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It follows that the symbol σ(t)(γ, γ′) of operator σ(t) = etH can be represented as a
functional integral

I(γ, γ′) =
∫

∏ dγ(τ)eS[γ(τ)], (21)

where

S[γ(τ)] =
∫ t

0

(
H[γ(τ), γ(τ)] + γ̇(τ)

∂

∂γ̃
c(γ(τ), γ̃)|γ̃=γ(τ)

)
dτ−c(γ, γ′) (22)

with γ(0) = γ, γ(t) = γ′. Similarly in this case

Tr(etH) =
∫

∏ dγ(τ)eS0[γ(τ)], (23)

where

S0[γ(τ)] =
∫ t

0

(
H[γ(τ), γ(τ)] + γ̇(τ)

∂

∂γ̃
c(γ(τ), γ̃)|γ̃=γ(τ)

)
dτ. (24)

3. Covariant and Contravariant Symbols

Let us consider Banach spaces L and L′ and systems of vectors eα ∈ L, e′β′ ∈ L
′. Here

α ∈ M,�′ ∈ M′,M×M′ is a measure space. (Again we can consider a more general case
whenM×M′ is a space with integration defined for some class of functions on this space).
We assume that linear combinations of vectors eα are dense in L and linear combinations of
vectors e′β′ are dense in L′. (In other words these systems of vectors are overcomplete).

Let us fix a non-degenerate pairing 〈l, l′〉 between L and L′. (We can consider either
bilinear pairing or a pairing that is linear with respect to one argument and antilinear with
respect to the second argument).

We assume that

〈l, l′〉 =
∫
M×M′

dmdm′〈l, e′m′〉R(m, m′)〈em, l′〉, (25)

where dmdm′ is the measure on M×M′. In different notations, this formula can be
written as ∫

dmdm′ |e′m′〉R(m, m′)〈em| = 1. (26)

We define covariant symbol A(α, β′) of operator A acting in L by the formula

A(α, β′) =
〈Aeα, e′β′〉
〈eα, e′β′〉

. (27)

In bra-ket notations

A(α, β′) =
〈e′β′ |A|eα〉
〈e′β′ |eα〉

. (28)

In particular, we can assume that L = L′ is a Fock space (Hilbert space of Fock
representation of canonical commutation relations) and the overcomplete system of vectors
in this space coinsists of eigenvectors of annihilation operators (of Poisson vectors). Then
the covariant symbol coincides with Wick symbol.

Recall that the Wick symbol can be defined in the following way. Represent the
operator in normal form (creation operators â∗( f ) from the left, annihilation operators
â(g) from the right). Remove hats. Resulting polynomial of a∗, a is a Wick symbol of
the operator.

Notice that the spaces L and L′ are on equal footing in our construction; hence we
can define the covariant symbol of an operator B acting in L′ in a similar way. We say that
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operators A and B are dual if 〈Ax, y〉 = 〈x, By〉, it is easy to check that symbols of dual
operators coincide

B(α, β′) =
〈eα, Be′β′〉
〈eα, e′β′〉

= A(α, β′). (29)

The covariant symbol C = A ∗ B of operator C = AB is given by the formula

C(α, β′) =
∫

dmdm′ B(α, m′)A(m, β′)R(m, m′)
〈eα, e′m′〉〈em, e′β′〉
〈eα, e′β′〉

. (30)

This formula agrees with (3) if we take

〈em, e′m′〉 = ec(m,m′).

We define contravariant symbol Å(α, β′) of operator A acting in L by the formula

Aeα =
∫

dγdγ′ Å(γ, γ′)〈eα, e′γ′〉R(γ, γ′)eγ. (31)

It is easy to express covariant symbols in terms of contravariant symbols

A(α, β′) =
∫

dγdγ′ Å(γ, γ′)
〈eα, e′γ′〉R(γ, γ′)〈eγ, e′β′〉

〈eα, e′β′〉
.

To calculate the contravariant symbol C̊ of the product C = AB of operators A, B we
notice that

Ceα =
∫

dγ1dγ′1dγ2dγ′2 Å(γ2, γ′2)〈eα, e′γ′2
〉R(γ2, γ′2)B̊(γ1, γ′1)〈eγ2 , e′γ′1

〉R(γ1, γ′1)eγ1 . (32)

Hence C̊ can be expressed in terms of contravariant symbols of factors by the formula

C̊(γ, γ′) =
1

R(γ, γ′)

∫
dβdβ′〈eβ, e′β′〉Å(β, γ′)R(β, γ′)B̊(γ, β′)R(γ, β′).

This expression has the form (5) with

ec(γ,γ′) = R(γ, γ′), e−r(γ,γ′) = 〈eγ, e′γ′〉. (33)

Notice that a bounded operator always has a covariant symbol. Moreover, an operator
A has a covariant symbol if it is unbounded but the vectors eα belong to the domain where
A is defined. However, it is non-trivial to say whether there exists an operator with a given
covariant symbol. For contravariant symbols, the situation is the opposite. It is easy to give
conditions for the existence of an operator with a given contravariant symbol, but if we
know an operator it is non-trivial to say whether is has a contravariant symbol.

4. Coherent States

As in Section 3 we consider Banach spaces L and L′, non-degenerate pairing 〈l, l′〉
between these spaces , and systems of vectors eα ∈ L, e′β′ ∈ L

′. Here α ∈ M,�′ ∈ M′.
We fix a representation T of Lie group G in the space L and representation T′ in

the space L′ in such a way that G acts transitively on the set of vectors eα and on the set
of vectors e′β′ . This means that M and M′ can be considered as homogeneous spaces:
M = G/H and M′ = G/H′. We assume that the representations T′ and T are dual:
〈Tl, l′〉 = 〈l, T′l′〉.

We require that linear combinations of vectors eα are dense in L and linear combina-
tions of vectors e′β′ are dense in L′; it follows that representations T and T′ are irreducible.
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To define covariant and contravariant symbols starting with vectors eα, e′β′ we need
the relation (3). If there exist a G- invariant measure dmdm′ onM ×M′ one can obtain
such a relation taking R = 1. To prove this fact we notice that the expression∫

dmdm′ |e′m′〉〈em| (34)

is G-invariant. The integrand of (34) specifies an operator in L; we assume that the integral
is converging, hence (34) can be regarded as an operator in L commuting with all operators
T(g), g ∈ G. It follows from the irreducibility of the representation T that (34) is a constant.
Multiplying the measure dmdm′ by a constant factor we obtain (26).

IfM =M′ and there exists a G-invariant measure dm onM then we get the relation
(3) with R = δ(α, β′) (assuming convergence of the integral). Using formulas (21) and (23)
we obtain functional integrals in this situation.

One says that the vectors eα and e′β′ considered in the present section are coherent
states. This definition generalizes the definition of coherent state in [10] where L = L′ is
a Hilbert space, T and T′ are unitary operators, eα = e′α. Notice, that in ([10]) the group
G transforms the vector eα in a vector, proportional to the vector of the same kind (it acts
transitively on corresponding elements of projectivization of L). In our setting, we also can
consider a similar situation.

5. L-Functionals
5.1. First Definition

Let us consider a unital associative algebra with generators γ( f ) obeying canonical
commutation relations (CCR):

γ( f )γ(g)− γ(g)γ( f ) = i( f , g) (35)

(Weyl algebra).
Here, f and g are elements of real vector space E equipped with non-degenerate

antisymmetric inner product (·, ·), generators γ( f ) depend linearly on f . We assume that
Weyl algebra is complex algebra equipped with an antilinear involution and that generators
γ( f ) are self-adjoint with respect to this involution.

Let us fix a representation of the Weyl algebra (representation of canonical commuta-
tion relations) in Hilbert space F . We assume that generators are represented by self-adjoint
operators γ̂( f ); hence we can consider unitary operators Vf = exp(iγ̂( f )). It is easy to
check that

Vf Vg = Vf+g exp(
i
2
( f , g)). (36)

These relations are formally equivalent to (35). We consider the smallest linear sub-
space of the space of bounded linear operators in F containing all operators Vf ; the closure
of this space in norm-topology is a C∗-algebra that can be regarded as an exponential
form of Weyl algebra (see, for example, [14] and references therein for the mathematical
theory of Weyl algebra). We will work with this algebra denoted by W . The space of
continuous linear functionals onW will be denoted by L. Notice that a functional L ∈ L
is determined by its values on operators Vf , therefore we can consider L as a non-linear
functional L( f ) = L(Vf ) on E (the representation of states of Weyl algebra by means of
non-linear functionals was rediscovered and studied in [14]).

In particular, positive functionals on the algebra W (quantum states) can be repre-
sented by non-linear functionals; we will use the term L-functional for non-linear func-
tionals representing states. (Recall that a linear functional L on ∗-algebra A is positive if
L(A∗A) ≥ 0 for every A ∈ A.)
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If we have a normalized vector Φ or, more generally, a density matrix K in repre-
sentation space of some ∗-algebra A we can obtain a quantum state ω by the formulas

ω(A) = 〈Φ, ÂΦ〉, (37)

ω(A) = TrÂK, (38)

where Â stands for the operator representing an element A ∈ A.
Every quantum state can be represented by a vector in some representation of ∗-algebra

(Gelfand-Naimark-Segal construction).
If A is the Weyl algebraW we represent a density matrix K in any representation of

canonical commutation relations (= in any representation ofW) by L-functional

LK( f ) = TrVf K.

One can say that L-functionals describe states in all representations of canonical
commutation relations.

The evolution operators of quantum theory constitute a one-parameter group of
automorphisms of the algebraW generated by an infinitesimal automorphism H. They
induce evolution operators acting on quantum states; these operators can be extended
to L. To find evolution operators one should solve the equation of motion (1). We apply
the methods of preceding sections assuming that L′ = W . We define covariant sym-
bols of operators acting in L using systems of vectors e f ∈ L and vectors e′f ′ ∈ L

′

that are defined in the following way. We assume that f , f ′ ∈ E, e f (Vg) = exp i
2 ( f , g),

e′f ′ = Vf ′ . It follows that 〈e f , e′f ′〉 = exp i
2 ( f , f ′). To get a function R obeying (25) we can

take R( f , f ′) = C exp (− i
2 ( f , f ′)) where the constant C is chosen in such a way that∫

d f d f ′〈eg, e′f ′〉R( f , f ′)〈e f , e′g′〉 = 〈eg, e′g′〉. (39)

Here d f d f ′ is a measure on E× E or at least a rule that allows us to calculate integrals of
some functions defined on this space (in (39) we need only integrals of quadratic exponents).

In what follows we assume that the antisymmetric inner product is represented in the
form ( f , g) = f iσijgj = f σg and dim E = 2n < ∞; then C = |det(σ)|1/2/(2π)n. We assume
that C = 1 by changing the measure d f d f ′. Then in the notations of Section 2 we have
c( f , f ′) = r( f , f ′) = i

2 ( f , f ′).
Let us suppose that the evolution is specified by an infinitesimal automorphism of

Weyl algebraW = L′ represented as a commutator H of the element ofW with iĤ. Here
Ĥ is a self-adjoint element ofW :

Ĥ =
∫

dβh(β)Vβ, (40)

where h(−β) = h̄(β). (Notice that one can consider also a more general case when Ĥ is a
formal expression such that the commutator with Ĥ makes sense.)

It is easy to check that the covariant symbol of the operator H has the form

H( f , f ′) = i
∫

dβh(β)(e
i
2 (( f ,β)−(β, f ′)) − e

i
2 (( f ,β)+(β, f ′))) = 2

∫
dβh(β)e

i
2 ( f ,β) sin

(β, f ′)

2
. (41)

Using (9) we obtain a representation of the symbol of the evolution operator inW = L′
in terms of functional integrals

etH( f , f ′) =
∫

∏ d f (τ)d f ′(τ)eS[ f (τ), f ′(τ)],

S[ f (τ), f ′(τ)] =
∫ t

0

(
H( f (τ), f ′(τ))− i

2
( f (τ), ḟ ′(τ)))

)
dτ +

i
2
(( f (t), f ′)− ( f , f ′)),

(42)
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where we integrate over the set of functions obeying conditions f (0) = f ; f ′(t) = f ′.
The evolution operator etH in the algebraW is dual to the evolution operator etK in

the space L of linear functionals onW :

〈etKx, y〉 = 〈x, etHy〉,

hence the operator K entering the equation of motion for L-functionals is dual to the
infinitesimal automorphism H. Using the formula (29) we can say the symbol of K coincides
with the symbol of H and the symbols of operators of evolution etK and etH coincide.
This remark allows us to say that the symbol of the operator of evolution in the formalism of L−
functionals is expressed in terms of functional integrals by the formula (42).

The same statement can be obtained from the equation of motion in the formalism of
L-functionals. The time derivative of L( f ) = L(Vf ) can be written in the form

i
dL(Vf )

dt
=
∫

dβh(β)L(Vf Vβ −VβVf ) =
∫

dβh(β)(e
i
2 f σβ − e

i
2 βσ f )L(Vf+β),

hence
dL( f )

dt
= 2

∫
dβh(β)sin(

1
2

f σβ)L( f + β). (43)

We can write (43) In the form in the form

dL( f )
dt

= KL( f ),

where
(KL)( f ) = 2

∫
dβh(β)sin(

1
2

f σβ)(TβL)( f ).

Here (TβL)( f ) = L( f + β).
It is easy to check that the symbol of the operator K is given by the formula (41). We

obtain another derivation of the functional integral (42) for the evolution operator in the
formalism of L-functionals.

Sometimes it is convenient to introduce the Planck constant h̄ in the formula (43)
assuming that in the defining relations of Weyl algebra we have h̄ in the right-hand side:

γ( f )γ(g)− γ(g)γ( f ) = ih̄( f , g),

where ( f , g) = f σg = f iσijgj and replacing Ĥ with Ĥ/h̄. Then

dL( f )
dt

=
∫

dβh(β)
2 sin( h̄

2 f σβ)

h̄
L( f + β). (44)

It follows from (44) that the equation of motion for L-functionals has a limit as h̄→ 0.

5.2. Second Definition

Let us consider another form of canonical commutation relations:

[a( f ), a( f ′)] = [a∗(g), a∗(g′)] = 0, [a( f ), a∗(g)] = ( f , g), (45)

where ( f , g) is a non-degenerate pairing between vector space E and complex conjugate
vector space Ē . (Here f , f ′ ∈ E , g, g′ ∈ Ē .) We will assume that this paring is defined on
E; then it is linear with respect to the first argument and antilinear with respect to the
second argument.(Notice that in our notations E and Ē consist of the same elements but
have different complex structures). Then (45) can be represented takes the form

[a( f ), a( f ′)] = [a∗(g), a∗(g′)] = 0, [a( f ), (a(g))∗] = ( f , g). (46)
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(The involution ∗ transforms a( f ) into a∗( f ∗). We assume that a( f ) is linear with respect
to f , then a∗( f ∗) = (a( f ))∗ is antilinear with respect to f ∈ E.) We do not assume that the
pairing ( f , g) is well-defined for all pairs f , g; in particular, ( f , f ) can be infinite).

If the space E consists of functions on measure spaceM then a( f ), a∗(g) should be
regarded as generalized functions: a( f ) =

∫
f (k)a(k)dk, a∗(g) =

∫
g(k)a∗(k)dk. Then

canonical commutation relations (45) can be written in the form

[a(k), a(k′)] = [a∗(k), a∗(k′)] = 0, [a(k), a∗(k′)] = δ(k, k′). (47)

If k is a discrete parameter (i.e.,M is a discrete set with counting measure) the above
relations can be written as follows

[ak, ak′ ] = [a∗k , a∗k′ ] = 0, [ak, a∗k′ ] = δk,k′ .

The relations (45) are obviously equivalent to the relations (35) (to get (35) from (45)
we can consider self-adjoint elements a( f ) + a∗( f ), i(a( f )− a∗( f )).

The relations (45) are especially convenient in the case of an infinite number of degrees of
freedom. In this situation one should use the original definition of L-functional (see [11–13]).

Again we can write canonical commutation relations in exponential form introduc-
ing expressions

Wα = e−a∗(α)ea(α∗).

Notice that Wα is not holomorphic with respect to α therefore it would be more
appropriate to use the notation Wα∗ ,α as we are doing in similar situations below.

It is easy to check that
WαWβ = e−(α

∗ ,β)Wα+β. (48)

Notice that in the case when (α, α) is finite Wα coincides with Vf up to a finite constant
factor. However, we do not assume that (α, α) < ∞. (This is important for applications to
string theory).

We define vector space W as a space of linear combinations of expressions of the
form PαWα where α ∈ E and Pα belongs to some class of polynomials with respect to a∗, a.
The relations (45), (48) specify multiplication inW , but this multiplication is not always
defined. Nevertheless one can considerW as a version of Weyl algebra. (Better to say that
our construction gives various versions of Weyl algebra because we did not specify the
class of polynomials and topology inW). We fix some topology inW in such a way that
Wα is infinitely differentiable with respect to α, α∗. Then the elements Wα are dense inW
(diffrentiating Wα we obtain polynomials of a∗, a). This means that a continuous linear
functional L onW is specified by non-linear functional L(α∗, α) = L(Wα) (by values of L
on Wα). The space of of continuous linear functionals onW is denoted by L. Notice that
we can say that L(α∗, α) = 〈L, Wα〉 where 〈·, ·〉 stands for the standard pairing between L
andW .

We say that non-linear functionals corresponding to quantum states (to positive
functionals =elements of L obeying L(A∗A) ≥ 0) are L-functionals.

We represent a density matrix K in any representation of canonical commutation
relations (45), (48) by L-functional

LK(α
∗, α) = TrWαK = Tre−a∗(α)ea(α∗)K.

Every element B ∈ W specifies two operators acting in the space of linear functionals
L. The first operator transforms the functional ω(A) into the functional ω(AB). Applying
this construction to the cases B = a( f ) and B = a∗( f ) we obtain operators denoted by
b+( f ) and b( f ). The second operator transforms the functional ω(A) into the functional
ω(B∗A); if we start with B = a( f ), B = a∗( f ) we get operators denoted by b̃( f ), b̃+( f ).
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The evolution operators of quantum theory constitute a one-parameter group of auto-
morphisms ofW generated by an infinitesimal automorphism H. They induce evolution
operators acting on L and transforming quantum states to quantum states.

Let us suppose that the evolution is specified by an infinitesimal automorphism of
Weyl algebraW = L′ represented as a commutator H of the element ofW with 1

i Ĥ. Here
Ĥ is a self-adjoint element ofW or a self-adjoint formal expression

Ĥ = ∑
m,n

∫
Hm,n(k1, ...km|l1, ..., ln)a∗(k1)...a∗(km)a(l1)...a(ln) ∏

1≤i≤m
1≤j≤n

dkidlj (49)

such that the commutator H is a well-defined derivation ofW that can be regarded as an
infinitesimal automorphism (i.e. solving the equations of motion we obtain a one-parameter
group of evolution operators etH). This allows us to write an equation of motion (1) in the
space L taking H = HL − HR where

HR = ∑
m,n

∫
Hm,n(k1, ...km|l1, ..., ln)b+(k1)...b+(km)b(l1)...b(ln) ∏

1≤i≤m
1≤j≤n

dkidlj,

HL = ∑
m,n

∫
Hm,n(k1, ...km|l1, ..., ln)b̃+(k1)...b̃+(km)b̃(l1)...b̃(ln) ∏

1≤i≤m
1≤j≤n

dkidlj.

We solve the equation of motion (1) applying the methods of Section 2 and assuming
that L′ =W . We define covariant symbols of operators acting in L using systems of vectors
e f ∈ L and vectors e′f ′ ∈ L

′ that are defined in the following way. We assume that e f ∈ L
corresponds to a non-linear functional e f (Wα) = exp i(( f , α∗) + (α, f ∗)) and that e′f ′ = W f ′ .

It follows that 〈e f , e′f ′〉 = exp i(( f , f ∗
′
) + ( f ′, f ∗)). To get a function R obeying (25) we take

R( f , f ′) = C exp(−i( f , f ∗
′
)− i( f ′, f ∗)) where the constant C is chosen in such a way that

the formula (39) is satisfied.
It is easy to calculate the covariant symbol of the operator H :

H( f , f ′) = i ∑
m,n

∫
∏

1≤i≤m
1≤j≤n

(dkidlj)Hm,n(k1, ...km|l1, ..., ln)×

(
f ∗(k1)... f ∗(km) f ′(l1)... f ′(ln)− f ′∗(k1)... f ′∗(km) f (l1)... f (ln)

)
.

This allows us to get a representation of the symbol of the evolution operator in terms
of functional integrals

etH( f , f ′) =
∫

∏ d f (τ)d f ′(τ)eS[ f (τ), f ′(τ)],

S[ f (τ), f ′(τ)] =
∫ t

0

(
H( f (τ), f ′(τ))− i( f (τ), ḟ ′∗(τ))− i( f ∗(τ), ḟ ′(τ))

)
dτ+

+i(( f (t), f ′∗) + ( f ∗(t), f ′)− ( f , f ′∗)− ( f ∗, f ′)).

(50)

In particular, if Ĥ =
∫

dkε(k)a∗(k)a(k) is a quadratic translation-invariant Hamilto-
nian we obtain

H( f , f ′) = i
∫

dkε(k)
(

f ∗(k) f ′(k)− f ′∗(k) f (k)
)
.

Here k ∈ Rd. We can consider also a more general case when k = (k, s) where s is a
discrete index and k ∈ Rd.

Let us consider a general translation-invariant Hamiltonian (49). In other words, we
assume that the integrand in (49) contains delta-function δ(k1 + ...km − l1 − ...− ln) (the
arguments l, l are points of Rd plus discrete indices).
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We represent Ĥ as a sum of the quadratic part Ĥ0 and perturbation gV̂. Then we can
consider time-dependent Hamiltonian Ĥ(t) = Ĥ0 + h(at)gV̂ where h(0) = 1, h(−∞) = 0.
For a → 0 this means that we switch on the interaction V̂ adiabatically. If Ua(t,−∞) de-
notes the evolution operator for the corresponding “Hamiltonian” H(t) and Φ stands for a
translation-invariant stationary state of quadratic “Hamiltonian” H0. Then
Ψ = lima→0 Ua(0, ∞)Φ is a translation-invariant stationary state of the “Hamiltonian”
H0 + gV.

In the derivation of the formula (50) we assumed that the “Hamiltonian” H does not
depend on time but this formula can be applied also to time-dependent “Hamiltonians”.
This remark allows us to express Ψ in terms of functional integrals. If we start with an
equilibrium state Φ the state Ψ is also an equilibrium state (in general with different
temperature), however, the above considerations can be applied also in non-equilibrium
situations. They can be considered as justification of Keldysh formalism in non-equilibrium
statistical physics and lead to the same Feynman diagrams. (See [12] for another derivation
of Keldysh diagram techniques in the formalism of L-functionals.)

The above formulas were written in the assumption that h̄ = 1. In general we should
include the factor h̄ into the right-hand side of the formula (45) and into the left-hand side
of the equation of motion (1).

Itf we represent elements of L by non-linear functionals L the operators b( f ), b+( f ),
b̃( f ), b̃+( f ) can be represented in the form

b+(k) = −h̄αk +
∂

∂α∗k
≡ −h̄c∗2(k) + c1(k), b(k) = − ∂

∂αk
≡ −c2(k),

b̃+(k) = h̄α∗k −
∂

∂αk
≡ h̄c∗1(k)− c2(k), b̃(k) =

∂

∂α∗k
≡ c1(k),

where c∗i (k) are operators of multiplication by α∗k for i = 1 and by αk for i = 2, and ci(k)
are derivatives taken, respectively, with respect to α∗k and αk. (To simplify notations we
assumed that E consists of functions on discrete space M; points of M are labeled by
index k).

It is easy to derive from these formulas that the equations of motion for functionals
L(α∗, α) have a limit as h̄ tends to zero.

5.3. Clifford Algebra

Clifford algebra is defined by canonical anticommutation relations

[a( f ), a( f ′)]+ = [a∗(g), a∗(g′)]+ = 0, [a( f ), a∗(g)]+ = ( f , g) (51)

In other words to define Clifford algebra we take the definition of Weyl algebra and
replace commutators with anticommutators.

The results above can be generalized to Clifford algebra. The main difference is that
the symbols should be considered as functions of anticommuting variables.

The simplest way to understand this is to notice that Clifford algebra can be regarded
as super Weyl algebra.

Recall that for Z2-graded space E and Grassmann algebra Λ one can define a Λ-point
of E as a formal linear combination ∑ λAeA where eA is a basis of E and the coefficients
λA are even for even eA, odd for odd eA. The set E(Λ) of Λ- points can be regarded as
vector space. If E is an algebra, this set can also be considered as an algebra. If for all
Grassmann algebras Λ, the set E(Λ) is a Lie algebra, one says that E is a super Lie algebra.
Similarly, if for all Grassmann algebras the set E(Λ) is a Weyl algebra, one can say that E is
a super Weyl algebra. In particular, if f Z2-graded space E is purely odd and equipped with
a structure of Clifford algebra then the set of Λ-points is a Weyl algebra. This means that
Clifford algebra can be considered as super Weyl algebra.
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