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Abstract: We study the general property of the evolution of a class of scalar fields with tracking and 
thawing behaviors. For the tracking solutions, we show explicitly with three different potentials that, 
independent of initial conditions, there exists a general relation between the equation of state wφ and 
the fractional energy density Ωφ, so that the scalar field follows the same w φ − Ω φ trajectory during 
the evolution. The analytical approximations of the wφ − Ωφ trajectories are derived even though the 
analytical expression depends upon the particular form of the potential. For thawing solutions, a 
universal wφ − Ωφ relation exists and the relation is independent of both the particular form of the 
potential and the initial condition of the scalar field. Based on the derived w φ − Ω φ relation for the 
thawing models, we derive a tighter upper limit on w = dwφ/d ln a. The observational data is also 
used to constrain the thawing potential with the help of the universal wφ − Ωφ relation.

Keywords: quintessence field; tracking solution; thawing solution; observational constraints

1. Introduction

The observations of type Ia supernova provided the evidence to support the late time
cosmic acceleration [1–3]. To explain the late time cosmic acceleration, an exotic matter
component with negative pressure dubbed as dark energy is usually introduced. The
observations suggested that dark energy contributes about 72% to the total energy density
in the universe. The simplest candidate for dark energy is the cosmological constant, but
the theoretical estimation of the value of the cosmological constant is in discrepancy with
the astronomical observations by about 120 orders of magnitude [4], and the cosmological
constant as dark energy candidate faces fine tuning and coincidence problems. Based on
the concordance ΛCDM model, the release of Planck first year data on the measurements
of the cosmic microwave background anisotropy gave the value of the Hubble constant as
H0 = 67.3± 1.2 km/s/Mpc [5,6]. This value is in tension with the local measurement on the
Hubble constant H0 = 73.8± 2.4 km/s/Mpc by calibrating the magnitude–redshift relation
of 253 type Ia supernovae with over 600 Cepheid variables [7]. With more data and more
accurate measurements, the measurement accuracy of the Hubble constant was improved
greatly [7–27] and the tension became more serious [28]. For example, Planck 2018 data
gave the result H0 = 67.4± 0.5 km/s/Mpc [25], the supernovae and H0 for the equation of
state (SH0ES) team measured the local Hubble constant as H0 = 73.15± 0.97 km/s/Mpc
from Type Ia supernovae (SNe Ia) data by recalibrating the extragalactic distance ladder
using a sample of Milky Way Cepheids with the Hubble Space Telescope photometry
and Gaia EDR3 parallaxes [13]. By using the tip of the red giant branch method, the local
measurements of the Hubble constant gave H0 = 69.8± 0.6 (stat)± 1.6 (sys)km/s/Mpc [14].
Since the Planck results from the early Universe probe of cosmic microwave background
anisotropy depend on the ΛCDM model and the local measurements from type Ia supernova
standard candles suffer the zero-point calibration problem, we are still uncertain about
the origin of the tension on the Hubble constant. Gravitational waves as standard sirens
provide an independent method of measuring cosmological distance and the observations of
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gravitational waves and their electromagnetic counterparts may shed light on the origin of
the tension on the Hubble constant [29–31]. The first gravitational wave event GW170817
from binary neutron star merger and its counterpart GRB 170817A gave H0 = 70.0+12.0

−8.0
km/s/Mpc [32]. Combining the galaxy catalog and 47 gravitational wave events from the
third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3), LIGO-Virgo-
KAGRA collaborations obtained H0 = 68+8

−6 km/s/Mpc [33].
Although more astronomical observations support the late time cosmic accelera-

tion, the question whether the cosmological constant is dark energy remains unanswered.
For these reasons, dark energy is usually tackled by a dynamical scalar field called
quintessence [34–37]. As discussed in [38–41], the value of the Hubble constant H0 can
be lowered by quintessence models relative to the cosmological constant. Other pos-
sibilities for dark energy such as phantom [42], quintom [43–45], tachyon [46–48], and
k-essence [49] were also considered. Alternatively, the late time cosmic acceleration ap-
proach can also be explained by modifying general relativity at the cosmological scale, such
as the Dvali–Gabadadze–Porrati model [50], f(R) gravity [51–54], and dRGT ghost-free
massive gravity [55,56]. For a review of dark energy and alternative theories of gravity,
please see Ref. [57–65].

In general, to discuss the evolution of a scalar field, we need to impose initial con-
ditions, so it is difficult to get the property of the quintessence field from observational
data. Therefore, it is worthwhile to seek the general behavior of dynamical dark energy
which is independent of initial conditions. Fortunately, there exist general wφ −Ωφ tra-
jectories for the thawing and tracking solutions [66–88]. For a wide class of quintessence
potentials with the tracking solution [37,68], the equation of state parameter w(z) for the
quintessence varies slowly. Motivated by this behavior, Efstathiou approximated w(z) as
w(z) = w0 − α ln(1 + z) in the redshift range z < 4 [89]. For a wide class of scalar fields,
Chevallier–Polarski–Linder (CPL) parametrization with w(a) = w0 + wa(1− a) [90,91] was
usually used as a model-independent parametrization. Combining the generic wφ −Ωφ

relations and the CPL parametrization, the degeneracy between the two parameters w0 and
wa in the CPL parametrization can be broken by an analytical relation [87,92,93]. In this
paper, we study the general property of the evolution for the tracker and thawing fields.

The paper is organized as follows. In Section 2, we discuss the reason for the same
wφ −Ωφ trajectory in the tracker solution. In Section 3, we derive the wφ −Ωφ trajectories
for different potentials with tracking solutions. We derived the thawing solution and
obtained the constraint by using observational data for different potentials in Section 4.
The conclusion is drawn in Section 5.

2. The Tracking Solution

Using the fractional energy density Ωφ and the equation of state parameter γ = 1+wφ,
the evolution of a scalar field is determined by the following equations:

Ω′φ = 3(γb − γφ)Ωφ(1−Ωφ), (1)

γ′φ = (2− γφ)(−3γφ + |λ|
√

3γφΩφ), (2)

λ′ = −
√

3γφΩφλ|λ|(Γ− 1), (3)

where “′” represents the derivative with respect to ln a, wb = [(1/3)aeq/a]/[1 + aeq/a]
is the equation of state for the background, λ = −V−1dV/dφ is the roll parameter, and
Γ = λ−2V−1d2V/dφ2 is the tracker parameter. With these dynamical Equations (1)–(3), we
first discuss the behavior of tracking solution. To get the tracking solution, the potential
V(φ) must satisfy the condition Γ ≥ 1 [68] so that the absolute value of the roll parameter
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|λ| either decreases with time or remains a constant. When the tracking solution is reached,
γ′φ = 0, the tracker condition [68]:

γφ = 1 + wφ =
1
3

λ2Ωφ (4)

is satisfied, the flow parameter F = γφ/(Ωφλ2) = 1/3 and β = −1 + (1− wφ)/
√

12F =
−γφ/2. If γ′′φ ≈ 0, then γφ is nearly a constant [68,74]:

wφ =
wb(1−Ωφ)− 2(Γ− 1)

2Γ− 1−Ωφ
. (5)

It is clear that wφ is not a constant in general. To get a nearly constant wφ, we must
require that Ωφ is negligibly small and the tracker parameter Γ− 1 is nearly a constant for
the tracking solution. The exponential potential has Γ = 1, and the inverse power-law
potential V(φ) = V0φ−α has Γ = 1 + 1/α, so they have the tracking behavior. If Ωφ ≈ 0,
then:

wφ ≈ wtrk
φ =

wb − 2(Γ− 1)
2Γ− 1

, (6)

and the roll parameter λ must be large so that the tracker condition can be satisfied. If
Γ− 1 is not a constant, then it must be either large or small, so that wφ ≈ −1 or wφ ≈ wb.
For example, the potential V(φ) = V0 exp[−(3φ)2/3/2] has large Γ − 1 = λ2 and the
potential V(φ) = V0 exp(1/φ) has small Γ− 1 = 2/

√
λ. In summary, the tracking solution

satisfies the two conditions (4) and (6) initially, and the necessary conditions for the tracker
behavior to occur are: when the tracker condition (4) is satisfied, the fractional energy
density Ωφ should be negligible which requires that the initial value of |λ| should be big
enough and the roll parameter |λ| either decreases with time or remains a constant.

Now let us discuss the dependence of the tracking solution on initial conditions. We
consider two different initial conditions: (i) If the initial value of the fractional energy
density Ωφi is not too small or the initial value of the roll parameter λi is large enough
so that λ2

i > 3γφi/Ωφi, then from Equation (2), we see that whatever the initial value of
wφ, γφ will always increase toward 2 until γ′φ = 0. If γφ > γb, then Equation (1) tells us
that Ωφ will start to decrease because Ω′φ < 0. Once Ωφ decreases to a small value so that
λ2 < 3γφ/Ωφ, Equation (2) tells us that γ′φ < 0, then γφ decreases toward to zero and Ωφ

starts to increase if γφ < γb. Although λ decreases, it can be larger than 3γφ/Ωφ if γφ → 0
because Ωφ increases, so γφ will increase again. When the equation of state parameter
γφ increases away from zero, it will satisfy the relation λ2 < 3γφ/Ωφ and wφ will reach
the tracker behavior (6), perhaps with several oscillations. However, if the roll parameter
decreases too quickly, which can be seen in the potential V(φ) = V0 exp[−(3φ)2/3/2] with
Γ = 1 + λ2 and λ′ ∝ λ4, then there is no tracker solution with a nearly constant wφ because
λ is too small when the tracker condition is satisfied. The reason is as follows: If λi is
small, then Ωφi cannot be too small and Ωφ may reach 1 very quickly, so there is no tracker
solution with nearly constant wφ. (ii) If the initial value Ωφi or λi is small, and the condition
λ2

i < 3γφi/Ωφi is satisfied initially, then independent of the initial value γφi, Equations (1)
and (2) tell us that the equation of state parameter γφ decreases toward 0 and the fractional
energy density Ωφ starts to increase if γφ < γb, then the analysis is similar to that in the
first case (i). If λi is small, then Ωφ always increases although Ωφi is small, and it will
reach 1 soon, so there is no tracker solution with nearly constant wφ during the matter
domination. However, the current values of Ωφ, λ, and wφ are determined by their initial
values. These analyses tell us that there is no tracker solution with nearly constant wφ

if the initial value of λ is small because Ωφ reaches 1 very quickly and the scalar field
becomes dominant. When Ωφ reaches 1, then the evolution of Ωφ stops and the dynamical
Equations (1)–(3) reduce to the equations for γφ and λ. From Equations (2) and (3), we
get a relation between wφ and λ. Since Ωφ ≈ 1 and wφ approaches −1 asymptotically,
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if Γ is a function of λ, then the relation between wφ and λ becomes universal which is
independent of the initial conditions, so the relation between wφ and w′φ is also universal
when wφ → −1. For example, there exists the attractor solution Ωφ = 1, wφ = −1 and
λ = 0 for the potential V(φ) = V0 exp[−(3φ)2/3/2].

Since the tracking conditions (4) and (6) are the initial conditions for the tracking
solution, if the same initial value of Ωφ is given, then wφ, Ωφ, and λ will follow the
same trajectory, and independent of the initial conditions we will have the same wφ −Ωφ

trajectory for the tracking solution. Although wφ −Ωφ trajectory is the same, the exact
values of wφ and Ωφ at a moment are still determined by the initial conditions.

3. The Analysis of Different Potentials

For the inverse power-law potential V(φ) = V0φ−α, the tracker parameter Γ = 1+ α−1,
and the critical point (Ωφc, γφc, λc) = (1, 0, 0) is a stable point. As Ωφ → 1, both γφ and

λ decrease to zero asymptotically, γφ ≈ λ2/3 + 2λ4/(9α),
√

λ2Ωφ ≈
√

3γφ(1− γφ/α)

and γ′φ ≈ −3(2− γφ)γ2
φ/α. When the scalar field starts to catch up the background, the

wφ −Ωφ trajectory can be approximated with a linear relation [75,94]:

Ωφ =
1− 2wi + 4w2

i
(1− w2

i )wi
(wφ − wi), (7)

where wi = wtrk
φ . Therefore:

√
λ2Ωφ −

√
3γφ ≈ −

γb − γi
γi

γφ
√

3γφ

2− γφ

(
1−

γφ

γi

)
. (8)

Substitute the above relation (8) into Equations (1) and (2), we derive the approximate
relation:

Ωφ =

[
1−

(1− w2
i )wi

1− 2wi + 4w2
i

1
γi − γφ

(
γφ

γi

)1/2+γiγb/4(γb−γi)

exp
[

γiγb
γi − γb

(
1

γφ
− 1

γi

)]]−1
.

(9)

The Ωφ − wφ trajectories for the inverse power-law potential along with the analytical
approximation (9) are shown in Figure 1. It is clear that the analytical result (9) approximates
the Ωφ − wφ trajectory well, especially for smaller α as shown in Figure 1, and the inverse
power-law potential V(φ) = V0φ−2 is excluded by observational data.

For the potential V(φ) = V0 exp(1/φ), Γ = 1 + 2/
√

λ. The tracking solution starts
with γtrk

φ = γb/(1 + 4/
√

λ) ≈ γb because λ is large due to the tracker condition. As
γφ → 0 and Ωφ → 1, we have λ

√
Ωφ ≈

√
3γφ[1− 2(3γφ)3/4/3] and γ′φ ≈ −4(3γφ)7/4/3.

The wφ −Ωφ relation for the tracking solution can be approximated with:

Ωφ =
[
1 + 3γ1/4

φ (1− γφ)
−15/2 exp[−(3γφ)

1/4 − (3γφ)
−3/4]

]−1
. (10)

The Ωφ − wφ trajectory and the analytical approximation (10) are shown in Figure 1.
As seen from Figure 1, the analytical relation (10) approximates the trajectory well and the
potential V(φ) = V0 exp(1/φ) is consistent with observational data.
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V(ϕ)∼sinh-2(0.1ϕ)

Figure 1. The wφ −Ωφ trajectories for the inverse power-law potential V(φ) ∼ φ−α, the potential
V(φ) ∼ exp(1/φ), and the potential V(φ) = V0 sinh−2(0.1φ) with the tracking behavior. The dashed
lines denote the analytical approximations (9)–(11). The shaded region is the allowed region by
astronomical observations, Ωφ0 ∈ (0.6, 0.8) and wφ0 < −0.7.

For the potential V(φ) = V0 sinh−β(αφ), the tracker parameter Γ = 1 + 1/β− α2β/λ2.
By setting Ω′φ = γ′φ = λ′ = 0, we obtain the following critical points. Point C1 with
(ΩφC1, γφC1, λC1) = (1, 2, αβ): it exists for all parameters, the point is a saddle point when
λ >
√

6 and unstable when λ <
√

6. Point C2 with (ΩφC2, γφC2, λC2) = (0, 2, λ): it exists
for all parameters and the point is an unstable point. Point C3 with (ΩφC3, γφC3, λC3) =
(0, 0, λ): it exists for all parameters and the point is a saddle point for −1 < w < 1.
Point C4 with (ΩφC4, γφC4, λC4) = (1, 0, λ): it exists for all parameters and the point is a
stable point only when λ = 0. Point C5 with (ΩφC5, γφC5, λC5) = (3γb/λ2, γb, αβ): the
existence condition is λ2 > 3(1 + wφ), the point is a stable point for 3(1 + wφ) < λ2 <
24(1+wφ)2/(7+ 9wφ) and saddle point when λ2 > 24(1+wφ)2/(7+ 9wφ). Point C6 with
(ΩφC6, γφC6, λC6) = (1, α2β2/3, αβ): the existence condition is λ2 < 6, the point is a stable
point for λ2 < 3(1 + wφ) and saddle point when 3(1 + wφ) < λ2 < 6. If we choose α = 0.1
and β = 2, the wφ −Ωφ relation for the tracking solution can be approximated with:

Ωφ = 1− 28× 3−3/2γ17/4
φ . (11)

The Ωφ − wφ trajectory and the analytical approximation (11) are shown in Figure 1.
As seen from Figure 1, the analytical relation (11) approximates the trajectory well and the
model V(φ) = V0 sinh−2(0.1φ) is excluded by observational data.

Although we derived analytical approximations for the Ωφ − wφ trajectories, it seems
to be different for different potentials, and the tracking behavior depends on the particular
form of the potential, so it is difficult to reconstruct the general property of the tracker po-
tential from observational data. However, the situation is different for the thawing solution.
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4. The Thawing Solution

For the thawing solution, wφ starts with the initial value −1 and starts to increase.
From Equation (3), it is easy to see that λ will keep to be a constant when wφ = −1. Taking
the approximation γφ � 1 and λ ≈ λi, we get [88]:

dγφ

dΩφ
=
−6γφ + 2λ

√
3γφΩφ

3γbΩφ(1−Ωφ)
,

γφ =
λ2

i
3

(
1 +

1
2

γb

)−2
Ωφ(1−Ωφ)

2/γb

2F2
1

(
1

γb
+

1
2

,
1

γb
+ 1,

1
γb

+
3
2

; Ωφ

)
,

(12)

where 2F1(a, b, c, x) is the hypergeometric function. Note that this approximation is invalid
when γφ ∼ 1. If we take γb = 1, then we recover the familiar wφ −Ωφ relation [81,92]:

γφ =
λ2

i
3

[
1√
Ωφ
−
(

1
Ωφ
− 1
)
(tanh−1

√
Ωφ)

]2

=(1 + w0)

[
1√
Ωφ
−
(

1
Ωφ
− 1
)

tanh−1(
√

Ωφ)

]2

×
[

1√
Ωφ0
− (Ω−1

φ0 − 1) tanh−1
√

Ωφ0

]−2

.

(13)

Note that the last equality also holds for thawing phantom models [78,92]. For thawing
phantom models with the potentials V(φ) ∼ φ6, V(φ) ∼ φ2, V(φ) ∼ φ−2, and V(φ) ∼
exp(−λφ), it was explicitly shown that the analytical result (13) gives the behavior of
w(a) [78]. Therefore, we can use w(a) given by Equation (13) to approximate thawing
scalar fields including quintessence and phantom. If γφ is near zero, the scalar field is not
much different from the cosmological constant, then we can approximate the dynamics of
the thawing field by the SSLCPL model [87,92] with w(a) = w0 + wa(1− a) and:

wa = 6(1 + w0)
(Ω−1

φ0 − 1)[
√

Ωφ0 − tanh−1(
√

Ωφ0)]

Ω−1/2
φ0 − (Ω−1

φ0 − 1) tanh−1(
√

Ωφ0)
. (14)

Although we discuss quintessence field only, the SSLCPL model can also approximate
the thawing phantom fields.

As Ωφ → 0 and wφ → −1, γφ → λ2
0Ωφ/3(1 + γb/2)2, we get the flow parameter

F = 1/3(1 + γb/2)2 and β = γb/2, the results are the same as those found in [84]. If
wφ starts to increase during the matter domination, γb = 1 and F = 4/27. Therefore,
4/27 ≤ F ≤ 1/3 for the thawing solution, a tighter upper limit w′φ ≤ 3(1− w2

φ)/2 is then
obtained. As discussed in [88], the approximation (13) works better for smaller λi and the
wφ −Ωφ relation (13) approximates the trajectory for the power-law potential better than
that for the pseudo-Nambu Goldstone boson potential.

With the approximation (14), we use the 740 spectroscopically confirmed type Ia su-
pernovae data from three years of the SDSS-II supernovae survey and SNLS3 supernovae
data [95], the combination of Planck 2013 results on the measurements of the cosmic mi-
crowave background power spectra with the nine-year WMAP polarization low-multipole
likelihood data [5,6,96], the 8 baryon acoustic oscillation data from the 6 dFGS survey,
the baryon oscillation spectroscopic survey, the SDSS survey and the WiggleZ dark en-
ergy survey [97–101], and the 21 Hubble parameter H(z) data [102–105] to constrain wφ0
and Ωφ0, and the results are shown in Figure 2. As discussed above, the approxima-
tion (14) holds for both quintessence and phantom thawing fields, so the 2σ constraint
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−1.23 < wφ0 < −0.85 applies for both quintessence and phantom thawing fields. From
Figure 2, we also see that the 2σ bound on the roll parameter is |λi| = 1.013 for the
quintessence thawing field and |λi| = 1.199 for the phantom thawing field. From the
marginalized 95% contours of wφ0 and Ωφ0 obtained in Figure 2, we reconstruct the thaw-
ing potential V(φ) by using the following relations:(

dφ

d ln a

)2
= 3m2

plΩφ(a)|1 + w(a)|, (15)

V(a) =
1
2

ρcr0(1− w(a))Ωφ(a)(H(a)/H0)
2, (16)

where mpl = (8πG)−1/2 and the current critical density ρcr0 = 3m2
pl H

2
0 . The reconstructed

potential is shown in Figure 3. From Figure 3, we see that the power-law potential V(φ) =
V0φ0.8 is consistent with the observational data. The power-law potential V(φ) = V0φ0.8 as
a inflationary model is also consistent with the measurements on the cosmic microwave
background anisotropy. We also find that the potential V(φ) = V0φ0.7 is consistent with the
2σ upper bound and the potential V(φ) = V0φ1.1 is consistent with the 2σ lower bound.

|λ
i
|=1.013

|λ
i
|=1.199

Ωφ0

w
0

0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73
−1.25

−1.2

−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85

−0.8

Figure 2. The marginalized 68% and 95% confidence contours of wφ0 and Ωφ0 from observational
data. The solid lines denote the analytical relation (13).
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Δϕ

V
(ϕ

)

Figure 3. The 2σ constraint on quintessence thawing potentials. The potential is in the unit of the
current critical density ρcr0 and ∆φ is the difference between the scalar field φ and its current value
φ0. The dashed lines denotes the power-law potential V(φ) ∼ φ0.8.

5. Conclusions

To guarantee an almost constant wφ when the tracking solution begins, the fractional
energy density Ωφ should be small and the roll parameter λ must be large enough so
that the tracker condition can be satisfied, and |λ| does not increase with time. Therefore,
a nearly constant tracker parameter with Γ > 1 and large initial value of the roll parameter
λ are the necessary conditions for tracking solutions. Although the current value of Ωφ

and wφ depend on the initial conditions for the tracking solutions, the wφ −Ωφ trajectory
is independent of the initial conditions. We derived the analytical approximations of the
wφ −Ωφ trajectory for the potentials V(φ) ∼ φ−α and V(φ) ∼ exp(1/φ). Unfortunately,
the analytical approximations are different for different potentials.

For the thawing solutions, wφ ≈ −1 initially, the roll parameter changes very slowly
and it can be approximated as a constant, a general wφ −Ωφ relation (12) is then obtained.
Based on the asymptotical behavior of the wφ −Ωφ relation, we derive the tighter upper
bound w′φ ≤ 3(1− w2

φ)/2. In general, Ωφ0 and wφ0 depend on the initial conditions, so it
will be difficult to constrain general scalar fields by using the observational data. However,
the wφ −Ωφ trajectories for both the tracking and thawing solutions are independent of
the initial conditions, so it will be easier to constrain the tracker and thawing potentials.
We apply the observational data to reconstruct the thawing potential and we find that the
power-law potential V(φ) ∼ φ0.8 is consistent with the observational data. We also find
that the potential V(φ) = V0φ0.7 is consistent with the 2σ upper bound and the potential
V(φ) = V0φ1.1 is consistent with the 2σ lower bound.
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G.R.; et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample. Mon. Not. R. Astron. Soc.
2010, 401, 2148–2168. https://doi.org/10.1111/j.1365-2966.2009.15812.x.

99. Anderson, L.; Aubourg, E.; Bailey, S.; Bizyaev, D.; Blanton, M.; Bolton, A.S.; Brinkmann, J.; Brownstein, J.R.; Burden, A.; Cuesta,
A.J.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the
Data Release 9 Spectroscopic Galaxy Sample. Mon. Not. R. Astron. Soc. 2013, 427, 3435–3467. https://doi.org/10.1111/j.1365-
2966.2012.22066.x.

100. Blake, C.; Kazin, E.A.; Beutler, F.; Davis, T.M.; Parkinson, D.; Brough, S.; Colless, M.; Contreras, C.; Couch, W.; Croom, S.; et al.
The WiggleZ Dark Energy Survey: Mapping the distance-redshift relation with baryon acoustic oscillations. Mon. Not. R. Astron.
Soc. 2011, 418, 1707–1724. https://doi.org/10.1111/j.1365-2966.2011.19592.x.

101. Busca, N.G.; Delubac, T.; Rich, J.; Bailey, S.; Font-Ribera, A.; Kirkby, D.; Le Goff, J.M.; Pieri, M.M.; Slosar, A.; Aubourg, É.; et al.
Baryon Acoustic Oscillations in the Ly-α forest of BOSS quasars. Astron. Astrophys. 2013, 552, A96. https://doi.org/10.1051/0004-
6361/201220724.

102. Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 2005, 71, 123001.
https://doi.org/10.1103/PhysRevD.71.123001.

103. Gaztanaga, E.; Cabre, A.; Hui, L. Clustering of Luminous Red Galaxies IV: Baryon Acoustic Peak in the Line-of-Sight Direction and
a Direct Measurement of H(z). Mon. Not. R. Astron. Soc. 2009, 399, 1663–1680. https://doi.org/10.1111/j.1365-2966.2009.15405.x.

104. Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S.A. Cosmic Chronometers: Constraining the Equation of State of
Dark Energy. I: H(z) Measurements. JCAP 2010, 2, 8. https://doi.org/10.1088/1475-7516/2010/02/008.

105. Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.; Mignoli, M.; Pearce,
H.; et al. Improved constraints on the expansion rate of the Universe up to z~1.1 from the spectroscopic evolution of cosmic
chronometers. JCAP 2012, 8, 6. https://doi.org/10.1088/1475-7516/2012/08/006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	The Tracking Solution
	The Analysis of Different Potentials
	The Thawing Solution
	Conclusions
	References

