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Abstract: We introduce the generalized helical hypersurface having a space-like axis in five-dimensional
Minkowski space. We compute the first and second fundamental form matrices, Gauss map, and shape
operator matrix of the hypersurface. Additionally, we compute the curvatures of the hypersurface
by using the Cayley–Hamilton theorem. Moreover, we give some relations for the mean and the
Gauss–Kronecker curvatures of the hypersurface. Finally, we obtain the Laplace–Beltrami operator of
the hypersurface.
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1. Introduction

Geometers have succeeded by applying differential geometry, which is a branch of
mathematics, on engineering, physics, architecture, biology, chemistry, and also astro-
physics, working the theory of hyper-surfaces for hundreds of years.

Helical or helicoidal hyper-surfaces and related characters such as rotational, minimal,
ruled hyper-surfaces have been researched by geometers for almost 500 years. Let us see
some works on hyper-surfaces.

The relation for a manifold isometric to a sphere was given by Obata [1]; a Euclidean
submanifold is 1-type if and only if it is minimal or minimal of a hypersphere of m-
dimensional Euclidean space Em was served by Takahashi [2]; the minimal submanifolds
of a sphere were studied by Chern et al. [3]; the hypersurfaces having constant curvature
were studied by Cheng and Yau [4]; the minimal submanifolds with the Laplace–Beltrami
operator were investigated by Lawson [5].

The submanifolds of finite-type in m-dimensional Euclidean spaceEm or m-dimensional
semi-Euclidean space Em

ν having index ν were researched by Chen [6–9]. Spherical 2-type
submanifolds were studied by [7,10,11]; Garay [12] focused Takahashi’s theorem in Em.
The submanifolds with the finite-type Gauss map in Em were researched by Chen and
Piccinni [13]. The forty years of differential geometry of 1-type submanifolds and submani-
folds having a 1-type Gauss map in space forms were served by Chen et al. [14].

In three-dimensional Euclidean space E3, isometries of the helical and rotational
surfaces were described by Bour’s theorem [15], and also the helical and rotational surfaces
were studied by Do Carmo and Dajczer [16]. The minimal surfaces and spheres satisfying
∆r = λr, λ ∈ R were presented by Takahashi [2]; the surfaces holding ∆H = AH, A ∈
Mat(3, 3) were focused on by Ferrandez et al. [17]; the minimal helicoid was studied by
Choi and Kim [18]; surfaces of revolution were researched by Garay [19]; the surfaces
having ∆r = Ar + B, where A is 3× 3, and B is a 3× 1 matrix, were introduced by Dillen
et al. [20]; the surfaces of revolution having ∆I I I x = Ax were considered by Stamatakis and
Zoubi [21]; the helicoidal surfaces having ∆Jr = Ar, J = I, I I, I I I, were studied by Senoussi
and Bekkar [22]; the Cheng–Yau operator of the surfaces of revolution was studied by Kim
et al. [23].
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In three-dimensional Minkowski space E3
1, helical surfaces were studied by by Beneki

et al. [24]; the Bour’s theorem was presented by Güler and Turgut Vanlı [25]; helical surfaces
having light-like profile curves were investigated via Bour’s theorem by Güler [26]; helical
maximal surfaces were studied by Mira and Pastor [27]; ruled and rotation surfaces were
focused on by Kim and Yoon [28–30]. See also [2,25,31,32] for details of the topic.

In four-dimensional Euclidean space E4, general rotational surfaces were investigated
by Moore [33,34]; hypersurfaces having harmonic mean curvature were given by Hasanis
and Vlachos [35]; the complete hypersurfaces having CMC were considered by Cheng and
Wan [36]; the Vranceanu surfaces with Gauss map were introduced by Arslan et al. [37];
the generalized rotational surfaces were studied by Arslan et al. [38]; the affine umbil-
ical surfaces were focused on by Magid et al. [39]; the affine geometry of surfaces and
hypersurfaces were studied by Scharlach [40]; the hypersurfaces having Weyl pseudo-
symmetric were introduced by Arslan et al. [41]; meridian surfaces were focused on by
Arslan et al. [42]. Rotation surfaces having a finite-type Gauss map were considered by
Yoon [43]. Helical hypersurfaces were introduced by Güler et al. [44]; the I I I−Laplacian
of rotational hypersurface was considered by Güler et al. [45]; the Cheng–Yau operator
of the rotational hypersurfaces was investigated by Güler and Turgay [46]; the rotational
hypersurfaces having ∆R = AR, where A is 4× 4 matrix, were studied by Güler [47]. The
curvatures of hypersphere were revealed by Güler [48].

In four-dimensional Minkowski space E4
1, the similar surfaces of [33,34] were described

by Ganchev and Milousheva [49]; the equation ∆H = αH (H is a mean curvature, α is a
constant) was considered by Arvanitoyeorgos et al. [50]; meridian surfaces having elliptic
or hyperbolic type were studied by Arslan and Milousheva [51]; three types of the helical
hypersurfaces were given by Güler [52]; the fuzzy algebraic modeling of spatiotemporal
time series paradoxes in cosmic-scale kinematics was considered by Iliadis [53]; the emer-
gence of Minkowski spacetime by simple deterministic graph rewriting was introduced by
Leuenberger [54]; generalized helical hypersurfaces including a time-like axis in Minkowski
spacetime were studied by Güler [55].

In this work, a generalized helical hypersurface x = x(r, θ1, θ2, θ3) with a space-like
axis in Minkowski 5-space E5

1 is considered. Some facts of five-dimensional Minkowski
geometry are given in Section 2. The fundamental form matrices, Gauss map G, and
shape operator matrix S of any hypersurface in E5

1 are revealed. The definition of a helical
hypersurface x in E5

1 is described in Section 3.
Moreover, by using the Cayley–Hamilton theorem, the curvature formulas of a hy-

persurface are obtained, and the curvatures of the helical hypersurface x are computed.
Some facts for the curvatures of the mean K1 and Gauss–Kronecker K4 of x are given. In
Section 4, umbilical conditions of hypersurfaces are presented.

Additionally, in E5
1, the relation ∆x =Mx, whereM is the 5× 5 matrix, is obtained in

Section 5. Then, some examples that are appropriate to all the findings are served. Finally,
a summary is presented in the last section.

2. Preliminaries

In this section, some fundamental facts and the notations of the differential geometry
are described.

Let Em
1 denote the Minkowski (or semi-Euclidean) m-space with its metric tensor

described by

g̃ = 〈 , 〉 =
m−1

∑
i=1

dx2
i − dx2

m,

where xi is the Minkowski coordinates of type (m − 1, 1). Consider an m-dimensional
semi-Riemannian submanifold M of the space Em

1 . The Levi–Civita connections [56] of the
manifold M̃ and its submanifold M of Em

1 are indicated by ∇̃, ∇, respectively. Describing
the vector field tangent (respectively, normal) to M, the letters X ,Y ,Z ,N (respectively, ζ, η)
are used.
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The Gauss and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X ,Y),
∇̃X ζ = −Aζ(X ) +DX ζ,

where h, D, and A are the second fundamental form, the normal connection, and the shape
operator of M, respectively.

For each ζ ∈ T ⊥p M, the shape operator Aζ is a symmetric endomorphism of the
tangent space TpM at p ∈ M. The shape operator and the second fundamental form are
related by

〈h(X ,Y), ζ〉 =
〈
AζX ,Y

〉
.

The Gauss and Codazzi equations are given, respectively, by

〈R(X ,Y)Z ,N〉 = 〈h(Y ,Z), h(X ,N )〉 − 〈h(X ,Z), h(Y ,N )〉,
(∇̃X h)(Y ,Z) = (∇̃Yh)(X ,Z),

where R,RD are the curvature tensors matched with connections ∇ and D, respectively,
and ∇̃h is defined by

(∇̃X h)(Y ,Z) = DX h(Y ,Z)− h(∇XY ,Z)− h(Y ,∇XZ).

Hypersurface of Minkowski Space

Now, let M be an oriented hypersurface in Minkowski space En+1
1 , S its shape operator

(i.e., the Weingarten map), and x its position vector. Note the local orthonormal frame
{e1, e2, . . . , en} consisting of the principal directions of M matching with the principal
curvature ki for i = 1, 2, . . . n. Let the dual basis of this frame field be {ς1, ς2, . . . , ςn}. Then,
the first Cartan structural equation is

dςi =
n

∑
i=1

ς j ∧ ψij, i, j = 1, 2, . . . , n,

where ψij indicates the connection forms matching with the selected frame field. Determine
the Levi–Civita connection of M in En+1

1 by ∇. Hence, from the Codazzi equation, the
following occurs:

ei(k j) = ψij(ej)(ki − k j),

ψij(el)(ki − k j) = ψil(ej)(ki − kl)

for distinct i, j, l = 1, 2, . . . , n.
Put sj = τj(k1, k2, . . . , kn), where τj is the j-th elementary symmetric function given by

τj(q1, q2, . . . , qn) = ∑
1≤i1<i2<...<ij≤n

qi1 qi2 . . . qij .

The following notation is run:

rj
i = τj(k1, k2, . . . , ki−1, ki+1, ki+2. . . . , kn).

By the definition, r0
i = 1 and sn+1 = sn+2 = · · · = 0. The function sk is called the k-th

mean curvature of M. The functions H = 1
n s1 and K = sn are called the mean curvature

and Gauss–Kronecker curvature of M, respectively. When sj ≡ 0 on M, then M is called
j-minimal. See Alias and Gürbüz [57] and also Kühnel [58].

In En+1
1 , the characteristic polynomial equation of S is obtained by

PS(λ) = 0 = det(S− λIn) =
n

∑
k=0

(−1)kskλn−k, (1)
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where i = 0, . . . , n, In denotes the identity matrix of order n. Then, the curvature for-
mulas are determined by (n

i )Ki = si. Here, (n
0)K0 = s0 = 1 (by definition), (n

1)K1 =
s1, . . . , (n

n)Kn = sn.

The k-th fundamental form of M is given by I
(

Sk−1(X ),Y
)
=
〈

Sk−1(X ),Y
〉

. There-
fore,

n

∑
i=0

(−1)i
(

n
i

)
KiI
(

Sn−i(X ),Y
)
= 0.

On the other side, we compute the fundamental forms, Gauss map G, the shape
operator matrix S, i-th curvature formulas Ki, the mean curvature K1, and the Gauss–
Kronecker curvature K4 of a hypersurface x = x(r, θ1, θ2, θ3) in Minkowski 5-space E5

1.
We identify a vector −→α with its transpose in this work. We assume x = x(r, θ1, θ2, θ3)

to be an immersion from M4 ⊂ E4 to E5
1.

Next, we give some definitions, notions, etc., about semi-Riemannian geometry. The
readers can refer to O’Neill [59] for details.

Definition 1. A Lorentzian inner product of
−→
x1 = (x1

1, . . . , x1
5),
−→
x2 = (x2

1, . . . , x2
5) of E5

1 is
given by

−→
x1 ·
−→
x2 = x1

1x2
1 + x1

2x2
2 + x1

3x2
3 + x1

4x2
4 − x1

5x2
5.

From here to the end, we will use notation ” · ” other than 〈., .〉.

Definition 2. A Lorentzian quadruple vector product of
−→
x1 , . . . ,

−→
x4 of E5

1 is defined by

−→
x1 ×

−→
x2 ×

−→
x3 ×

−→
x4 = det


e1 e2 e3 e4 −e5
x1

1 x1
2 x1

3 x1
4 x1

5
x2

1 x2
2 x2

3 x2
4 x2

5
x3

1 x3
2 x3

3 x3
4 x3

5
x4

1 x4
2 x4

3 x4
4 x4

5

,

where ei, i = 1, . . . , 5 are the base elements of E5
1.

Definition 3. For a hypersurface given by four parameters x = x(r, θ1, θ2, θ3) in E5
1, the first and

second fundamental form matrices are defined by

I =


E F A D
F G B J
A B C Q
D J Q S

, II =


L M P X
M N T Y
P T V Z
X Y Z U

.

Here, the components of the above matrices are described by

E = xr · xr, F = xr · xθ1 , A = xr · xθ2 , D = xr · xθ3 , G = xθ1 · xθ1 ,

B = xθ1 · xθ2 , J = xθ1 · xθ3 , C = xθ2 · xθ2 , Q = xθ2 · xθ3 , S = xθ3 · xθ3 ,

L = xrr ·G, M = xrθ1 ·G, P = xrθ2 ·G, X = xrθ3 ·G, N = xθ1θ1 ·G,

T = xθ1θ2 ·G, Y = xθ1θ3 ·G, V = xθ2θ2 ·G, Z = xθ2θ3 ·G, U = xθ3θ3 ·G,

xr =
∂x
∂r , xrθ1 = ∂x

∂r∂θ1
, xθ3θ3 = ∂2x

∂θ2
3

, etc., and the Gauss map of the hypersurface x is determined by

the following formula:

G =
xr × xθ1 × xθ2 × xθ3∥∥xr × xθ1 × xθ2 × xθ3

∥∥ .



Universe 2023, 9, 152 5 of 17

Definition 4. The product matrix I−1.II is called the shape operator matrix S of the hypersurface
x = x(r, θ1, θ2, θ3). In addition, det(S) gives the mean curvature K1, trace(S)/4 gives the Gauss–
Kronecker curvature K4 of x.

Definition 5. For a hypersurface x = x(r, θ1, θ2, θ3) in E5
1, the following relations come out

II = I.S, III = II.S, IV = III.S, V = IV.S.

Here, I, II, III, IV, V are the first, second, third, fourth, and the fifth fundamental form matrices
having order 4× 4 of the hypersurface.

Definition 6. In E5
1, the characteristic polynomial of S is determined by

PS(λ) =
4

∑
k=0

(−1)kskλ4−k = det(S− λI4) = 0,

where I4 indicates the identity matrix of order 4. Hence, the curvature formulas are (4
i)Ki = si,

where (4
0)K0 = s0 = 1 (by definition), (4

1)K1 = s1, . . . , (4
4)K4 = s4, K1 is the mean curvature,

and K4 is the Gauss–Kronecker curvature, and (n
r) =

n!
r!(n−r)! .

Definition 7. A hypersurface x is called j-minimal if Kj = 0, j = 0, . . . , 4 on x, identically.

See [58] for details of Kj, and also [44,45] for details of dimension four.
Next, we determine the explicit formulas of the mean curvature K1 and the Gauss–

Kronecker curvature K4 of hypersurface x.

Theorem 1. For a hypersurface in E5
1, the general formulas of the mean curvature, and the Gauss–

Kronecker curvature are defined, respectively, by

K1 = [(EN + GL− 2FM)(CS−Q2) + (EG− F2)(SV + UC)− (GU + NS)A2

−(LS + EU)B2 − (CN + GV)D2 − (EV + CL)J2 + 2(A2 JY + B2XD

+D2BT + J2 AP + F2QZ + CJMD− ABYD− BJPD + ANQD

−AJTD− BMQD + AGZD− BFZD + CFYD− AGPS− CGXD (2)

+FJVD + GQPD + BJZE− CJYE + BFPS− BSTE− FQTD + BQYE

+JQTE + AGQX− BFQX− GQZE + ABFU − FJPQ + AFST

−AJMQ− AFQY + ABMS− ABJX + BJLQ + CFJX− AFJZ)]/(4 det I),

and

K4 = [(LN −M2)(UV − Z2) + (Y2 −UN)P2 + (X2 −UL)T2 − (LY2 + NX2)V (3)

+2((VM− PT)XY + (LT −MP)YZ + (NP−MT)XZ + MUPT)]/ det I,

where

det I = (EG− F2)(CS−Q2) + (J2 − GS)A2 + (D2 − ES)B2 − (EJ2 + GD2)C

+2((CF− AB)DJ + (EB− FA)JQ + (GA− FB)DQ + FABS).

Proof. By using the Definition 3, Definition 4, and Definition 6, we obtain the characteristic
polynomial of the shape operator matrix of the hypersurface. Then, we have the curvatures
K1 and K4 easily.



Universe 2023, 9, 152 6 of 17

3. Generalized Helical Hypersurface Having a Space-like Axis in E5
1

In Riemannian space forms, the rotational hypersurfaces can be seen in the work of
Do Carmo and Dajczer [60].

Next, we define the generalized helical hypersurface in space forms.

Definition 8. For an open interval I ⊂ R, let γ : I −→ Π be a curve in a plane Π, and ` be a
line in Π. A rotational hypersurface is defined as a hypersurface rotating a curve γ around a line
` (called the profile curve and the axis, respectively). Suppose that, when a profile curve γ rotates
around the axis `, it simultaneously displaces parallel lines orthogonal to the axis `, so that the
speed of displacement is proportional to the speed of rotation. Therefore, the resulting hypersurface
is called the generalized helical hypersurface having axis `, and pitches a, b, c ∈ R−{0}.

We now determine space-like, time-like, and light-like curves (resp., hypersurfaces) in
Minkowski 5-space E5

1.

Definition 9. For a curve γ = γ(r) and a hypersurface x = x(r, θ1, θ2, θ3) in five-dimensional
Minkowski space E5

1, the following applies:

i. The γ (resp., x) is named space-like, if γ′ · γ′ > 0 (resp., det I > 0),
ii. The γ (resp., x) is named time-like, if γ′ · γ′ < 0 (resp., det I < 0),
iii. The γ (resp., x) is named light-like, if γ′ · γ′ = 0 (resp., det I = 0),

with γ′ = dγ
dr .

The readers can see O’Neill [59] and Kühnel [58] for details.
Next, we determine the generalized helical hypersurface having a space-like axis in E5

1.
While the axis of rotation is `, there is a Lorentzian transformation by which the axis is

` transformed to the x1-axis of E5
1. The rotation matrix obtained by the space-like vector

(1, 0, 0, 0, 0) of the rotation axis ` in E5
1 is described as follows:

R = R(θ1, θ2, θ3) =


1 0 0 0 0
0 C3 0 0 S3
0 S2S3 C2 0 S2C3
0 S1C2S3 S1S2 C1 S1C2C3
0 C1C2S3 C1S2 S1 C1C2C3

.

Here, C1 = cosh θ1, C2 = cosh θ2, C3 = cosh θ3, S1 = sinh θ1, S2 = sinh θ2, S3 = sinh θ3,
θ1, θ2, θ3 ∈ [0, 2π).

The semi-orthogonal rotation matrixR supplies the following relations:

R.` = `, Rt.ε.R = R.ε.Rt = ε, detR = 1,

where ε = diag(1, 1, 1, 1,−1), diag means diagonal parts of the matrix.
Parametrization of the profile curve is given by

γ(r) = (ϕ(r), 0, 0, 0, f (r)), (4)

where ϕ, f : I ⊂ R −→ R are the differentiable functions for all parameters r ∈ I.
In E5

1, the helical hypersurface x = x(r, θ1, θ2, θ3) spanned by the vector (1, 0, 0, 0, 0) is
given by x = R.γt + (aθ1 + bθ2 + cθ3)`

t, where r ∈ I, θ1, θ2, θ3 ∈ [0, 2π), a, b, c ∈ R−{0}.
Therefore, in five-dimensional Minkowski space, the parametric representation of the
helical hypersurface M is given by

x(r, θ1, θ2, θ3) = (ϕ + aθ1 + bθ2 + cθ3, fS3, fS2C3, fS1C2C3, fC1C2C3). (5)

In lower dimensions, we determine the following different hyper-surfaces:
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1. When b = c = θ2 = θ3 = 0, we have helical surface having a space-like axis in
three-dimensional Minkowski space E3

1;
2. When a = b = c = θ2 = θ3 = 0, we obtain a rotational surface having a space-like

axis in three-dimensional Minkowski space E3
1;

3. When c = θ3 = 0, we obtain a helical hypersurface having a space-like axis in
four-dimensional Minkowski space-time E4

1;
4. When a = b = c = θ3 = 0, we find a rotational hypersurface having a space-like axis

in four-dimensional Minkowski space-time E4
1.

Next, we reveal the curvature formulas for any hypersurface x = x(r, θ1, θ2, θ3) in E5
1.

Theorem 2. A hypersurface x = x(r, θ1, θ2, θ3) in Minkowski 5-space E5
1 has the following cur-

vature formulas, K0 = 1 by definition:

4K1 = −b

a
, 6K2 =

c

a
, 4K3 = −d

a
, K4 =

e

a
,

where PS(λ) = aλ4 + bλ3 + cλ2 + dλ + e = 0 is the characteristic polynomial of shape op-
erator matrix S, a=det I, e = det II, and I, II are the first and the second fundamental form
matrices, respectively.

Proof. The solution matrix I−1.II supplies the shape operator matrix S of the hypersurface
x in E5

1. Computing the formula of curvatures Kj, where j = 0, 1, . . . , 4, we reveal the
characteristic polynomial PS(λ) = det(S− λI4) = 0 of S. Then, we find the following:(

4
0

)
K0 = 1,(

4
1

)
K1 =

4

∑
i=1

ki = −
b

a
,

(
4
2

)
K2 =

4

∑
1=i1<i2

ki1 ki2 =
c

a
,

(
4
3

)
K3 =

4

∑
1=i1<i2<i3

ki1 ki2 ki3 = −d

a
,

(
4
4

)
K4 =

4

∏
i=1

ki =
e

a
.

Here, ki, i = 1, . . . , 4, are the principal curvatures of the hypersurface x.

See [44,45,48] for the cases of four-dimensional Euclidean space E4.
Hence, the mean curvature and the Gauss–Kronecker curvature of the generalized he-

lical hypersurface having a space-like axis given by Equation (5) are described, respectively,
as follows.

Theorem 3. The mean and Gauss–Kronecker curvatures of the generalized helical hypersurface
having a space-like axis determined by Equation (5), respectively, are given by

K1 =

{ (
Ω1 f 2 + Ω2

)
f 2 f ′ϕ′′ − 3Ω1 f 3 ϕ′3 + Ω3 f 2 f ′ϕ′2

+
(
Ω1 f 3 f ′′ + 3Ω1 f 2 f ′2 −Ω2 f f ′′ + 4Ω2 f ′2

)
f ϕ′ −Ω3 f 2 f ′3 + Ω4 f ′3

}
4 fC3W3/2 ,

K4 =

{ (
Ψ1 f 3 f ′ϕ′3 + Ψ2 f 2 f ′2 ϕ′2 + Ψ3 f f ′3 ϕ′ + Ψ4 f ′4

)
f 2 ϕ′′ −Ψ1 f 5 f ′′ϕ′4

−Ψ2 f 4 f ′ f ′′ϕ′3 −
(
Ψ3 f 3 f ′2 f ′′ + Ψ5 f 2 f ′4

)
ϕ′2 −

(
Ψ4 f 2 f ′3 f ′′ + Ψ6 f f ′5

)
ϕ′ + Ψ7 f ′6

}
f 2W3 ,
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where

Ω1 = −C3
2C4

3 ,

Ω2 = −
(

a2 + b2C2
2 + c2C2

2C2
3

)
C2C2

3 ,

Ω3 = −bS2C2
2C2

3 − 2cC3
2S3C3

3 ,

Ω4 = 2c3C3
2S3C3

3 + bc2S2C2
2C2

3 + 3b2cC3
2S3C3 + 3a2cC2S3C3 + b3S2C2

2 + 2a2bS2,

Ψ1 = C6
2C6

3 ,

Ψ2 = −bS2C5
2C4

3 − 2cC6
2S3C5

3 ,

Ψ3 = −a2C2
2C2

3

(
S2

2 + C2
2S2

3

)
− b2C6

2C2
3S2

3 + bcS2C5
2C3

3S3 + c2C6
2C4

3S2
3 ,

Ψ4 = 2a2bS2C3
2S2

3 + a2cC4
2C3S3

3 + b2cC6
2C3S3

3 + b3S2C5
2S2

3 ,

Ψ5 =
(

a2 + b2C2
2 + c2C2

2C2
3

)
C4

2C4
3 ,

Ψ6 = −2c3C6
2S3C5

3 − 3b2cC6
2S3C3

3 − bc2S2C5
2C4

3 − b3S2C5
2C2

3 − 3a2cC4
2S3C3

3 − 2a2bS2C3
2C2

3 = −Ω4C3
2C2

3

Ψ7 = c4C6
2S2

3C4
3 + 2b2c2C6

2S2
3C2

3 + bc3S2C5
2S3C3

3 + 2b3cS2C5
2S3C3 + 4a2bcS2C3

2S3C3 + a2c2
(

2C2
2S2

3 + S2
2

)
C2

2C2
3 ,

andW = f 2( f ′2 − ϕ′2
)
C2

2C2
3 + f ′2

(
a2 + b2C2

2 + c2C2
2C2

3
)
, a, b, c ∈ R−{0}, ϕ = ϕ(r), ϕ′ = dϕ

dr ,

ϕ′′ = d2 ϕ

dr2 , f = f (r), f ′ = d f
dr , f ′′ = d2 f

dr2 , r ∈ I ⊂ R, C2 = cosh θ2, C3 = cosh θ3, S2 = sinh θ2,
S3 = sinh θ3, C2

2 = (cosh θ2)
2, C2

3 = (cosh θ3)
2, S2

2 = (sinh θ2)
2, S2

3 = (sinh θ3)
2, etc.,

θ1, θ2, θ3 ∈ [0, 2π).

Proof. By considering Definition 3, and by taking the first derivatives of hypersurface
Equation (5) with respect to r, θ1, θ2, θ3, we obtain the following first fundamental
form matrix:

I =


ϕ′2 − f ′2 aϕ′ bϕ′ cϕ′

aϕ′ f 2C2
2C2

3 + a2 ab ac
bϕ′ ab f 2C2

3 + b2 bc
cϕ′ ac bc f 2 + c2

. (6)

We then have
det I = − f 4C2

3W , (7)

where
W = f 2

(
f ′2 − ϕ′2

)
C2

2C2
3 + f ′2

(
a2 + b2C2

2 + c2C2
2C2

3

)
.

By using the Gauss map formula in Definition 3, we obtain the following Gauss map

G =
1
W1/2


f f ′C2C3

( f ϕ′S3 − c f ′C3)C2C3
[( f ϕ′C3 − c f ′S3)S2C3 − b f ′C2]C2

[( f ϕ′C3 − c f ′S3)C2C3 − b f ′S2]S1C2 − a f ′C1
[( f ϕ′C3 − c f ′S3)C2C3 − b f ′S2]C1C2 − a f ′S1

 (8)

of the helical hypersurface having a space-like axis determined by Equation (5) in five-
dimensional Minkowski space. It is clear that G ·G = 1.
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Next, taking care of Definition 3, Gauss map Equation (8), and by using the second
derivatives of the helical hypersurface with respect to r, θ1, θ2, θ3, we have the following
second fundamental form matrix:

II =
1
W1/2


f ( f ′ϕ′′ − f ′′ϕ′)C2C3 −a f ′2C2C3 −b f ′2C2C3 −c f ′2C2C3
−a f ′2C2C3 − f (( f ϕ′C3 − c f ′S3)C2C3 − b f ′S2)C2

2C3 −a f f ′S2C3 −a f f ′C2S3
−b f ′2C2C3 −a f f ′S2C3 − f ( f ϕ′C3 − c f ′S3)C2C2

3 −b f f ′C2S3
−c f ′2C2C3 −a f f ′C2S3 −b f f ′C2S3 − f 2 ϕ′C2C3

.

The product matrix I−1. II describes the following shape operator matrix of the helical
hypersurface:

S =
1
W3/2

(
sij
)

4×4. (9)

The characteristic polynomial PS(λ) = det(S − λI4) = 0 of the shape operator matrix
determined by Equation (9) is as follows:

λ4 + α1λ3 + α2λ2 + α3λ + α4 = 0,

where

α1 = −W−3/2(s11 + s22 + s33 + s44),

α2 = W−3(s11s22 − s12s21 + s11s33 − s13s31 + s11s44 + s22s33 − s14s41 − s23s32 + s22s44 − s24s42 + s33s44 − s34s43),

α3 = W−9/2(s11s23s32 − s11s22s33 + s12s21s33 − s12s31s23 − s21s13s32 + s13s22s31 − s11s22s44 + s11s24s42 + s12s21s44

−s12s41s24 − s21s14s42 + s22s14s41 − s11s33s44 + s11s34s43 + s13s31s44 − s13s41s34 − s31s14s43 + s14s41s33

−s22s33s44 + s22s34s43 + s23s32s44 − s23s42s34 − s32s24s43 + s24s33s42),

α4 = W−6(s11s22s33s44 − s11s22s34s43 − s11s23s32s44 + s11s23s42s34 + s11s32s24s43 − s11s24s33s42 − s12s21s33s44

+s12s21s34s43 + s12s31s23s44 − s12s31s24s43 − s12s23s41s34 + s12s41s24s33 + s21s13s32s44 − s21s13s42s34

−s21s14s32s43 + s21s14s33s42 − s13s22s31s44 + s13s22s41s34 + s13s31s24s42 − s13s32s41s24 + s22s31s14s43

−s22s14s41s33 − s31s14s23s42 + s14s23s32s41).

Here, α1 = −4K1, α2 = 6K2, α3 = −4K3, α4 = K4. We then compute the components of S
described by Equation (9) as follows:
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s11 = −C2C3

[(
a2 + b2C2

2 +
(

c2 + f 2
)
C2

2C2
3

)
f f ′ϕ′′ +

[(
a2 + b2C2

2 + c2C2
2C2

3

)(
( f ′)2 − f f ′′

)
− C2

2C2
3 f 3 f ′′

]
ϕ′
]
,

s12 = aC2C3W ,

s13 = C3

[
−b f 2(ϕ′)2C3

2C2
3 − a2S2 f f ′ϕ′ + bC2

(
a2 + b2C2

2 +
(

c2 + f 2
)
C2

2C2
3

)
( f ′)2

]
,

s14 = C2

[
−cC2

2C3
3 f 2(ϕ′)2 − S3

(
a2 + b2C2

2

)
f f ′ϕ′ + cC3

(
a2 + b2C2

2 +
(

c2 + f 2
)
C2

2C2
3

)
( f ′)2

]
,

s21 = aC2C3

[
f f ′ϕ′ϕ′′ +

(
( f ′)2 − f f ′′

)
(ϕ′)2 − ( f ′)4

]
,

s22 =
1

fC3

(
(bS2 + cC2C3S3) f ′ − C2C2

3 f ϕ′
)
W ,

s23 =
a f ′S2

fC3

[
C2

3 f 2(ϕ′)2 −
(

b2 + c2C2
3 + C2

3 f 2
)
( f ′)2

]
,

s24 =
a f ′C2S3

f

[
f 2(ϕ′)2 −

(
c2 + f 2

)
( f ′)2

]
,

s31 = bC3
2C3

[
f f ′ϕ′ϕ′′ +

(
( f ′)2 − f f ′′

)
(ϕ′)2 − ( f ′)4

]
,

s32 = − a f ′S2

fC3
W ,

s33 =
1

fC3

{
C3

2C4
3 f 3(ϕ′)3 − cC3

2C3
3S3 f 2 f ′(ϕ′)2 − C2C2

3
[
a2 + b2C2

2 +
(
c2 + f 2)C2

2C2
3
]

f ( f ′)2 ϕ′

+
[
a2bS2 + cC2C3S3

(
a2 + b2C2

2
)
+ cC3

2C3
3S3

(
c2 + f 2)]( f ′)3

}
,

s34 =
b
f
C3

2S3

[
f 2(ϕ′)2 −

(
c2 + f 2

)
( f ′)2

]
,

s41 = cC3
2C3

3

[
f f ′ϕ′ϕ′′ +

(
( f ′)2 − f f ′′

)
(ϕ′)2 − ( f ′)4

]
,

s42 = − a f ′C2S3

f
W ,

s43 =
f ′

f

[
bC3

2C2
3S3 f 2(ϕ′)2 +

[
a2cC3S2 − bC2S3

(
a2 + b2C2

2 + C2
2C2

3

(
c2 + f 2

))]
( f ′)2

]
,

s44 =
C2

f

[
C2

2C3
3 f 3(ϕ′)3 − C3

(
a2 + b2C2

2 +
(

c2 + f 2
)
C2

2C2
3

)
f ( f ′)2 ϕ′ + cS3

(
b2C2

2 + a2
)
( f ′)3

]
.

Therefore, also from Definition 6, det(S) gives the mean curvature K1, trace(S)/4 gives
the Gauss–Kronecker curvature K4 of the helical hypersurface having a space-like axis
described by Equation (5) in five-dimensional Minkowski space.

By taking care of Definition 9 with the determinant of Equation (6), we conclude
the following:

Corollary 1. The profile curve γ(r) = (ϕ(r)r, 0, 0, 0, f (r)) of the helical hypersurface (5) having
a space-like axis has the following relation γ′ · γ′ = ϕ′2 − f ′2 > 0 (resp., < 0, = 0), i.e., it is a
space-like (resp., time-like, light-like) curve. Hence, taking care of Equation (7), the following holds:

1. If ϕ′2 − f ′2 > 0, i.e, γ is a space-like curve, and

f 2
(

ϕ′2 − f ′2
)

C2
2C2

3 + f ′2
(

a2 + b2C2
2 + c2C2

2C2
3

)
> 0

(resp., < 0, = 0), i.e., x is a space-like (resp., time-like, light-like) helical hypersurface.
2. If ϕ′2 − f ′2 < 0, i.e, γ is a time-like curve, and det I < 0, i.e.,

f 2
(

ϕ′2 − f ′2
)

C2
2C2

3 > f ′2
(

a2 + b2C2
2 + c2C2

2C2
3

)
,

then x is a time-like helical hypersurface.
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3. If ϕ′2− f ′2 = 0 (that is, 0 6= ϕ = ± f ), i.e, γ is a light-like line (1, 0, 0, 0, 1) or (1, 0, 0, 0,−1),
and a2 + b2C2

2 + c2C2
2C2

3 = 0. That is, a = b = c = 0, C2 6= 0, C3 6= 0. Hence, x is a
light-like rotational hypersurface.

Next, we give a relation among the curvatures described by Theorem 2, and the funda-
mental forms given by Definition 5 of the hypersurface in five-dimensional Minkowski space.

Theorem 4. Among its curvatures Kj and its fundamental forms, a hypersurface x = x(r, θ1, θ2, θ3)

in Minkowski space E5
1 has the following relation:

K0V− 4K1IV + 6K2III− 4K3II +K4I = O. (10)

Here, I, II, III, IV, V are the fundamental form matrices having order 4× 4, and O is the zero
matrix of order 4 of the hypersurface.

Proof. We use the Cayley–Hamilton theorem, and we obtain PS(λ) =
4
∑

k=0
(−1)kskλ4−k =

det(S− λI4) = 0. Then, we reveal the following characteristic polynomial of S:

K0λ4 − 4K1λ3 + 6K2λ2 − 4K3λ +K4 = 0.

Hence, it is clear.

Note that three-dimensional cases of Theorem 4 are known by

K0III− 2K1II +K2I = O

and
K0λ2 − 2K1λ +K2λ = 0.

Here, K0 = 1, O is the zero matrix of order 2, K1 = H describes the mean curvature, and
K2 = K determines the Gaussian curvature of the surface in three-dimensional space forms.

In addition, four-dimensional cases of Theorem 4 are determined by

K0IV− 3K1III + 3K2II−K3I = O

and
K0λ3 − 3K1λ3 + 3K2λ2 −K3λ = 0.

Here, K0 = 1, O is the zero matrix of order 3, K1 indicates the mean curvature, and K3
describes the Gauss–Kronecker curvature of the hypersurface in four-dimensional space
forms.

4. The Umbilical Hypersurfaces in Minkowski Five-Space

In this section, we give some umbilical facts of the hypersurfaces in five-dimensional
Minkowski space E5

1.
From Theorem 2, the relations among the curvatures Ki=0,...,4 and the principal cur-

vatures k j=1,...,4 of any hypersurface in five-dimensional Minkowski space are explicitly
described by

K0 = 1,

4K1 = k1 + k2 + k3 + k4,

6K2 = k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4,

4K3 = k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4,

K4 = k1k2k3k4.
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Then, we obtain the following.

Corollary 2. For a hypersurface in five-dimensional Minkowski space E5
1, the following occurs:

k1 = k2 = k3 = k4 ⇔ (K1)
2 = K2,K1K2 = K3,K1K3 = (K2)

2 = (K1)
4 = K4.

Remark 1. The umbilical hypersurfaces of five-dimensional Minkowski space E5
1 are only (open)

hyperplanes and hyperspheres.

An umbilical point is a geometric notion depends on the lines of curvature, which is a
singularity of a line of curvature. That is, a line of curvature will end at that point.

Lemma 1. A point is an umbilical point on the hypersurface in E5
1 if and only if (K1)

2 = K2,
K1K2 = K3, K1K3 = (K2)

2 = (K1)
4 = K4.

Theorem 5. The generalized helical hypersurface with a space-like axis given by Equation (5) has
an umbilical point if and only if the following differential equation holds:


(
Ω1 f 2 + Ω2

)
f 2 f ′ϕ′′ − 3Ω1 f 3 ϕ′3 + Ω3 f 2 f ′ϕ′2

+
[(

f 2Ω1 −Ω2
)

f f ′′ +
(
3Ω1 f 2 + 4Ω2

)
f ′2
]

f ϕ′ −
(
Ω3 f 2 −Ω4

)
f ′3


4

−44C4
3 f 2


(
a2 + b2C2

2 + c2C2
2C2

3
)

f ′2

−C2
2C2

3 f 2(ϕ′2 − f ′2
)


3

.



(
Ψ1 f 3 f ′ϕ′3 + Ψ2 f 2 f ′2 ϕ′2 + Ψ3 f f ′3 ϕ′ + Ψ4 f ′4

)
f 2 ϕ′′

−Ψ1 f 5 f ′′ϕ′4 −Ψ2 f 4 f ′ f ′′ϕ′3 −
(
Ψ3 f f ′′ + Ψ5 f ′2

)
f 2 f ′2 ϕ′2

−
(
Ψ4 f f ′′ + Ψ6 f ′2

)
f f ′3 ϕ′ + Ψ7 f ′6

 = 0.

Proof. A generalized helical hypersurface x having a space-like axis has an umbilical point
in E5

1; then, (K1)
4 = K4.

Open Problem 1. Find the ϕ = ϕ(r) solutions of the 2nd order differential equation
determined by Theorem 5.

Now, we state minimality conditions, determined by Definition 7, of the generalized
helical hypersurface having a space-like axis given by Equation (5).

Corollary 3. Let x : M4 ⊂ E4 −→ E5
1 be an immersion given by Equation (5). x has zero mean

curvature, i.e., 1-minimal, if and only if the following differential equation reveals(
Ω1 f 2 + Ω2

)
f 2 f ′ϕ′′ − 3Ω1 f 3 ϕ′3 + Ω3 f 2 f ′ϕ′2

+
[(

f 2Ω1 −Ω2
)

f f ′′ +
(
3Ω1 f 2 + 4Ω2

)
f ′2
]

f ϕ′ −
(
Ω3 f 2 −Ω4

)
f ′3 = 0.

Open Problem 2. Find the ϕ = ϕ(r) solutions of the 2nd order differential equation
described by Corollary 3.

Corollary 4. Let x : M4 ⊂ E4 −→ E5
1 be an immersion given by Equation (5). x has zero

Gauss–Kronecker curvature, i.e., 4-minimal, if and only if the following differential equation holds:(
Ψ1 f 3 f ′ϕ′3 + Ψ2 f 2 f ′2 ϕ′2 + Ψ3 f f ′3 ϕ′ + Ψ4 f ′4

)
f 2 ϕ′′

−Ψ1 f 5 f ′′ϕ′4 −Ψ2 f 4 f ′ f ′′ϕ′3 −
(
Ψ3 f f ′′ + Ψ5 f ′2

)
f 2 f ′2 ϕ′2

−
(
Ψ4 f f ′′ + Ψ6 f ′2

)
f f ′3 ϕ′ + Ψ7 f ′6 = 0.
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Open Problem 3. Find the ϕ = ϕ(r) solutions of the 2nd order differential equation
obtained by Corollary 4.

5. Generalized Helical Hypersurface with a Space-like Axis Supplying ∆x =Mx

In this section, we define the Laplace–Beltrami operator with respect to the first funda-
mental form of a smooth function in E5

1. Then, we calculate the Laplace–Beltrami operator
of the generalized helical hypersurface having a space-like axis given by Equation (5).

Firstly, we give the definition of the Laplace–Beltrami operator with respect to first
fundamental form of any smooth function in five-dimensional Minkowski space.

Definition 10. In five-dimensional Minkowski space, the Laplace–Beltrami operator depends on
the first fundamental form of a smooth function φ = φ(x1, x2, x3, x4) |D (D ⊂ R4) of class C4

described by

∆φ =
1

g1/2

4

∑
i,j=1

∂

∂xi

(
g1/2gij ∂φ

∂xj

)
, (11)

where
(
gij) = (gkl)

−1 and g = det
(
gij
)
.

To apply the above definition for the generalized helical hypersurface having a space-
like axis determined by Equation (5), we consider the inverse matrix of the first fundamen-
tal form matrix. Then, the components of the inverse matrix

(
gij) = I−1 of I, described by

Definition 3, are given by

g11 =
(
−CJ2 − B2S− GQ2 + 2BJQ + CGS

)
/ det I,

g12 =
(

FQ2 + CJD− BQD + ABS− AJQ− CFS
)

/ det I = g21,

g13 =
(

AJ2 − BJD + GQD− AGS + BFS− FJQ
)

/ det I = g31,

g14 =
(

B2D− CGD− ABJ + CFJ + AGQ− BFQ
)

/ det I = g41,

g22 =
(
−A2S− CD2 −Q2E + 2AQD + CSE

)
/ det I

g23 =
(

BD2 − AJD− BSE− FQD + JQE + AFS
)

/ det I = g32,

g24 =
(

A2 J − ABD + CFD− CJE + BQE− AFQ
)

/ det I = g42,

g33 =
(
−F2S− GD2 − J2E + 2FJD + GSE

)
/ det I,

g34 =
(

F2Q + AGD− BFD + BJE− GQE− AFJ
)

/ det I = g43,

g44 =
(
−A2G− CF2 − B2E + CGE + 2ABF

)
/ det I,

where

det I = (EG− F2)(CS−Q2) + (J2 − GS)A2 + (D2 − ES)B2 − (EJ2 + GD2)C

+2((CF− AB)DJ + (EB− FA)JQ + (GA− FB)DQ + FABS).

We replace φ = φ(x1, x2, x3, x4) with x = x(r, θ1, θ2, θ3) in Equation (11). Therefore, by
using the following inverse matrix of Equation (6):

I−1 =



− a2+(b2+(c2+ f 2)C2
3)C2

2
W

aϕ′

W
bϕ′C2

2
W

cϕ′C2
2C2

3
W

aϕ′

W
(b2+(c2+ f 2)C2

3) f ′2−C2
3 f 2 ϕ′2

f 2C2
3W

− ab f ′2

f 2C2
3W

− ac f ′2

f 2W
bϕ′C2

2
W − ab f ′2

f 2C2
3W

(a2+(c2+ f 2)C2
2C2

3) f ′2−C2
2C2

3 f 2 ϕ′2

f 2C2
3W

− bcC2
2

f 2W
cϕ′C2

2C2
3

W − ac f ′2

f 2W − bcC2
2

f 2W
(a2+(b2+ f 2C2

3)C2
2) f ′2−C2

2 C2
3 f 2 ϕ′2

f 2W


,
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and by differentiating the functions in Equation (11) with respect to r, θ1, θ2, θ3, respectively,
we obtain the following.

Theorem 6. The Laplace–Beltrami operator of the generalized helical hypersurface Equation (5)
having a space-like axis given by Equation (5) supplies the following relation:

∆x = 4K1G,

where K1 is the mean curvature determined by Theorem 3, and G is the Gauss map given by
Equation (8) of the hypersurface.

Proof. By direct computing (5) with the help of Equation (11), we obtain the relation
∆x = 4K1G.

On the other hand, we serve the following theorem about the Laplace–Beltrami opera-
tor and the mean curvature of the generalized helical hypersurface having a space-like axis
determined by Equation (5).

Theorem 7. Let x : M4 ⊂ E4 −→ E5
1 be an immersion described by Equation (5). ∆x =Mx,

where M =
(
mij
)

is a square matrix of order 5 if and only if K1 = 0, i.e., generalized helical
hypersurface x having a space-like axis has zero mean curvature.

Proof. We use 4K1G =Mx, and then obtain the following equations:

(ϕ + aθ1 + bθ2 + cθ3)m11 + fS3m12 + fS2C3m13 + fS1C2C3m14 + fC1C2C3m15

= Φ f f ′C2C3,

(ϕ + aθ1 + bθ2 + cθ3)m21 + fS3m22 + fS2C3m23 + fS1C2C3m24 + fC1C2C3m25

= Φ
(

f ϕ′S3 − c f ′C3
)
C2C3,

(ϕ + aθ1 + bθ2 + cθ3)m31 + fS3m32 + fS2C3m33 + fS1C2C3m34 + fC1C2C3m35

= Φ
[(

f ϕ′C3 − c f ′S3
)
S2C3 − b f ′C2

]
C2,

(ϕ + aθ1 + bθ2 + cθ3)m41 + fS3m42 + rS2C3m43 + fS1C2C3m44 + fC1C2C3m45

= Φ
[(

f ϕ′C3 − c f ′S3
)
C2C3 − b f ′S2

]
S1C2 − a f ′C1,

(ϕ + aθ1 + bθ2 + cθ3)m51 + fS3m52 + fS2C3m53 + fS1C2C3m54 + fC1C2C3m55

= Φ
[(

f ϕ′C3 − c f ′S3
)
C2C3 − b f ′S2

]
C1C2 − a f ′S1,

where M is the 5× 5 matrix, Φ = 4K1W−1/2. Differentiating above ODEs twice with
respect to θ1, we obtain the following:

m11 = m21 = m31 = m41 = m51 = 0, Φ = 0.

Therefore, the following relation occurs:

f (S1C2C3mi4 + C1C2C3mi5) = 0,

where f 6= 0, i = 1, . . . , 5. Considering that the functions sin and cos are linearly indepen-
dent on θ1, all the components of the matrixM are 0. Since Φ = 4K1W−1/2, then K1 = 0.
This means hypersurface x determined by Equation (5) is a 1-minimal (from Definition 7)
generalized helical hypersurface with a space-like axis.
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Finally, we present the following examples for all findings in this work. Firstly, we
consider the pseudo-hypersphere having a space-like axis in the following examination.

Example 1. In E5
1, by taking ϕ(r) = cosh r = Cr, f (r) = sinh r = Sr in the parametric

curve γ determined by Equation (4), we state the following pseudo-rotational surface, i.e., pseudo-
hypersphere having a space-like axis x = R.γt:

x = x(r, θ1, θ2, θ3) = (Cr,SrS3,SrS2C3,SrS1C2C3,SrC1C2C3),

where a = b = c = 0. Therefore, we obtain the following differential geometric objects of the
pseudo-hypersphere having a space-like axis in five-dimensional Minkowski space:

G = x,

I = diag
(
−1,S2

r C2
2C2

3 ,S2
r C2

3 ,S2
r

)
= −II = III =− IV = V,

S = −I4,

Kj = (−1)j,

∆x = 4x,

where I4 is the identity matrix of order 4, diag means diagonal parts of the matrix, and j =
0, 1, . . . , 4. We check that the pseudo-hypersphere having a space-like axis supplies the relation given
by Equation (10).

Secondly, we consider the rational pseudo-rotational surface having a space-like axis
in the following examination.

Example 2. Substituting the rational functions ϕ(r) = r2+1
r2−1 = Cr, f (r) = 2r

r2−1 = Sr, r 6= ±1,
into the parametric curve γ described by Equation (4), we then construct the following rational
pseudo-rotational hypersurface having a space-like axis:

x = x(r, θ1, θ2, θ3) = (Cr,SrS3,SrS2C3,SrS1C2C3,SrC1C2C3),

where a = b = c = 0 in five-dimensional Minkowski space. Hence, we find the following:

G = −x,

I = diag

(
− 4

(r2 − 1)2 ,S2
r C2

2C2
3 ,S2

r C2
3 ,S2

r

)
= II = III = IV = V,

S = I4,

Kj = 1,

∆x = −4x,

where I4 is the identity matrix of order 4, diag means diagonal parts of the matrix, and j =
0, 1, . . . , 4. Here, the rational pseudo-hypersphere having a space-like axis holds the relation deter-
mined by Equation (10).

6. Conclusions

In this work, we consider the generalized helical hypersurface having a space-like axis
in five-dimensional Minkowski space. We compute the first and second fundamental form
matrices, Gauss map, shape operator matrix, and curvatures of the hypersurface. We also
describe the umbilical relations of the hypersurface. We determine the Laplace–Beltrami
operator of the generalized helical hypersurface having a space-like axis.

Finally, we present some examples that are relevant to all the findings. The obtained
findings can be useful in future research.
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