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Abstract: Production of pions in high-energy collisions with nuclei in the kinematics prohibited for
free nucleons (“cumulative pions”) is studied in the fusing color string model. The model describes the
so-called direct mechanism for cumulative production. The other (spectator) mechanism dominates
in production of cumulative protons, and is suppressed for pions. In the model, cumulative pions are
generated by string fusion, which raises the maximal energy of produced partons above the level of
the free nucleon kinematics. Momentum and multiplicity sum rules are used to determine the spectra
in the deep fragmentation region. Predicted spectra of cumulative pions exponentially fall with the
scaling variable x in the interval 1 < x < 3 with a slope between 5.1 and 5.6, which agrees well with
the raw data obtained in the recent experiment at RHIC involving Cu–Au collisioins. However, the
agreement is worse for the so-called unfolded data, presumably taking into account corrections due
to the experimental setup and having rather a power-like form.
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1. Introduction
Production of particles in nuclear collisions in the kinematical region prohibited

in the free nucleon kinematics (“cumulative particles”) has long aroused interest from
both theoretical and pragmatic points of view. On the pragmatic side, in principle this
phenomenon allows the effective collision energy to beraised far beyond the nominal
accelerator energy. This may turn out to be very important in the near future, when all
possibilities to construct more powerful accelerator facilities become exhausted. Of course
one should have in mind that the production rate falls very rapidly above the cumulative
threshold, meaning that to use the cumulative effect for practical purposes a sufficiently
high luminosity is necessary. On the theoretical side, the cumulative effect explores the
hadronic matter at high densities, i.e., when two or more nucleons overlap in the nucleus.
Such dense clusters may be thought of as being in a state which closely resembles a cold
quark–gluon plasma. Thus, cumulative phenomena could serve as an alternative way to
produce this new state of matter.

There has never been a shortage of models that describe cumulative phenomena, from
multiple nucleon scattering mechanism to repeated hard inter-quark interactions [1–4]. How-
ever, it should be acknowledged from the start that cumulative particle production is at
least in part a soft phenomenon. Thus, it is natural to study it within the models which
successfully explain soft hadronic and nuclear interactions in the non-cumulative region.
Then, one could have a universal description of particle production in all kinematical
regions. Non-cumulative particle production is well described by the interacting color
string color model (ICSM) [5] and recent review [6]. In this model, it is assumed that during
collisions color strings are stretched between the partons of colliding hadrons (or nuclei),
which then decay into more strings, and finally into the observed produced hadrons.

As was argued long ago (see, e.g., [4,7] and references therein), apart from the slow
Fermi motion of nuclear components, which are absolutely inadequate to explain the
observed cumulative phenomena, there are essentially three mechanisms of cumulative
particle production: direct, spectator, and rescattering. In the originally proposed spectator
mechanism (known as the flucton mechanism, or multinucleon correlations inside the
nucleus) cumulative particles exist in the nucleus by itself, independently of collisions, and

Universe 2023, 9, 195. https://doi.org/10.3390/universe9040195 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9040195
https://doi.org/10.3390/universe9040195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://doi.org/10.3390/universe9040195
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe9040195?type=check_update&version=2


Universe 2023, 9, 195 2 of 17

the role of the latter is to liberate them citebaldin,strikfurt. In the alternative direct mecha-
nism, cumulative particles are generated in the process of collision. Finally, rescattering
may move initially produced non-cumulative particles into a cumulative region. As found
in [7,8], the role of these three mechanisms is different for different energies and particles.
In particular, rescattering can play its role at small energies and degrees of cumulativity
before quickly dying out with the growth of both. The spectator mechanism strongly
dominates in the production of cumulative protons, as the direct mechanism is damped for
protons. Cumulative pions, on the contrary, are mostly produced by the direct mechanism.

In order for the spectator mechanism to operate, hard interactions should occur within
the nucleus between its partons moving at large relative momenta. This is a very different
picture as compared with the interaction color string approach, in which there are no such
partons inside the nucleus and string are stretched between partons of the projectile and
target. The ICSM corresponds to the direct mechanism. Thus, by restricting our attention
to ICSM we hope to describe production of cumulative pions without addressing protons
produced mostly by the spectator mechanism.

Proposed some time ago, ICSM has proven to be rather successful in explaining a series
of phenomena related to collective effects among the produced strings, such as damping
of the total multiplicity and strange baryon enhancement. It can be expected that fusion
of strings inherent in this model enhances the momenta of the produced particles, and
may describe production of cumulative particles with momenta far greater than without
fusion. Old preliminary calculations of the production rates in the cumulative region at
comparatively low energies showed encouraging results [9], and agree quite well with the
existing data on production of cumulative pions in hA collisions at Ecm = 27.5 GeV [10,11]
though not woth those on cumulative protons, for which the cross-section has turned out
to be far below that found experimentally. Thus, these calculations support the idea that
cumulative protons are generated mostly by the spectator mechanism, wheras cumulative
pions are produced mostly by the direct mechanism. However, in order to describe higher
energies and heavy ion collisions it is necessary to update these old treatments quite
considerably.

We stress that the string picture has been introduced initially to describe particle
production in the central region, where the production rate is practically independent of
rapidity and grows with energy. As mentioned, these results agree with the data very
well [6]. On the contrary, cumulative particles are produced in the fragmentation region
near the kinematical threshold, where the production rates do depend on rapidity and fall
to zero at the threshold. Thus, from the start it is not at all obvious how the color string
approach might provide reasonable results in the deep fragmentation region. Accordingly,
an important part of our study is to describe the rate of pion production from the initial and
fused strings valid in the fragmentation region. To this end, we use color and momentum
conservation imposed on the average and sum rules which follow.

As shall be seen from the results, we reproduce a very reasonable description of the
pion production rates for 1 < x < 2 at 27.5 GeV [9]. However, we do not attempt to
describe the proton rates, as in [9] these were found to lie two orders of magnitude below
those found by experiment. As explained, the bulk of cumulative protons are produced by
the spectator mechanism, which lies outside of color string dynamics.

The bulk of this paper is devoted to production of cumulative pions in AA collisions
at RHIC and LHC facilities, and is related to the performed and planned experimental
efforts in this direction. It should be noted that in the older HIJING [12] and DPMJET [13]
calculational models devoted to the overall spectra in heavy-ion collisions, particles were
found emitted with energies up to 2÷2.5 times greater than allowed by proton–proton
kinematics. A recent experimental study devoted specifically to cumulative jet production
was performed for Cu–Au collisions at 200 Gev [14]. Comparison of our predictions with
these data are postponed to the discussion section at the end of this paper. With certain
reservations, the data confirm the universality of particle production in the fragmentation
region, and in particular in the cumulative region.
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2. The Model
The color string model assumes that each of the colliding hadrons consists of partons

(valence and sea quarks) distributed both in rapidity and transverse space with a certain
probability, which is deduced from the experimentally known transverse structure and
certain theoretical information on the behavior of the x distributions at its ends. These
distributions are taken to be the ones for the endpoints of the generated strings. As a result,
the strings acquire a certain length in rapidity. We shall choose the c.m. system for the
colliding nucleons, with the nucleus (projectile) consisting of A nucleons and moving in the
forward direction. Each of the projectile nucleons is taken to carry momentum p1, meaning
that the total momentum of the projectile nucleus is Ap1. The target is assumed to be just
the nucleon with momentum p2. The cumulative particles are observed in the forward
hemisphere in the z direction of the fast moving nucleus. Their longitudinal “+” momenta
are x+p1= with x+ > 1. In the following, x+ is called the cumulativity index, or simply
cumulativity. Theoretically, the maximal value for x+ is A, though in practice we find
x+ ≤ 5.

The nucleons for both projectile and target are split into partons, as shown in
Figures 1 and 2 for the projectile, where the partons (quarks and diquarks) are illustrated
by dashed lines. Color strings are stretched between partons of the projectile and targets,
as shown in Figure 1, and some of these simple strings can be fused into strings with more
color. In Figure 2, it is shown that the initial four simple strings combine into fused strings
attached to quark–antiquark pairs within the same nucleons (left) or different nucleons
(right) in the projectile nucleus.

Figure 1. pA collision for A = 2, with creation of four color strings; nucleons of the projectile are
shown by solid lines, and the partons into which they split (quarks and diquarks) by dashed lines.

Figure 2. pA collision for A = 2 with creation of four color strings which fuse within individual
nucleons (left panel) or between different nucleons (right panel). The nucleons of the projectile are
shown by solid lines and the partons into which they split (quarks and diquarks) by dashed lines.
Cumulative particles are shown by thick solid lines.
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Let a parton from the projectile carry a part x1+ of the “+” component of nucleon
momentum p1 and let a partner parton from the target carry a part x2− of the “-” component
of nucleon momentum p2. The total energy squared for the colliding pair of nucleons is

S = 2p1+p2− = m2eY (1)

where m is the nucleon mass and Y is the total rapidity. We assume that the energy is high,
meaning that S >> m2. The c.m. energy squared accumulated in the string is then

s = x1+x2−S. (2)

Note that the concept of a string only has sense in the case when s is not too small, say,
more than m2. Thus, both x1+ and x2− cannot be too small.

x1+, x2− > xmin = m/
√

S = e−Y/2, (3)

We relate the scaling variables for the string endpoints to their rapidities by

y1 = Y/2 + ln x1+, y2 = −Y/2− ln x2− (4)

due to (4) y1 ≥ 0 and y2 ≤ 0. The “length” of the string is simply the difference y1 − y2.
Due to partonic distribution in x, the strings have different lengths; moreover, they

can take different positions in rapidity with respect to the center y = 0. The sea distribution
in a hadron is much softer than the valence one. In fact, the sea distribution behaves as 1/x
near x = 0, meaning that the average value of x for sea partons is small, on the order of
xmin [15]. As a result, strings attached to sea partons in the projectile nucleus carry very
small parts of longitudinal momentum in the forward direction, and these fall with energy;
as such, they seem to be useless for building up the cumulative particles. This allows
us to retain only strings attached to valence partons, that is, quarks and diquarks, in the
projectile while neglecting those strings attached to sea quarks altogether. This is reflected
in Figure 1, where we show only the valence partons in the projectile. Note that the number
of the former is exactly equal to 2A, and does not change with energy. Thus, independent
of the energy, for a given nucleus we always have a fixed number of strings.

The upper-end rapidities of the strings attached to diquarks are usually thought to
be larger than those attached to the quarks, as the average value of x for the diquark
is substantially larger than that for the quark. Theoretical considerations lead to the
conclusion that, as x → 1, the distributions for the quark and diquark in the nucleon
behave as (1− x)3/2 and (1− x)−1/2, respectively, modulo logarithms [15]. Neglecting
the logarithms and taking into account the behavior at x → 0, we assume that these
distributions for the quark q and diquark qq are

q(x) =
8

3π
x−1/2(1− x)3/2 (5)

and
qq(x) = q(1− x) =

8
3π

x3/2(1− x)−1/2 (6)

The quark and diquark strings attach to all sorts of partons in the target nucleon,
including valence quarks, diquarks, and sea quarks. However, their position in rapidity in
the backward hemisphere is very different. Here, we are not interested in the spectrum in
the backward hemisphere. For our purposes, limiting ourselves to the forward hemisphere,
we may take the lower ends of the strings, which are all equal to xmin << 1. As a result, at
the start of our model we have 2A initially created strings, half of which are attached to
quarks and half to diquarks, with their lower ends in rapidity all equal to

y2 = Y/2 + ln xmin
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and their upper ends distributed in accordance with (5) and (6). As soon as they overlap
in the transverse space, they fuse into new strings with more color and more energy. This
process is studied in the next section.

3. Fragmentation Spectra and Fusion of Strings
3.1. One Sort of Strings and Particles

The following discussion closely follows that in [9]. To start, we study a simplified
situation with only one type of string. We consider both the original string stretched
between the partons of the projectile and target and the fused strings of higher color which
are generated when n original strings occupy the same area in the transverse plane.

First, we consider the original simple string. Let it have its ends at x1+ ≡ x1 and xmin.
For cumulative particles, we are interested only in the forward hemisphere and only in the
“+” components of momenta; thus, in the following, we omit the subindex “+”.

We are interested in the spectrum of particles emitted from this string with longitudinal
momentum xp1. Evidently, x varies in the interval

xmin < x < x1,

or when introducing z = x/x1 in the interval

zmin < z < 1, zmin =
xmin
x1

.

The multiplicity density of produced particles (pions) is then

τ1(z) =
dµ

dy

and the total multiplicity of particles emitted in one of the two hemispheres is∫ 1

zmin

dzτ1(z) =
1
2

µ0,

where µ0 is the total multiplicity in both hemispheres. The emitted particles have their “+”
momenta k+ in the interval

xmin p1+ < k+ < zx1 p1+

and, as z, x1 ≤ 1,
xmin p1+ < k+ < p1+.

Thus, the particles emitted from the simple string cannot carry their “+” momenta
greater than a single incoming nucleon. They are non-cumulative.

Now, let several simple strings coexist without fusion. Each of these strings produces
particles in the interval dictated by its ends. If the ith string has its upper end x(i)1 , then the
total multiplicity density of n unfused strings is

τ(n)(x) =
n

∑
i=1

τ
(i)
1 (x),

where τ
(i)
1 is the multiplicity density of the ith string, and is different from zero in the

interval
xmin < x < x(i)1 ≤ 1.

As a result, all produced particles have their “+” momenta lying in the same interval
< p+ as that for a single string, meaning that they are all non-cumulative. We conclude
that no cumulative particles will appear without string fusion. In this picture, only fusion
of strings produces cumulative particles.

Now, consider that n simple strings fuse into a fused string. The process of fusion
obeys two conservation laws, namely, those of color and momentum. As a result of the



Universe 2023, 9, 195 6 of 17

conservation of color, the color of a fused string is
√

n higher than that of an ordinary
string [5,6] Of the four momentum conservation laws, here we are mostly interested in the
conservation of the “+” component, which leads to the conservation of x. A fused string
has an upper endpoint

xn =
n

∑
i=1

x(i),

where x(i) are the upper ends of the fusing strings. This endpoint can be much higher than
the individual x(i) of the fusing strings. In the limiting case when each fusing string has
x(i) = 1, we find xn = n. Consequently, the particles emitted from the fused string have
maximal “+” momentum np+ and are cumulative with the degree n of cumulativity.

At this point, we have to stress that there are several notable exceptions. The maximal
value n for xn can be achieved only when different strings which fuse are truly independent,
which is the case if the strings belong to different nucleons in the projectile. To picture this,
imagine that two strings which belong to the same nucleon fuse, with one starting from the
quark and the other from the antiquark. In this case, x(1) + x(2) = 1 and x2 have the same
value as x1. Thus, fusing of strings inside the nucleon does not provide any cumulative
particles. Such particles are only generated by fusing of strings belonging to different
nucleons in the projectile; compare the left and right panels in Figure 2. In the left panel,
the two fused strings come each from the same nucleon, and cannot generate cumulative
particles; such configurations are to be dropped. In the right panel, the fused string is
formed from strings belonging to different nucleons, resulting in cumulative paricles.

The multiplicity density of particles emitted from the fused string is denoted by

τn =
dµn

dy

where µ is the generated multiplicity. It is different from zero in the interval

x(n)min ≤ x ≤ xn, x(n)min = nxmin, (7)

or again, introducing z = x/xn in the interval

zmin ≤ z < 1, zmin =
x(n)min
xn

We are interested in emission at high values of x, or of z close to unity, that is, in
the fragmentation region for the projectile. Standardly, it is assumed that the multiplicity
density is practically independent of x in the central region, that is, at small x. However,
τn cannot be constant in the whole interval (7), and has to approach zero at its end in the
fragmentation regions. At such values of z, τn is expected to strongly depend on z. Our
task is to formulate the z-dependence of τn in this kinematical region.

To this end, we can set up certain sum rules which follow from the mentioned conser-
vation laws and restrict possible forms of the spectrum of produced hadrons.

The total number of particles produced in the forward hemisphere by the fused string
should be

√
n greater than by the ordinary string. This leads to the multiplicity sum rule:∫ xn

nxmin

dx
x

τn(x) =
1
2

µ0
√

n (8)

where, as before, µ0 is the total multiplicity from a simple string in both hemispheres. The
produced particles have to carry all the longitudinal momentum in the forward direction.
This results in the following sum rule for x:∫ xn

nxmin

dxτn(x) = xn (9)
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In these sum rules, xmin is provided by (3) and is small. Passing to the scaled variable

z = x/xn

we can rewrite the two sum rules as∫ 1

zn

dz
z

τn(z) =
1
2

µ0
√

n (10)

and ∫ 1

zn
dzτn(z) = 1 (11)

where
zn = nxmin/xn (12)

These sum rules place severe restrictions on the form of the distribution τn, which
obviously cannot be independent of n. Comparing (7) and (8), we can see that the spectrum
of the fused string has to vanish at its upper threshold faster than is the case for the simple
string. In the scaled variable z, it is shifted to smaller values, that is, to the central region.
This must have a negative effect on the formation of cumulative particles produced at
extreme values of x.

To proceed, we choose the simplest form for the distribution τn

τn(z) = an(1− z)αn−1, α > 1 (13)

with only two parameters: magnitude an and slope αn.
The x sum rule relates an and αn as follows:

an = αn(1− zn)
−αn . (14)

The multiplicity sum rule finally determines αn via µ0 as

αn(1− zn)
−αn

∫ 1

zn

dz
z
(1− z)αn−1 =

1
2

µ0
√

n (15)

This equation can be easily solved when zn → 0. We can present the integral in (14) as∫ 1

zn

dz
z
[(1− z)αn−1 − 1] + ln

1
zn

. (16)

The integral term is finite at zn = 0; thus, we can write it as a difference of integrals in
the intervals [0, 1] and [0, zn]. The first can be found exactly:

I1 =
∫ 1

0

dz
z
[(1− z)αn−1 − 1] = lim

ε→0

∫ 1

0
dzz−1+ε[(1− z)αn−1 − 1] =

lim
ε→0

[
B(αn, ε)− 1

ε

]
= ψ(1)− ψ(αn). (17)

The second term has an order −(αn − 1)zn and is small unless αn grows faster than n,
which is not the case, as we shall presently see. In fact, we find that αn grows roughly as√

n, which allows to neglect the second factor in (14) and rewrite it in its final form:

αn

[
ln

1
zn

+ ψ(1)− ψ(αn)
]
=

1
2

µ0
√

n. (18)

Note that the total multiplicity µ0 from a simple string is just Y; additionally,
1/zn = nxmin/xn, meaning that

ln
1
zn

=
Y
2
+ ln

xn

n
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Thus, Equation (18) can be rewritten as

αn =
√

n
(

1 +
2
Y
(ln

xn

n
+ ψ(1)− ψ(αn))

)−1
(19)

This transcendental equation determines αn(xn) for the fused string. Obviously, at
Y >> 1 the solution does not depend on xn and is just αn =

√
n. To finally fix the

distributions at finite Y, we have to choose the value of α for the simple string. We take
the simplest choice α1 = 1 for an average string with x = x0 = 1/2, which corresponds to
a completely flat spectrum and agrees with the results of [15]. This fixes the multiplicity
density for the average string

τ1(y) = 1 (20)

which favorably compares to the value in 1.1 extracted from the experimental data [8].
After that, the equation for α takes the form

αn

(
ln xn + ψ(1)− ψ(αn)

)
=
√

n (21)

At finite Y, this has to be solved numerically to provide αn(xn, Y), where xn is the
upper end of the string n.

We find that with the growth of n the spectrum of produced particles goes to zero at
z→ 1 more and more rapidly. Therefore, although strings with large n produce particles
with large values of x ≤ xn, the production rate is increasingly small.

3.2. Different Strings and Particles
In reality, strings are of two different types, attached to either quarks or antiquarks.

Additionally, various types of hadrons are produced in general. In the cumulative region,
the mostly studied particles are nucleons and pions, the production rates of the rest being
much smaller. As mentioned in the introduction to this paper, the dominant mechanism
for emission of cumulative nucleons is the spectator mechanism, which lies outside the
color string picture. Thus, we restrict ourselves here to cumulative pions. The multiplicity
densities for each sort of fused strings obviously depends on its flavor contents, that is, on
the number of quark and diquark strings in it.

Let the string be composed of n− k quarks and k diquarks, k = 0, 1, . . . n We then have
distributions τnk for the produced pions. The multiplicity and momentum sum rules alone
are now insufficient to determine each of the distributions τnk separately. To overcome this
difficulty, we note that in our picture the observed pion is produced when the parton (quark
or diquark) emerging from string decay neutralizes its color by picking up an appropriate
parton from the vacuum. In this way, a quark may go into a pion if it picks up an antiquark
or into a nucleon if it picks up two quarks. The rules for quark counting tell us that the
behavior at the threshold in the second case has two extra powers of (x− xn). Likewise,
a diquark may either go into a nucleon by picking up a third quark or into two pions by
picking up two antiquarks, with a probability smaller by a factor (x− xn)2 at the threshold.
On the other hand, at the threshold the probability of finding a quark in the proton is
(1− x)2 smaller than that of the diquark; see Equations (5) and (6). These two effects, that
of color neutralization and threshold damping in the nucleus, seem to compensate for each
other, so that in the end the pion production rate from the antiquark string is only twice the
rate of that from the quark string, provided the distribution of the former in the nucleus
is the same as for the quark strings. This enables us to take the same distributions (5) for
quark and antiquark strings in the nucleus, and to use

τnk = τn

(
1 +

k
n

)
(22)
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for the fragmentation function τnk, where τn is the distribution (13) determined in the
previous subsection. Equation (22) takes into account the doubling of pion production from
antiquark strings. For the simple string, it correctly provides

τ10 = τ1, τ11 = 2τ1

Averaging (22) over all n-fold fused strings, we have the average < k >= n/2; thus,
τnk can be well approximated by

τnk =
3
2

τn (23)

Note that should we wish to consider cumulative protons, then quark strings provide
practically no contribution, being damped both at the moments of their formation and
neutralized in terms of color. In contrast, antiquarks dominate at both steps, and provide
effectively the total contribution. Thus, we would have to consider only antiquark strings
and only one multiplicity distribution, that of nucleons τ

(N)
n , for which our sum rules

are valid with the sole change µ0 → µo(N), that being the total multiplicity of nucleons.
However, it then becomes necessary to use distribution (6) for antiquark strings in the
nucleus, which grows in the fragmentation region.

4. Nucleus–Nucleus Scattering
In the preceding sections, we studied pA scattering in the system where the nucleus

is moving fast in the positive direction z. Correspondingly, we were interested in the
forward hemisphere in the deep fragmentation region, with our attention focused on
particles emitted with longitudinal momenta higher than that of the projectile nucleons.
The role of the target proton was purely that of a spectator, as we were not interested in
particles moving in the opposite direction from the projectile nucleus. The only information
necessary about the target was that all strings attached to the projectile nucleus could be
attached to the target. This was related to existence of sea partons in the target apart from
the dominant valence ones.

If we instead substitute the nucleus (say, of the same atomic number A) for the proton
target, nothing changes in the projectile nucleus hemisphere, and all our previous formulas
remain valid. The only difference is that strings attached to the nucleons in the projectile
nucleus can now be coupled to valence partons in the target nucleus, provided both nuclei
overlap in the transverse area. Thus, the number of all strings depends on geometry, more
concretely, on the impact parameter b. As for pA collisions, formation of cumulative strings
with x > 1 requires that the fusing strings belong to different nucleons in the projectile,
meaning that the picture of cumulative production will not change except that in it will be
different for different b. The final cumulative multiplicity is obtained as usual by integration
over all values of the impact parameter b.

Thus, as far as the cumulative particles are concerned, the difference between pA and
AA collisions reduces to the geometry in the transverse plane and the ensuing change in
string configurations.

5. Probability of Cumulative Strings
5.1. Geometric Probability of String Fusion

As stressed previously, the cumulative production in our scenario is totally explained
by the formation of fused strings, which follows when n ≥ 2 strings overlap in the
transverse space. The exact nature of this overlapping may be different, i.e., total or partial.
In the transverse space, such fused strings may have different forms and dimensions,
presenting complicated geometrical structures. The detailed analysis of their geometry and
dynamical properties presents an exceptionally complicated and hardly realizable task,
even when the number of strings is quite small, to say nothing of the realistic case when
this number is counted by hundreds or even thousands. However, the study of cases with
a small number of strings shows that equivalent results can be well reproduced within a
simplified picture [16]. To accomplish this, we can cover the transverse area of interaction
by a lattice with cells having the areas of the simple strings (circles of radius ∼ 0.3 fm).
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Strings stretched between the projectile and target appear in either one cell or in different
cells. When a cell contains n strings, they are assumed to fuse and give rise to an n-fold
fused string occupying this cell.

In this approach, the formation of fused strings proceeds in several steps. First,
consider pA collisions. In the first step, the aforementioned lattice is set up to cover
the whole area of the nucleus. Cells form the file zc(m) m = 1, 2, . . ., of their points
zc = (x, y) = x + iy in the transverse plane, with the center of the nucleus at zA = (0, 0).

The second step is to randomly add A nucleons at points zN with the probability
provided by the transverse density T(b). These are added successively, and with each new
nucleon one passes to the third step.

The third step is to randomly add two strings around each of the added nuclei at
distances from its center dictated by the appropriate matter density within the nucleon
(Gaussian). Each of the two strings then arrives into some cell m which enhances its string
content ν(m), ν = 0, 1, 2, . . . by unity.

At this point, it is necessary to take into account that the types of two fusing strings,
quark and antiquark, attached to the same nucleon in the projectile nucleus do not generate
a cumulative string with their upper end xn > 1 (see Section 3.1). Thus, they must be
excluded from the total set of fused strings, leaving only those which are generated when
to the target two strings from different nucleons of the projectile nucleus are attached. To
accomplish this, we first note that the two strings from the same nucleon may either be put
in different cells m1 and m2, or put in the same cell when m1 = m2. In the former case, both
ν(m1) and ν(m2) are each enhanced by unity. In the latter case, ν(m1) = ν(m2) does not
change. As a result in the cumulative production a fused string is only generated when it
belong to different nucleons in the projectile nucleus, meaning that they have to overlap
in the transverse area. This introduces factor of smallness, which is roughly the ratio of
the transverse areas of the nucleon to the nucleus for each successive fusion of n = 2, 3, . . .
strings; this is responsible for the fast decrease in the cumulative cross-section with the
growth of cumulative number x.

In the fourth step, a search is performed for all cells with more than two strings, finding
Nc(2) cells with two strings, that is, two-fold fused strings, Nc(3) cells with three strings,
that is, three-fold fused strings, etc. Different cells mark the overlap of several nucleons
at different locations in the transverse plane and physically mark different trajectories of
the target proton at each collision. Thus, to find the total cross-section, we have to take
the sum of contributions of all cells with a given number of strings n calculated with the
relevant dynamical probability pn and particle distribution τn(z) from Equation (13). This
corresponds to the cross-section at all impact parameters b of the target proton as it crosses
the nucleus.

Here, recall that the cumulative string with xn > 1 can only be formed when it starts
from valence quarks in the projectile nucleus. Thus, only two strings can be attached to
each nucleon, and the total number of simple strings is fixed to 2A. On the contrary, for
non-cumulative production the sea quarks in the projectile contribute to the number of
strings from each nucleon, and the resulting multiplicity steadily increases with energy.
From this, we can immediately conclude that cumulative production depends only very
weakly on energy, with all of this dependence coming from powers αn(x, Y).

For AA scattering, the procedure does not change, with the only difference being
that the nuclei overlap is substituted for the projectile nucleus depending on the impact
parameter b for the collision, resulting in different cumulative multiplicity for different b.
The total multiplicity is obtained after integration over all b.

5.2. Probability of Cumulativity of a Fused String
Strings are distributed in the nucleons with probabilities (5) and (6) for quarks and

diquarks. As argued above, we assume that they are all distributed with the quark distribu-
tion (5). To eliminate the steep growth at x = 0, we move to the variable u =

√
x. In terms

of u, the distribution takes the simple form

ρ(u) = (1− u2)3/2 = (1− x)3/2, 0 < u < 1. (24)
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The probability of finding a string with its upper end at x consisting of n simple strings
with ends x1, . . . xn is provided by the multiple integral

pn(x) =
∫ 1

0

n

∏
i=1

(
duiρ(xi)

)
δ
(

x−
n

∑
i=1

xi

)
=
∫ 1

0

n−1

∏
i=1

(
duiρ(xi)

)
ρ(
(

x−
n−1

∑
i=1

xi

)
. (25)

We have to determine the limits of successive integrations starting from the (n− 1)-th.
From the start, it is obvious that pn(x) can be different from zero only in the interval
0 < x < n.

For two strings, we have

p2(x) =
∫ 1

0
du1ρ(x1)ρ(x− x1), u1 =

√
x1. (26)

Evidently, we should have

0 < x2 = x− x1 < 1, or 0 < x− x1, x− x1 < 1.

These two conditions determine the lower and upper limits a1 and b1 of integration
over u1

x1 > a1(x) = max(x− 1, 0), x1 < b1(x) = min(x, 1), (27)

or correspondingly the limits in u1√
a1(x) < u1 <

√
b1(x). (28)

Probability p2(x) is different from zero in the region of x such that a1(x) < b1(x).
If 0 < x < 1, then a1 = 0 and b1 = x; thus, a1 < b1.
If 1 < x < 2, then a1 = x− 1 and b1 = 1; thus, a1 < b1, provided x < 2.
If x > 2, then a1 = x− 1 and b1 = 1; thus, a1 > b1 and p2(x) = 0, as noted previously.
In consequence, a nonzero result is obtained at 0 < x < 2, though with different integration
limits. In the case of interest, that is, x > 1, the limits are a1 = x− 1 and b1 = 1.

Now, consider pn(x) for n > 2.
From (25), we find the recurrent relation

pn(x) =
∫ umax

umin

du1ρ(x1)pn−1(x− x1)., u1 =
√

x1. (29)

The limits
umin =

√
a umax =

√
b

are determined by the condition pn−1(x− x1) 6= 0, which limits x− x1 to the region

0 < x− x1 < n− 1.

From this, we find

x1 < b = min(x, 1), x1 > a = max(x− n + 1, 0).

For x > 1, it follows that b = 1 is independent of x.
For a with respect to x < n− 1, we obtain a = 0. However, in the interval n− 1 < x < n,
we obtain a = x− n + 1.

Equation (29) can be used to calculate pn(x) starting from p2(x), as explicitly provided
by integral (26).

6. Calculations
For both proton–nucleus and nucleus–nucleus collisions, it is necessary to know the

probabilities of fused string formation pn(x) and the observed particle distribution τn(x).
The former is determined by Equation (26) and the recurrent relation (29), while the latter
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is fully expressed by the powers αn(x, Y), which in turn are determined by Equation (21)
with xn = x. In fact, fused strings formed from more than five simple strings are not found
in our calculations for either p-A or A-A collisions. For n = 1, 2, . . . 5, the results of our
numerical calculations provide pn(x) and αn(x, Y), which are presented in Figures 3–5. At
fixed x = xn, αn grows with n in accordance with Equation (21).
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Figure 3. Probabilities pn(x), which are different from zero in the interval 1 < x < n.
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With these characteristics of cumulative string formation now known, we can begin the
Monte Carlo procedure to finally find the string distributions and cumulative multiplicities.
We performed 10,000 runs on our Monte Carlo program. For pA collisions, we chose
p-Ta at 27.5 GeV. This case, involving comparatively low energies, is hardly suitable for
our color string picture, as the length of cumulative strings is restricted by Y/2 ∼ 3.
However, we chose it having in mind the existing old experimental data on cumulative
pion production [10,11]. For AA, we considered Cu–Cu and Au–Au collisions at 200 GeV
(RHIC) and Pb–Pb collisions at 5.02 TeV (LHC).

6.1. p-Ta at 27.5 GeV
The described numerical calculation provides the numbers of fused strings (NFS)

shown in Table 1 The data for n = 1 provide the number of non-fused strings, and so on
with x1 ≤ 1. These data are provided only for the sake of comparing fused and non-fused
strings. We would repeat here that these data refer only to the cumulative situation in
which the number of strings is restricted to two for each nucleon in the nucleus; once
leaving this restriction aside, these numbers will grow considerably and increase strongly
with higher energy.

Table 1. p-Ta at 27.5 GeV.

n NFS

1 132
2 57
3 21
4 6.3
5 1.6

From these sets of strings, we can obtains the multiplicities per unit rapidity, which
are shown in Figure 6.
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Figure 6. Multiplicities per unit rapidity for production of cumulative pions at cumulativity x ≥ 1 in
p-Ta collisions at 27.5 GeV.

6.2. AA
In this case, the distribution of cumulative strings and multiplicities depends on the

impact parameter b. We split our results roughly into three categories depending on the
value of b: central, with 0 ≤ b ≤ 0.4RA; mid-central, with 0.4RA ≤ b ≤ 0.8RA; and
peripheral, with b ≥ 0.8RA, where RA = A1/31.2 fm is the effective “nucleus radius”. The
distribution of cumulative strings is shown in Tables 2–4 for collisions Cu–Cu and Au–Au
at 200 GeV and Pb–Pb at 5.02 TeV.
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Table 2. Cu–Cu at 200 GeV.

n NFS Central NFS Mid-Central NFS Peripheral

1 166 36 22
2 20 7.5 3.2
3 4.8 1.5 0.40
4 0.96 0.2 0.042
5 0.16 0.039 0.030

Table 3. Au–Au at 200 GeV.

n NFS Central NFS Mid-Central NFS Peripheral

1 139 76 46
2 62 26 11
3 24 8.0 2.6
4 7.4 2.0 0.50
5 2.06 0.48 0.077

Table 4. Pb–Pb at 5.02 TeV.

n NFS Central NFS Mid-Central NFS Peripheral

1 148 80 47
2 66 27 12
3 25 8.5 2.8
4 8.2 2.3 0.52
5 2.26 0.47 0.079

The corresponding multiplicities per unit rapidity are shown in Figures 7 and 8.
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Figure 7. Multiplicities per unit rapidity for production of cumulative pions at cumulativity x ≥ 1 in
the central (upper curve), mid-central (middle curve), and peripheral (lower curve) regions in Cu–Cu
and Au–Au collisions at 200 GeV.
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Figure 8. Multiplicities per unit rapidity for production of cumulative pions at cumulativity x ≥ 1 in
the central (upper curve), mid-central (middle curve), and peripheral (lower curve) regions in Pb–Pb
collisions at 5.02 TeV.

The total multiplicities obtained after integration over all b are illustrated in
Figures 9 and 10.
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Figure 9. Total multiplicities per unit rapidity for production of cumulative pions at cumulatively
x ≥ 1 in Cu–Cu and Au–Au–Au collisions at 200 GeV.
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Figure 10. Total multiplicities per unit rapidity for production of cumulative pions at cumulatively
x ≥ 1 in Pb–Pb collisions at 5.02 TeV.

7. Discussion
In all cases, our obtained multiplicities as a function of cumulativity have a simple

exponential form of 1 < x < 3:

µ(x) = C exp−βx, 1 < x < 3. (30)
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The value of β turns out to be of order five and varies weakly for different cases. For
p-Ta at 27.5 GeV, we find β = 5.0. For Cu–Cu and Au–Au at 200 GeV, we obtain β = 5.6
and 5.2, respectively. Finally, for Pb–Pb at 5.02 TeV we find β = 5.3. We do not see any
conclusive explanation for this small variation, which may arise from the difference in
energy, nuclear wave function, and insufficient number of runs. For the coefficient C, its
value for p-Ta is 657 and for central Cu–Cu, Au–Au, and Pb–Pb its values are 166, 517, and
572, respectively.

Inspecting all cases, we see that cumulative production of pions shows a large degree
of universality, which is typical for the fragmentation region of particle production. The
slope of β is to a very large degree explained by overlapping of individual nucleons in the
nucleus, and is roughly derived from the probability of finding n > 2 nucleons occupying
the same area in the nucleus. It is essential, however, to note that overlapping of nucleons
in the color string picture only occurs due to formation of strings, that is, interaction with
the target. Thus, compared to the initial much older idea in the cumulative kinematics
of the existence of “fluctons” in the nucleus with a larger mass and capable of producing
particles, the string picture does not see fluctons in the nucleus from the start.

Very recent experimental study of cumulative production has been performed with
Cu–Au collisions at 200 GeV [14]. Cumulative jets were detected with cm energy E greater
than allowed by the proton–proton kinematics E < 100 GeV. These data have been pre-
sented in two forms: raw data coming from the detectors, and so-called unfolded data,
which presumably take into account distortions due to different sources in the concrete
experimental setup. Remarkably, in the cumulative region the raw data fall exponentially
as provided by (30), with a slope β ' 5.1 which does not practically depend on either cen-
trality or jet characteristics. Our results in this paper refer instead to collisions of identical
nuclei, such as Cu–Cu or Au–Au; however, as we have argued, the cumulative production
in the projectile region does not depend on the target, the influence of which is only felt via
the overlap in the transverse space. With different nuclei, the number of active nucleons
will be different; nonetheless, in our picture this will influence only the magnitude of the
production rate, not its x-dependence. Therefore, the observed slope β = 5.1 agrees well
with our predictions.

On the other hand, the unfolded data have a different x-dependence in the power form

dN
NdE

=
(
− E

E0

)p( E
E0

)−q

with p and q adjusted to the data, and E0 = 163 or 193 GeV depending on the cone width
of the jet and not on the centrality. These unfolded data do not behave in accordance
with our predictions. This discrepancy may proceed from our simplified picture of parton
fragmentation (our partons go into pions with 100% probability), and certainly deserves
better study both in terms of our treatment and in terms of any experimental subtleties.

As mentioned in our introduction, cumulative pions have been seen in the HIJING
and DPMJET models of Cu–Au collisions. Because the authors of those studies were mostly
interested in the overall spectra, no special attention and analysis were provided on the
cumulative region. However, it is notable that they provided different predictions for
cumulative pions (with more particles and greater energies in HIJING), and that in HIJING
rather strong centrality dependence was found. This latter property contradicts both our
model and experimental findings.

In conclusion, we would note that the flucton idea for cumulative production cannot
be discarded altogether. It is possible to envisage formation of a very fast particle already
taking place before the interaction. As mentioned in our introduction, cumulative pro-
duction within this picture corresponds to the so-called spectator mechanism. It is to be
expected that in this approach the leading particle will be one of the nucleons from the
fast nucleus itself. The possibility of its formation was discussed in our older paper in
the framework of a simple quark–parton model [4]. It was later shown that the spectator
mechanism provides the bulk of the contribution for the cumulative protons, with the
direct mechanism considered the earlier paper being suppressed [7]. This may explain why,
when applied to cumulative proton production in p-Ta collisions at 27.5 GeV, the color
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string approach provides multiplicities two orders of magnitude smaller than those found
by experiment [9].
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