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Abstract: DeWitt’s suggestion that the wave function of the universe should vanish at the classical Big
Bang singularity is considered here within the framework of one-loop quantum cosmology. For pure
gravity at one loop about a flat four-dimensional background bounded by a 3-sphere, three choices
of boundary conditions are considered: vanishing of the linearized magnetic curvature when only
transverse-traceless gravitational modes are quantized; a one-parameter family of mixed boundary
conditions for gravitational and ghost modes; and diffeomorphism-invariant boundary conditions
for metric perturbations and ghost modes. A positive ζ(0) value in these cases ensures that, when
the three-sphere boundary approaches zero, the resulting one-loop wave function approaches zero.
This property may be interpreted by saying that, in the limit of small three-geometry, the resulting
one-loop wave function describes a singularity-free universe. This property holds for one-loop
functional integrals, which are not necessarily equivalent to solutions of the quantum constraint
equations.

Keywords: quantum cosmology; boundary conditions; strong ellipticity; spectral ζ-function

1. Introduction

After the birth of relativistic cosmology thanks to Friedmann’s work [1], and the
subsequent proof of the singularity theorems of Penrose, Hawking, and Geroch [2–7], it
became well-accepted by the scientific community that classical general relativity leads to
the occurrence of cosmological singularities (a spacetime being singular if it is timelike or
null geodesically incomplete) in a generic way. Since then, several developments occurred,
and in particular, we here mention what follows.

(i) At the classical level, the work of Christodoulou and Klainerman [8] led to the discov-
ery of asymptotically flat spacetimes, which are timelike geodesically complete.

(ii) At the quantum level, DeWitt [9] proposed to look at the behavior of the wave
function of the universe in correspondence with the classical Big Bang singularity.
Such a proposal was assessed in the outstanding work in Ref. [10].

(iii) Over many years, various concepts of singularity have been conceived, as can be seen
in an important review of Kamenshchik [11].

Moreover, in the literature on quantum gravity and quantum cosmology, several
approaches were developed to study the possible quantum origin of spacetime geometry.
One-loop effects in the early universe were investigated in detail, especially with the help
of ζ-function methods. It is the aim of our review to describe them and then discuss their
relevance for the singularity issue in cosmology. The structure of the paper is as follows.

Section 2 presents in detail a ζ(0) calculation when only transverse-traceless pertur-
bations are considered, with boundary conditions requiring the vanishing of linearized
magnetic curvature on the three-sphere boundary. Section 3 discusses a one-parameter fam-
ily of ζ(0) values obtained with mixed boundary conditions for metric perturbations and
ghost fields. Sections 4–7 outline the basic steps of the ζ(0) calculation with diffeomorphism-
invariant boundary conditions. Open problems are discussed in Section 8.
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2. Linearized Magnetic Curvature Vanishing on S3

We study pure gravity at one loop about flat Euclidean four-space with a three-sphere
boundary of radius a, because when a→ 0, this is the limiting case of a four-sphere geometry
bounded by a three-sphere [12]. The prefactor of the semiclassical wave function is given by
the following (with I2 denoting the part of the action quadratic in metric perturbations)

P(a) =
∫

e−I2[γ] Dγ, (1)

which is a functional integral over all metric perturbations γab that are regular at the origin
τ = 0 and satisfy a given boundary condition at τ = a. Integration is here restricted to the
physical degrees of freedom, which are found by using the Hamiltonian formulation with
the following transverse-traceless choice of gauge condition:

∑
i
(Diγ)ij = 0, ∑

k
γk

k = 0. (2)

These relations pick out the transverse-traceless tensor hyperspherical harmonics
G(n)

ij (φk) multiplied by functions of the radial coordinate τ. Hence, we write

γij = γTT
ij =

∞

∑
n=3

qn(τ)G(n)
ij (φk). (3)

Our work in Ref. [13] studied the Breitenlohner–Freedman–Hawking [14,15] local
boundary conditions for fields of spin 0, 1

2 , 1, 3
2 , 2. For gravity, these imply that the linearized

magnetic curvature should vanish at the boundary. Our detailed analysis in Section 7.3 of
Ref. [13] never appeared in any journals, and hence it is of interest to our review article.

The action that is quadratic in metric perturbations involves a second-order elliptic
operator A with eigenvalues λn, for which one can define a spectral ζ-function

ζA(s) = TrL2 A−s = ∑
n
(λn)

−s. (4)

Eventually, as was shown by Schleich [12], the prefactor of the semiclassical wave
function of Equation (1), with γ having the form (3), can be expressed as

P(a) =
1√

det
(
−∇ f∇ f

4πl2
pµ2

) = D aζ(0), (5)

where −∇ f∇ f is the Laplacian acting on transverse-traceless metric perturbations, and
ζ(0) is the value at s = 0 of the analytic continuation of the spectral ζ-function (4) (for
further details, see now the Appendix A on the one-loop approximation). Thus, within a
functional-integral framework, the wave function of the universe may fulfill the DeWitt
boundary condition if and only if ζ(0) is positive.

The linearized magnetic curvature for gravity is defined from the Weyl tensor C and
from the normal n to the boundary according to the rule (with summation over repeated
tensor indices)

Bij ≡
1
2

ε kl
jµ Ckliνnµnν,

and it can only vanish on S3 if [13]

∞

∑
n=3

dqn

dτ
(a)ε kl

j

(
G(n)

il|k − G(n)
ik|l

)
= 0. (6)
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The only condition on the modes that ensures the validity of (6) is

dqn

dτ
(a) = 0, ∀n ≥ 3. (7)

We are now interested in evaluating ζ(0) using (7). Thus, after setting τ = t, we study
the kernel of the heat equation for the operator

Pn ≡ −
(

d2

dt2 −
1
t

d
dt
− (n2 − 1)

t2

)
, ∀n ≥ 3, (8)

which results from studying the Laplacian on transverse-traceless metric perturbations.
On denoting by E > 0 the eigenvalues of Pn, we find that its eigenfunctions regular at the
origin are (up to a multiplicative constant)

un(t) = tJn(
√

Et) = qn(t). (9)

Thus, the boundary condition (7) implies the eigenvalue condition

Jn(
√

Ea) +
√

EaJ̇n(
√

Ea) = 0, ∀n ≥ 3. (10)

This equation is of the general kind studied in Ref. [16]. Setting now a = 1 for
simplicity, we define the function

Fn(z) ≡ Jn(z) + zJ̇n(z), ∀n ≥ 3. (11)

Of course, the consideration of such Fn(z) is suggested by (10). It only has real simple
zeros apart from z = 0 (page 482 of Ref. [17]). The basic idea is now the following [16].
Given the zeta-function at large x

ζ(s, x2) ≡∑
n

(
λn + x2

)−s
, (12)

one has, in four dimensions (see Theorem 2 on page 6 of Ref. [18]),

Γ(3)ζ(3, x2) =
∫ ∞

0
t2e−x2tG(t) dt ∼

∞

∑
n=0

BnΓ
(

1 +
n
2

)
x−n−2, (13)

where we have used the asymptotic expansion of the heat kernel for t→ 0+, i.e.,

G(t) ∼
∞

∑
n=0

Bnt
n
2−2. (14)

Strictly speaking, since we have not proved general results on the existence of the
asymptotic expansion of the heat kernel, our Formula (14) could be initially regarded
as an assumption. However, existence theorems hold for the problems studied in this
paper [19,20].

On the other hand, one also has the identity

Γ(3)ζ(3, x2) = −
∞

∑
p=0

Np

(
− 1

2x
d

dx

)3
log
(
(ix)−pFp(ix)

)
, (15)

where Np is the degeneracy of the problem. Thus the comparison of (13) and (15) can yield
the coefficients Bn and in particular ζ(0) = B4, provided we carefully perform a uniform
Debye expansion of Fp(ix). It should be emphasized that this technique seems to be the
most efficient. In fact, by using this algorithm, Moss [16] was able to compute ζ(0) for a
real scalar field subject to Robin boundary conditions, whereas the technique of Kennedy
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based on charge layers on the plane tangent to S3 failed to provide such a value [21,22].
Indeed, the eigenvalue condition (10) is of the Robin type (just set β = 1 in Equation (22)
of Ref. [16]). Thus, on passing to the variable x → ix and then defining αp ≡

√
p2 + x2,

C ≡ − log(
√

2π), we can write

log
(
(ix)−pFp(ix)

)
∼ C− p log(p + αp) +

1
2

log(αp) + αp +
∞

∑
n=1

n

∑
r=0

anr p2rα−n−2r
p . (16)

The coefficients anr in (16) can be computed by comparison using the formula

∞

∑
n=1

n

∑
r=0

anrt2r =
∞

∑
m=1

am(t), (17)

because the am(t) values are known polynomials in t arising from uniform asymptotic
expansions of Bessel functions and their first derivatives. Thus, setting β = 1 in the
Formulae (29)–(31) of Ref. [16] for the am(t), we find in our case that

a10 =
5
8

, a11 =
7

24
, (18)

a20 = − 3
16

, a21 =
1
8

, a22 = − 7
16

, (19)

a30 =
17

384
, a31 =

389
640

, a32 = −203
128

, a33 =
1463
1152

, (20)

plus infinitely many other coefficients that we do not strictly need here. We can now
insert (16)–(20) into (15), apply three times the differential operator − 1

2x
d

dx , and finally use
the contour formula for positive integer values of k [16]

∞

∑
p=0

p2kα−2k−m
p =

Γ
(

k + 1
2

)
Γ
(

m
2 −

1
2

)
2Γ
(
k + m

2
) x1−m, ∀k = 1, 2, 3, . . . , (21)

and the known properties of the Γ-function [23]. Now, writing the asymptotic expansion of
the right-hand side of (15) in the form

Γ(3)ζ(3, x2) ∼
∞

∑
n=0

bnx−n−2, (22)

the comparison with (15) shows that

ζ(0) = B4 =
b4

2
= ζ I(0) + ζ I I(0), (23)

since it is well-known that the asymptotic expansion, if it exists, is unique. The two
contributions to ζ(0) are obtained from the following formulae:

Γ(3)ζ(3, x2) ∼
[
σ1 + σ2

]
∼

∞

∑
n=0

bnx−n−2, (24)

σ1 ∼ −
∞

∑
p=0

Np

(
− 1

2x
d

dx

)3[
−p log(p + αp) +

1
2

log(αp) + αp

]
, (25)

σ2 ∼ −
∞

∑
p=0

Np

(
− 1

2x
d

dx

)3 ∞

∑
n=1

n

∑
r=0

anr p2rα−n−2r
p . (26)
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Bearing in mind (15) and (16), we write (24)–(26) because we can apply Theorem 3 on
page 7 of Ref. [18], concerning the differentiation of asymptotic expansions.

Thus, ζ I(0) (respectively, ζ I I(0)) is half the coefficient of x−6 in the asymptotic expan-
sion of σ1 (respectively, σ2). We first study the asymptotic expansion of σ2, since it is easier
to perform this calculation. In our problem, the degeneracy Np is [12]

Np = 0 ∀p = 0, 1, 2, Np = 2(p2 − 4) ∀p ≥ 3. (27)

This is why we find

σ2 ∼ −
∞

∑
n=1

n

∑
r=0

anr

(
r +

n
2

)(
r +

n
2
+ 1
)(

r +
n
2
+ 2
)[

(G− H)(r, x, n)
]
, (28)

where, setting A = −8, B = 2 (cf. (27)), we have, using also (21),

G(r, x, n) =
∞

∑
p=0

(A + Bp2)p2rα−n−2r−6
p = O(x−n−6)

+
A
2

Γ
(

r + 1
2

)
Γ
( n

2 + 5
2
)

Γ
(
r + n

2
) x−5−n(

r + n
2
)(

r + n
2 + 1

)(
r + n

2 + 2
)

+
B
2

Γ
(
r + 3

2
)
Γ
( n

2 + 3
2
)

Γ
(
r + n

2
) x−3−n(

r + n
2
)(

r + n
2 + 1

)(
r + n

2 + 2
) , (29)

H(r, x, n) =
2

∑
p=0

2(p2 − 4)p2rα−n−2r−6
p = −6x−n−2r−6

(
1 +

1
x2

)− n
2−r−3

− 8δr0x−n−6. (30)

Thus, H(r, x, n) gives rise to terms in (28) that contain x−k with k ≥ 7, and it does not
contribute to ζ I I(0). This is why (28) and (29) lead to

ζ I I(0) =
1
2

[
− A(a10 + a11)− B(a30 + a31 + a32 + a33)

]
. (31)

The insertion of (18), (20) and (27) into (31) finally yields

ζ I I(0) =
11
3
− 121

360
=

1199
360

. (32)

The calculation of (25) is more involved. By performing the three derivatives and
using the identity 1

2x
dαp
dx = 1

2αp
, we find

(
1

2x
d

dx

)3
log
(

1
p + αp

)
= (p + αp)

−3
[
−α−3

p −
9
8

pα−4
p −

3
8

p2α−5
p

]
. (33)

This intermediate step is very important because it proves that by summing over all
integer values of p from 0 to ∞, we obtain a convergent series. However, to be able to
perform the ζ(0) calculation, it is convenient to use the identity

(p + αp)
−3 =

(αp − p)3

x6 . (34)

Upon inserting (34) into (33) and re-expressing p2 as α2
p − x2, we obtain
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(
1

2x
d

dx

)3[
− p log(p + αp)

]
= −px−6 + p2x−6α−1

p +
p2

2
x−4α−3

p +
3
8

p2x−2α−5
p

≡ M(x, αp, p), (35)

which implies

σ1 ∼
[

∞

∑
p=0

Np M(x, αp, p)

]
+ σ′′1 ∼

[
σ′1 + σ′′1

]
, (36)

where

σ′′1 = −
∞

∑
p=0

Np

(
−

α−6
p

2
− 3

8
α−5

p

)

=
∞

∑
p=0

(A + Bp2)

(
α−6

p

2
+

3
8

α−5
p

)

+
2

∑
p=0

(A + Bp2)

(
−

α−6
p

2
− 3

8
α−5

p

)
. (37)

The infinite sum on the right-hand side of (37) contributes to ζ(0) only through the
following part:

∞

∑
p=0

A
2

α−6
p =

A
2

[
x−6

2
+

π

2
3!!
4!!

x−5
]

. (38)

The result (38) is proved by applying the Euler–Maclaurin formula [18] to the calcula-
tion of ∑∞

p=0(p2 + x2)−3, and then using the Formula (3.249.1) on page 294 of Ref. [24]. In
addition, the finite sum on the right-hand side of (37) contributes to ζ(0). In fact, one finds
(we have x → ∞) that

2

∑
p=0

(A + Bp2)

(
−

α−6
p

2
− 3

8
α−5

p

)
= −

(
A
2
+

B
2

)
x−6

[
1− 3

x2 +
6
x4 + ...

]
− A

2
x−6 − 3

8
Ax−5

− 3
8
(A + B)x−5

[
1− 5

2x2 +
35
8x4 + ...

]
, (39)

which implies that the total contribution of σ′′1 to ζ(0) is given by

ζ Ib(0) =
1
2

(
−A− B

2

)
+

A
8

=
7
2
− 1 =

5
2

. (40)

Thus, we have so far

ζ(0) = ζ I(0) + ζ I I(0) = ζ Ia(0) + ζ Ib(0) + ζ I I(0), (41)

where
ζ Ib(0) + ζ I I(0) =

5
2
+

1199
360

. (42)

It now remains to compute ζ Ia(0), i.e., the contribution to ζ(0) due to σ′1 in (36). Indeed,
one has

σ′1 ∼
[

A
∞

∑
p=0

M(x, αp, p) + B
∞

∑
p=0

p2M(x, αp, p)−
2

∑
p=0

(A + Bp2)M(x, αp, p)

]
. (43)
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Let us now denote by Σ(a), Σ(b) and Σ(c) the three sums on the right-hand side of (43).
Both Σ(a) and Σ(b) contain divergent parts in view of (35). These fictitious divergences may
be regularized by dividing by α2s

p and then taking the limit as s tends to zero, as shown in
Ref. [16]. It might not appear a priori obvious that this technique leads to unambiguous
results, since the limit s → 0 is a delicate mathematical point. However, a fundamental
consistency check is presented in Section 7.4 of Ref. [13] for all one-loop calculations
involving only physical degrees of freedom of bosonic fields, showing that the method is
correct. In performing the calculation, we must use the contour Formula (21) and also the
following asymptotic expansion [16]:

∞

∑
p=0

pα−1−n
p ∼ x1−n

√
π

∞

∑
r=0

2r

r!
B̃rx−r

Γ
(

r
2 + 1

2

)
Γ
(

n
2 −

1
2 + r

2

)
2Γ
(

1
2 + n

2

) cos
( rπ

2

)
, (44)

where B̃0 = 1, B̃1 = − 1
2 , B̃2 = 1

6 , B̃4 = − 1
30 etc., are Bernoulli numbers. Thus, using the

label R for the regularized quantities, we define

Σ(a)
R ≡ A

[
− x−6

(
lim
s→0

∞

∑
p=0

pα
−1−(2s−1)
p

)
+ x−6

(
lim
s→0

∞

∑
p=0

p2α
−2−(2s−1)
p

)

+
x−4

2

(
lim
s→0

∞

∑
p=0

p2α
−2−(2s+1)
p

)
+

3
8

x−2

(
lim
s→0

∞

∑
p=0

p2α
−2−(2s+3)
p

)]
. (45)

In view of (44), the first limit in (45) gives the following contribution to ζ(0):

δ1 = −A
2

(
− B̃2√

π
Γ
(

3
2

))
=

A
24

= −1
3

, (46)

whereas the other limits in (45) do not contribute to ζ(0) in view of (21), because one only
obtains terms proportional to x−4.

Moreover, bearing in mind the identity

∞

∑
p=0

p3α−2s
p =

∞

∑
p=0

pα
−1−(2s−3)
p − x2

∞

∑
p=0

pα
−1−(2s−1)
p , (47)

we also define

Σ(b)
R ≡ B

[
− x−6

(
lim
s→0

∞

∑
p=0

p3α−2s
p

)
+ x−6

(
lim
s→0

∞

∑
p=0

p4α
−4−(2s−3)
p

)

+
x−4

2

(
lim
s→0

∞

∑
p=0

p4α
−4−(2s−1)
p

)
+

3
8

x−2

(
lim
s→0

∞

∑
p=0

p4α
−4−(2s+1)
p

)]
. (48)

In view of (44) and (47), the first limit in (48) gives the following contribution to ζ(0):

δ2 = −B
2

(
− B̃4

4

)
= − B

240
= − 1

120
. (49)

Note that the second sum in (47) does not contribute to δ2 because its only constant
term contains Γ(s+1)

Γ(s) , which tends to 0 as s→ 0. The other limits in (48) do not contribute

to ζ(0) in view of (21), because they only yield terms proportional to x−2.
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Last, the sum Σ(c) in (43) has the following asymptotic behavior as x → ∞:

Σ(c) ∼
[
(3A + 9B)x−6 +

∞

∑
k=0

(ACk + BDk)x−7−k

]
, (50)

which yields the following contribution to ζ(0):

δ3 =
(3A + 9B)

2
= −3. (51)

To sum up, we find

ζ Ia(0) = δ1 + δ2 + δ3 = −1
3
− 1

120
− 3, (52)

Therefore, the full ζ(0) for physical degrees of freedom is given by (cf. (41) and (42))

ζ(0) = ζ Ia(0) +
5
2
+

1199
360

=
112
45

. (53)

3. First Example of Mixed Boundary Conditions on the Whole Set of Metric
Perturbations and Ghost Modes

The previous example is very instructive, but of course it would be desirable to
compute the effect of boundary conditions on the whole set of metric perturbations and
Feynman–DeWitt–Faddeev–Popov ghost fields [25–27]. For this purpose, the work in
Ref. [28] studied the following one-parameter family of mixed boundary conditions (with
λ being a freely specifiable real parameter):[

∂hij

∂τ
+

λ

τ
hij
]

∂M
= 0, (54)

[
h0i

]
∂M

= 0, (55)

[
h00

]
∂M

= 0, (56)

[
∂ϕi
∂τ

+
λ

τ
ϕi

]
∂M

= 0, (57)

[
∂ϕ0

∂τ
+

(λ + 1)
τ

ϕ0

]
∂M

= 0. (58)

With our notation, τ lies in the closed interval [0, a]; hij, h0i, h00 are the components of
metric perturbations; and ϕi and ϕ0 are covariant components of the ghost field of quantum
gravity. One therefore deals with transverse-traceless modes, scalar modes, vector modes,
decoupled scalar modes, decoupled vector modes, scalar ghost modes, vector ghost modes,
and decoupled ghost modes.

A one-parameter family of full ζ(0) values is therefore obtained [28]:

ζλ(0) =
89
90

+
λ

3
(λ2 − 9λ− 3). (59)

The λ-dependent part of (59) is always positive, either for all

λ >
9 +
√

93
2

, (60)
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or for all

λ ∈
]

9−
√

93
2

, 0

[
. (61)

Equations (60) and (61) are sufficient conditions for the positivity of the full ζλ(0), and
other suitable values of λ can be computed numerically.

This model is more complete than the one in Section 2, since it deals with all perturba-
tive modes in the one-loop functional integral. However, it still suffers from a non-trivial
drawback: the whole set of boundary conditions (54)–(58) is not completely invariant under
infinitesimal diffeomorphisms on metric perturbations. For this reason, we resort to the
boundary conditions of Section 4.

4. Completely Diff-Invariant Boundary Conditions

The boundary conditions that we study are part of a unified scheme for Maxwell,
Yang–Mills, and Quantized General Relativity at one loop, i.e., [29,30][

πA
]
B
= 0, (62)

[
Φ(A)

]
B
= 0, (63)

[ϕ]B = 0. (64)

With our notation, π is a projector acting on the gauge field A, Φ is the gauge-fixing
functional, and ϕ is the full set of ghost fields. Both Equations (62) and (63) are preserved
under infinitesimal gauge transformations provided that the ghost obeys homogeneous
Dirichlet conditions as in (64). For gravity, we choose Φ so as to have an operator P of
Laplace type on metric perturbations in the one-loop Euclidean theory.

5. Eigenvalue Conditions for Scalar Modes

On the Euclidean four-ball, we expand metric perturbations hµν in terms of scalar,
transverse vector, and transverse-traceless tensor harmonics on S3. For the vector, tensor,
and ghost modes, boundary conditions reduce to Dirichlet or Robin. For scalar modes, one
finds eventually the eigenvalues E = x2 from the roots x of [31,32]

J′n(x)± n
x

Jn(x) = 0, (65)

J′n(x) +
(
− x

2
± n

x

)
Jn(x) = 0. (66)

Note that both x and −x solve the same equation.

6. Four Spectral ζ-Functions for Scalar Modes

From Equations (65) and (66), we obtain the following integral representations of the
resulting ζ-functions upon exploiting the Cauchy theorem and rotation of contour:

ζ±A,B(s) ≡
(sin πs)

π

∞

∑
n=3

n−(2s−2)
∫ ∞

0
dz z−2s ∂

∂z
log F±A,B(zn), (67)

where (here β+ ≡ n, β− ≡ n + 2)

F±A (zn) ≡ z−β±
(

znI′n(zn)± nIn(zn)
)

, (68)

F±B (zn) ≡ z−β±

(
znI′n(zn) +

(
(zn)2

2
± n

)
In(zn)

)
, (69)
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with In being the modified Bessel functions of the first kind. Regularity at the origin is
easily proved in the elliptic sectors, corresponding to ζ±A(s) and ζ−B (s).

7. Regularity of ζ+B at s = 0

We now define T ≡ (1 + z2)−1/2 and consider the uniform asymptotic expansion
(away from T = 1)

zβ+ F+
B (zn) ∼ enη(T)

h(n)
√

T
(1− T2)

T

(
1 +

∞

∑
j=1

rj,+(T)
nj

)
, (70)

the functions rj,+ being obtained from the Olver polynomials for the uniform asymptotic

expansion of In and I′n. On splitting
∫ 1

0 dT =
∫ µ

0 dT +
∫ 1

µ dT with small µ, we obtain an
asymptotic expansion of the l.h.s. by writing, in the first interval on the r.h.s.,

log

(
1 +

∞

∑
j=1

rj,+(T)
nj

)
∼

∞

∑
j=1

Rj,+(T)
nj , (71)

and then computing

Cj(τ) ≡
∂Rj,+

∂T
= (1− T)−j−1

4j

∑
a=j−1

K(j)
a Ta. (72)

The integral
∫ 1

µ dT is instead found to yield a vanishing contribution in the µ → 1
limit. Remarkably, by virtue of the spectral identity

g(j) ≡
4j

∑
a=j

Γ(a + 1)
Γ(a− j + 1)

K(j)
a = 0, (73)

which holds ∀j = 1, . . . , ∞, we find

lim
s→0

sζ+B (s) =
1
6

12

∑
a=3

a(a− 1)(a− 2)K(3)
a = 0, (74)

and

ζ+B (0) =
5
4
+

1079
240
− 1

2

12

∑
a=2

ω(a)K(3)
a +

∞

∑
j=1

f (j)g(j) =
296
45

, (75)

where

ω(a) ≡ 1
6

Γ(a + 1)
Γ(a− 2)

[
− log(2)− (6a2 − 9a + 1)

4
Γ(a− 2)
Γ(a + 1)

+ 2ψ(a + 1)− ψ(a− 2)− ψ(4)
]

, (76)

f (j) ≡ (−1)j

j!

[
− 1− 22−j + ζR(j− 2)(1− δj,3) + γδj,3

]
. (77)

The spectral cancellation (73) achieves three goals: (i) vanishing of the log 2 coefficient
in Equation (75); (ii) vanishing of ∑∞

j=1 f (j)g(j) in Equation (75); and (iii) regularity at the
origin of ζ+B .
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To cross-check our analysis, we evaluate rj,+(T)− rj,−(T) and hence obtain Rj,+(T)−
Rj,−(T) for all j. Only j = 3 contributes to ζ±B (0), and we find

ζ+B (0) = ζ−B (0)−
1

24

4

∑
l=1

Γ(l + 1)
Γ(l − 2)

[
ψ(l + 2)− 1

(l + 1)

]
κ
(3)
2l+1

=
206
45

+ 2 =
296
45

, (78)

in agreement with Equation (75), where κ
(3)
2l+1 are the four coefficients on the right-hand

side of
∂

∂T
(R3,+ − R3,−) = (1− T2)−4

(
80T3 − 24T5 + 32T7 − 8T9

)
. (79)

Within this framework, the spectral cancellation reads as

4

∑
l=1

Γ(l + 1)
Γ(l − 2)

κ
(3)
2l+1 = 0, (80)

which is a particular case of

a=amax(j)

∑
a=amin(j)

Γ((a + 1)/2)
Γ((a + 1)/2− j)

κ
(j)
a = 0. (81)

Interestingly, the full ζ(0) value for pure gravity (i.e., including the contribution of
tensor, vector, scalar, and ghost modes) is then found to be positive [31,32]:

ζ(0) =
142
45

, (82)

which suggests in light of (5) a quantum avoidance of the cosmological singularity driven
by full diffeomorphism invariance of the boundary-value problem for one-loop quan-
tum theory.

8. Open Problems

The DeWitt boundary condition lies at the very heart of deep issues in quantum
gravity. As far as we can see, the main open problems are as follows.

(1) Among the three schemes studied in our Sections 2– 7, the latter, i.e., the choice of
completely diff-invariant boundary conditions on all perturbative modes, might seem
the most satisfactory, but unfortunately, the strong ellipticity of the boundary-value
problem is not fulfilled in such a case [30,33–37]. However, our analysis shows that, in
the particular case of flat Euclidean four-space bounded by a three-sphere boundary,
peculiar cancellations occur, and the resulting ζ(0) value can be defined and is positive.
The deeper underlying reason might be that, in order to define a spectral ζ-function,
it is sufficient to find a sector of the complex plane free of eigenvalues of the leading
symbol of the elliptic operator under consideration (we are grateful to Professor
Gerd Grubb for correspondence about this property a long time ago). An alternative
approach might consist in considering non-local boundary conditions in Euclidean
quantum gravity [38–40], or the normalizability criterion for the wave function of the
universe [41].

(2) The outstanding work in Ref. [10] looked for solutions of the quantum constraint
equations in order to check the validity of DeWitt’s proposal. However, although one
can obtain under suitable assumptions a formal proof of the equivalence of canonical
and functional-integral approaches [42], DeWitt himself provided an enlightening
example of a sum over histories that does not solve the Wheeler–DeWitt equation [43].
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This remark might therefore account for the inequivalence between our conclusions
and the results in Ref. [10].

The fascinating question of whether our universe can be non-singular in a semiclassical
theory of quantum gravity [44] is therefore still waiting for a fully satisfactory answer.

Funding: This research received no external funding

Data Availability Statement: All calculations were done by hand, hence there are no data stored

Conflicts of Interest: The author declares no conflict of interest

Appendix A. The One-Loop Approximation

We are here interested in the approach to quantum field theory in terms of Feynman
functional integrals. Hence, we study the amplitudes of going from data on a spacelike
surface Σ1 to data on a spacelike surface Σ2. For example, in the case of real scalar fields φ in
a curved background M, the data are the induced three-metric h and a linear combination
of φ and its normal derivative: aφ + b ∂φ

∂n . The latter reduces to homogeneous Dirichlet
conditions if b = 0, and Neumann conditions if a = 0. Otherwise, it is a Robin boundary
condition. The quantum amplitudes are functionals of these boundary data. On making
a Wick rotation and using the background-field method, we may expand both the four-
metric g and the field φ about solutions to the classical field equations as g = g0 + g and
φ = φ0 + φ. However, the more general possibility remains to consider background fields
that are not solutions to any field equations, or which are (approximate) solutions in the
asymptotic regions. The logarithm of the one-loop functional integral Z for a scalar field
(in the main body of our paper, we study pure gravity, but here we focus on scalar fields
for simplicity) has an asymptotic expansion

log(Z) ∼ log
∫

µ[φ]e−I2[φ]/h̄ + O(h̄2), (A1)

where µ is a suitable measure of the space of scalar-field perturbations. The part I2[φ] of the
action that is quadratic in scalar-field perturbations involves a second-order elliptic operator
B. Assuming completeness of the set {ϕn} of eigenfunctions of B, with eigenvalues λn, the
corresponding contribution to one-loop quantum amplitudes involves an infinite product
of Gaussian integrals, i.e.,

∞

∏
n=n0

∫
µ dyn e−

λn
2 y2

n =
1√

det
(

1
2 π−1µ−2B

) . (A2)

In order to make sense of this infinite product of eigenvalues, one can use ζ-function
regularization. This is a rigorous mathematical tool that relies on the spectral theorem,
according to which for any elliptic, self-adjoint, and positive-definite operator B, its complex
powers B−s can be defined. Hence, its spectral ζ-function is defined as in Equation (4), and
the analytic continuation of the ζ-function to the whole complex-s plane takes the form

ζB(s) =
N

∑
k=−n

ak(
s + k

m

) + φN(s), k 6= 0. (A3)

Thus, on using analytic continuations, ζB(0) is actually finite, and its value gives
information about scaling properties of quantum amplitudes. We can now be more precise
and describe in detail some key properties. The relation

detB = e−ζ ′(0) (A4)
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becomes a possible way to define the determinant of the elliptic operator B upon the
analytic continuation of ζB(s). If B is a second-order operator, its eigenvalues λn have
dimension (length)−2. Under conformal rescaling of the metric according to ĝ = k2g, one
has λ̂n = λn/k2, and the new spectral ζ-function is ζ̂(s) = k2sζ(s). This leads to

log detB̂ = log detB− log(k2)ζ(0), (A5)

and hence the partition function scales as

log(Ẑ) = log(Z) +
1
2

log(k2)ζ(0) + log(µ̂/µ)ζ(0). (A6)

The parameter µ is the one occurring in the one-loop semiclassical evaluation of the
functional integral. This formula allows for the more general case when the normalization
parameter µ changes under scale transformations. One can avoid this complication by
assuming that the measure in the functional integral is defined on scalar densities of weight 1

2 .
Equation (A5) can also be used to deduce that the one-loop effective action (for the

scalar field) reads as

Γ(1) =
1
2

log det B̂ = −1
2

ζ ′(0)− 1
2

ζ(0) log(k2). (A7)

Note that the resulting one-loop 〈out | in〉 amplitude is measure-dependent unless
ζ(0) = 0. This is why ζ(0) is frequently called the anomalous scaling factor.
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