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Abstract: In this paper, we studied the nonrelativistic quantum mechanics of an electron in a space-
time containing a topological defect. We also considered that the electron is influenced by the Hulthén
potential. In particular, we dealt with the Schrödinger equation in the presence of a global monopole.
We obtained approximate solutions for the problem, determined the scattering phase shift and the
S-matrix, and analyzed bound states.
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1. Introduction

The search for exactly solvable models is one of the most relevant tasks in the branch
of theoretical physics. However, obtaining exact solutions is not possible in all cases of
research interest. In those circumstances, it is necessary to study how to make corrections to
these models or even to examine the obtaining of approximate solutions. In the framework
of nonrelativistic quantum mechanics, the Schrödinger equation describes precisely the
dynamics of a closed quantum system, providing all of the information about the properties
of the system [1]. In this context, there are several examples of exactly solvable models,
such as the harmonic oscillator [2], the two-body problem with non-central forces [3], the
modified ring-shaped oscillator potential [4], and a model involving a class of hyperbolic
potential wells [5]. Because of its fundamental feature, it is possible to think about the
Schrödinger equation in the most diverse contexts, describing low-dimensional electron
gases [6] and problems with anisotropic mass [7], as well as the presence of curvature
and torsion in the spacetime [8]. Concerning the Schrödinger equation in a curved space,
a relevant type of problem consists of studying the presence of topological defects [9].
Topological defects can arise in the contexts of gravitation and condensed matter physics.
In the first one, topological defects are associated with the process of evolution in the early
universe, in which symmetry-breaking phase transitions took place [10]. In condensed
matter physics, these defects might appear during material synthesis, being inevitable in
the process [11]. The study of the physical implications of these defects on the physical
properties of a system has been an active research line in the last few decades.

In gravitation, we can cite topological defects such as cosmic strings, domain walls, and
global monopoles [9,12,13]. As pointed out in [14], cosmic strings and global monopoles
are exotic topological defects. Around a cosmic string, spacetime is not globally flat but
locally flat. Another remarkable feature about cosmic strings refers to the fact that we can
associate a conical geometry to this type of defect. Because of this, there is a counterpart
for cosmic strings in condensed matter physics, which is named disclinations [15,16]. A
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disclination also presents a conical geometry that manifests in solids and liquid crystals.
The spacetime of cosmic string exerts an impressive influence on the behavior of a physical
system, in which effects such as gravitational leasing, self-force, and the gravitational
Aharonov–Bohm effect take place. In the literature, different models have been solved
in the cosmic string spacetime [17–33] and disclinations [34–41], demonstrating the wide
range of possibilities of investigation involving these issues.

A global monopole also presents significant features, such as the topological scattering
of test particles. For this defect, one can say that its influence manifests because of a solid
deficit angle that dictates the corresponding spacetime’s topological behavior and curva-
ture. In condensed matter physics, topological defects might appear in various scenarios;
for instance, as domain walls in magnetic materials, vortices in superconductors [42],
and solitons in polyacetylene [43]. In addition, there are defects known as dislocations
that occur in disordered solids [12,44]. In the present manuscript, we are interested in
studying the influence of a spacetime produced by a global monopole on the quantum
mechanics of a nonrelativistic particle. For a global monopole, the scalar matter field
plays the role of an order parameter where, outside the monopole, the core acquires a
non-vanishing value. In this context, Barriola and Vilenkin [45] presented an approximate
solution of the Einstein equations [46–48] for the metric outside a monopole resulting from
the global O(3) symmetry breaking. They showed that the monopole exerts practically
no gravitational force on the nonrelativistic matter. In addition, the space around it has a
solid angle deficit, and the same angle, independent of the impact parameter, deflects all
light rays. After this study, several works were developed in this direction, including the
study of the polarization and vacuum fluctuations [49–51], relativistic motion of quantum
oscillator [52–54], radiation, absorption and scattering of black holes [55–57], etc.

As we have mentioned, the study of quantum mechanics problems in which the
Schrödinger equation has no exact solutions is a question of interest due to its foundational
character. To deal with these problems, it is often necessary to implement approximation
techniques. As examples of investigations in this context, we can cite solutions of the
Schrödinger equation with Eckart plus inversely quadratic Yukawa potentials [58], Hua plus
modified Eckart potential with the centrifugal term [59], Manning–Rosen plus Hellmann
potential and its thermodynamic properties [60], and the shifted Deng–Fan potential
model [61]. Then, studying the nonrelativistic quantum motion of a particle in the presence
of both the Hulthén potential and the global monopole is a pertinent issue.

With all of this in mind, in this manuscript, our goal consisted of obtaining approx-
imate solutions for the Schrodinger equation in the spacetime of a global monopole in
the presence of the Hulthén potential. That potential class presents an extensive scope
of applications, such as nuclear physics, chemical physics, and condensed matter sys-
tems [62]. Regarding the study of approximate solutions when the Hulthén potential
is present, we can cite examples of works in the literature dealing with this topic in
the framework of the Schrödinger equation [63], Klein–Gordon equation [64], and Dirac
equation [65,66].

The organization of the paper is as follows. In Section 2, we write the Schrödinger
equation for a charged particle in the global monopole spacetime, including the Hulthén
potential. Before solving the radial equation, we study the effective potential to which
the particle is subjected. We show that bound states are allowed for α < 1 and α > 1,
and the other parameters are fixed. To solve the radial equation of motion for arbitrary
states, we used standard approximations to the Hulthén potential. We show that the radial
differential equation is of the hypergeometric type, and its solution is given in terms of
the hypergeometric function 2F1(a, b; c; z). In Section 3, we solve the radial equation for
scattering states and find the phase shift of the wave function. Section 4 is dedicated to
examining bound states solutions. To achieve this, we first determined the S-matrix and
then analyzed its poles, from which, an expression for the energy of bound states could
be obtained. We end this section by presenting some sketches for the energy levels and
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comparisons with other results in the literature. Finally, we make our concluding remarks
in Section 5.

2. Nonrelativistic Quantum Mechanics in the Global Monopole Spacetime

In this section, we write the Schrödinger equation with vector coupling to describe
the motion of an electron interacting with the Hulthén potential in the global monopole
spacetime. The metric of this manifold is expressed by the line element [45]

ds2 = −dt2 + α−2dr2 + r2
(

dθ2 + sin2 θdϕ2
)

, (1)

where α2 = 1− 8πGη2 is smaller than 1 and represents the deficit solid of this manifold. The
parameter η corresponds to the scale of gauge-symmetry breaking [67]. For this spacetime,
it is known that the area of a sphere of unit radius is not 4πr2 but 4πα2r2. Furthermore,
the surface with θ = π/2 presents the geometry of a cone (gauge cosmic string) with a
deficit angle ∆̃ = 8π2η2. It is known that the motion of massive or charged particles in the
spacetime (1) involves the effect of the self-interaction potential in the model description. In
this case, the relevant equation is the Schrödinger equation in spherical polar coordinates
with vector coupling. The Schrödinger equation has the form

Hψ = Eψ, (2)

where H is the corresponding Hamiltonian operator, given by

H =
1

2M
p2 + Ve f f (r). (3)

Here, p denotes the momentum operator, M is the mass of the particle, and

Ve f f (r) = VH(r) + VSI(r) (4)

is the effective potential, which contains the Hulthén potential VH(r) and the electrostatic
self-interaction potential VSI(r). The self-interaction potential VSI(r) is of the Coulomb-type,
given by [68]

VSI(r) =
K(α)

r
, (5)

where r is the distance from the electron to the monopole and K(α) is the constant of
coupling. In a general analysis, depending on the sign of K(α), the potential VSI(r) can be
either attractive or repulsive. For the electrostatic case, K(α) is known to be [68]

K(α) = e2S(α)
2

> 0, (6)

where e is the electron charge. The function S(α) is given by

S(α) =
∞

∑
l=0

[
2l + 1√

4l(l + 1) + α2
− 1

]
, (7)

where l denotes the angular-momentum quantum number. Note that S(α) is a finite
positive number for α < 1 and negative for α > 1. In our approach, we consider these
two possibilities for α and discuss the physical implications when VSI(r) is added to the
Hulthén potential in its approximate form, which we present later. Although the case with
α > 1 is nonphysical, we consider it important because it makes our study more complete
from a mathematical physics point of view. The Hulthén potential is given by [69,70]

VH(r) = −
Ze2ξe−ξr

1− e−ξr , (8)
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where Z is a positive constant and ξ is the screening parameter that determines the Hulthén
potential range. When the potential VH(r) is used for atoms phenomena, the constant Z is
identified with the atomic number. Some authors have opted to define a new parameter,
namely V0 = Ze2ξ, and state that V0 is related to the atomic number Z and the screening
parameter ξ [71]. Here, we prefer to conduct these parameters explicitly in our calculations
as in Reference [72]. With the inclusion of the effective potential (4), Equation (2) can be
written explicitly as

− h̄2

2M

[
α2

r2
∂

∂r

(
r2 ∂

∂r

)
− L2

r2

]
ψ(r) +

K(α)
r

ψ(r)− Ze2ξe−ξr

1− e−ξr ψ = Eψ(r), (9)

where L is the usual orbital angular momentum operator in spherical polar coordinates.
At this point, it is useful to notice that [H, L] =

[
H, L2] = 0. From these commutation

relations, together with Equation (2), we can write the following equations [73] involving
the angular momentum operator and its corresponding quantum numbers:

L2ψ(r) = l(l + 1)h̄2ψ(r), (10)

Lzψ(r) = mh̄ψ(r). (11)

In this way, we shall search for energy eigenstates of the form

ψ(r) = Rn(r)Ym
l (θ, ϕ), (12)

in which Ym
l (θ, ϕ) represents the spherical harmonics functions. Substituting this solution

into Equation (9) together with the standard change in variables R(r) = r−1u(r), we obtain
the radial equation

− h̄2α2

2M
d2u(r)

dr2 + Ve f f u(r) = Eu(r). (13)

where

Ve f f (r) =
h̄2

2M
l(l + 1)

r2 +
K(α)

r
− Ze2ξe−ξr(

1− e−ξr
) . (14)

and K(α) is given in Equation (6). Equation (13) is the Schrödinger equation in the space-
time of a global monopole in the presence of the Hulthén potential. At this point, if we
release the Hulthén potential, we obtain the Schrödinger equation in the global monopole
background. The effective potential (14) allows us to study both bound and scattering
states. This can be accomplished by controlling the parameters K(α) and ξ, where we can
observe regions of minimum potential energy for different values of α < 1 (Figure 1). In
particular, for ξ = 0.1 and l = 1, the system admits bound states for all α values considered
(Figure 1a). For fixed l, the number of curves that admit bound states decreases as the
parameter ξ increases (Figure 1b). On the other hand, by increasing l, the system admits
only scattering states (Figures 1c,d). This result is due to the cancellation between the
self-interaction potentials and the Hulthén potential with its approximations adopted here.
A curious feature is manifested when we adopt the same parameters used in Figure 1, but
now taking α > 1. All potential minima appear in the effective potential’s negative range,
and bound states are permissible (Figure 2). The potential well gets deeper for fixed l and
decreasing values of ξ (Figure 2a,b).
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Figure 1. Effective potential (Equation (14)) as a function of r for different values of α < 1. Four
situations involving ξ and l are considered: (a) ξ = 0.1 and l = 1, (b) ξ = 0.65 and l = 1, (c) ξ = 0.21
and l = 2, and (d) ξ = 0.65 and l = 3.
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Figure 2. Effective potential (Equation (14)) as a function of r for different values of α > 1. Four
situations involving ξ and l are considered: (a) ξ = 0.1 and l = 1, (b) ξ = 0.65 and l = 1, (c) ξ = 0.21
and l = 2, and (d) ξ = 0.65 and l = 3.
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To solve the Equation (13) for scattering states (E > 0), it is convenient to analyze their
asymptotic behavior for both regimes of large and small r. Through this analysis, we obtain
the limiting forms [71,74,75]

u(r) → r
1
2+`, r → 0; (15)

u(r) → sin
(

kr− `π

2
+ δθ

)
, r → ∞, (16)

where ` =
√

4l2 + 4l + α2/2α, and k2 = 2ME/α2h̄2. Note that, if α = 1, we have ` →
l + 1/2, and the limiting forms (15) and (16) recover the usual ones [76]. Equation (13)
cannot be analytically solved for l 6= 0, even for the s-wave case. Then, we must make
Equation (13) solvable for any l. At the same time, we want to consider the self-interaction
potential (5), which is a Coulomb-type potential. Thus, we follow the literature and proceed
by taking the following approximations [72,77–80]:

1
r2 ≈

ξ2e−ξr(
1− e−ξr

)2 ,
1
r
≈ ξe−ξr

1− e−ξr , (17)

which are valid only for small values of the parameter ξ. By defining the new variable
y = 1− e−ξr, these approximations become

1
r2 ≈

ξ2(1− y)
y2 ,

1
r
≈ ξ(1− y)

y
. (18)

Substituting the approximations above in Equation (13) and performing the appropri-
ate algebraic manipulations, we obtain the differential equation

(1− y)2 d2u(y)
dy2 − (1− y)

du(y)
dy
− λ2(1− y)

y2 u(y) +
℘2(1− y)

y
u(y) + κ2u(y) = 0, (19)

with

λ2 =
l(l + 1)

α2 ≥ 0, ℘2 =
2M

h̄2α2ξ

(
Ze2 −K(α)

)
, κ =

k
ξ

. (20)

It can be shown that Equation (19) has regular singularities at points 0, 1, and ∞. By a
suitable change in variables, it can be converted to a hypergeometric differential equation
whose solution is given in terms of the hypergeometric function 2F1(a, b; c; y). In this way,
we take the wave function in the range 0 ≤ y ≤ 1 of the form

u(y) = yd(1− y)−iκ
2F1(a, b; c; y), (21)

where the parameters a, b, c, and d are given by

a = d− iκ + ∆, (22)

b = d− iκ − ∆, ∆ =
√
℘2 − κ2, (23)

c = 2d, d =
1
2

(
1 +

√
1 + 4 λ2

)
. (24)

In Equation (21), the function (1− y)−iκ represents an arbitrary choice of the particular
conditions for a scattering wave, namely the outgoing wave at infinity (see Equation (16)).
In Figures 3 and 4, we make plots of |u(y)|2 for different values of n. In both plots, we
use h̄ = 1, M = 1, e = 1, k = 1, and l = 1. For the values of ξ, we use some values based
on others in the literature [72,74,79,81]. For ξ = 0.1 and α = 0.2, the amplitudes of |u(r)|2
increase as n increases (see the solid blue line for n = 1 and the solid black line for n = 5,
respectively) (Figure 3a). Keeping ξ at 0.1 and increasing α to 0.8, we observe the reverse
effect, i.e., the curves with the largest amplitude are those with an increasingly smaller
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n (see the blue solid line for n = 1). Furthermore, |u(r)|2 becomes more localized, with
the maximum of the amplitudes moving to the left (Figure 3b). When we analyze the
profile of |u(r)|2 for α = 0.65 and keep the other parameters, we see that the amplitudes
of |u(r)|2 for α = 0.2 are larger than those obtained for the case with α = 0.8. In both
cases, the amplitudes increase when n is increased. It is important to analyze the profiles in
Figure 3 for α > 1 (Figure 4). For the respective values α = 1.2, ξ = 0.1 and α = 1.8, ξ = 0.1,
only a reduction in the amplitude of |u(r)|2 occurs when the parameter α is increased. In
both cases, the amplitudes decrease when n increases (Figures 4a,b). As in Figure 3a,b,
when we increase ξ to 0.65 ((Figure 4c,d), respectively) and keep the same values of α, only
a small variation in the amplitude of |u(r)|2 is observed. The increase in amplitude occurs
when the quantum number n is increased. In the order in which they are displayed, the
amplitude with n = 1 (curve with blue solid line) is the smallest, whereas the amplitude
with n = 5 (curve with black solid line) is the largest.

To access other properties of the hypergeometric function 2F1(a, b; c; y) in
Equation (21), the reader is invited to see References [82,83]. Starting from the solution (21),
we can now study different properties of the system, such as the scattering phase shift, the
scattering matrix (S-matrix), and the energies for bound states. We address these topics in
the next sections.
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(a) α = 0.2, ξ = 0.1
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(d) α = 0.8, ξ = 0.65

Figure 3. The plots of |u(r)|2 as a function of r for different values of n displayed for (a) α = 0.2,
ξ = 01, (b) α = 0.8, ξ = 0.1, (c) α = 0.2, ξ = 0.65, and (d) α = 0.8, ξ = 0.65. We use the parameters
h̄ = 1, M = 1, e = 1, k = 1, and l = 1.
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Figure 4. The plots of |u(r)|2 as a function of r for different values of n displayed for (a) α = 1.2,
ξ = 0.1, (b) α = 1.8, ξ = 0.1, (c) α = 1.2, ξ = 0.65, and (d) α = 1.8, ξ = 0.65. We use the parameters
h̄ = 1, M = 1, e = 1, k = 1, and l = 1.

3. Scattering Phase Shift

In this section, we shall derive the phase shift of the wave functions corresponding to
the solution (21). For this purpose, we consider the boundary condition such that, when
y → 0 (r → 0) and u(y), it is finite. Solution (21) satisfies these requirements. Thus,
returning to the variable r, the solution becomes

u(r) = cn

(
1− e−ξr

)d
eikr

2F1

(
a, b; c; 1− e−ξr

)
, (25)

where cn is the normalization constant. To continue solving the problem, we need to
associate the solution 2F1

(
a, b; c; 1− e−ξr) to some transformation relation that allows us to

analyze its asymptotic behavior. Such a transformation is obtained through the analytical
continuation of the hypergeometric function given by [84]

2F1(a, b; c; y) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; a + b− c + 1; 1− y)

+ (1− y)c−a−b Γ(c)Γ(a + b− c)
Γ(a)Γ(b) 2F1(c− a, c− b; c− a− b + 1; 1− y) (26)

together with the results

2F1(a, b; a + b− c + 1; 0) = 1, (27)

2F1(c− a, c− b; c− a− b + 1; 0) = 1. (28)

Then, using (27) and (28) in Equation (26), the desired transformation is found to
be [74]

2F1

(
a, b; c; 1− e−ξr

)
→ Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
+ e−ξ(c−a−b)r Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
. (29)
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We aim to write Equation (29) in a form that allows us to find an expression for the
phase shift. First, the quantities c− a− b and a + b− c in Equation (29) are given by 2iκ
and −2iκ, respectively, from which, we can verify that

a + b− c = (c− a− b)∗. (30)

Similarly, we can also show that

c− a = d + iκ − ∆ = b∗, (31)

c− b = d + iκ + ∆ = a∗. (32)

Using these results, Equation (29) can be written as

2F1(a, b; c; y)→ Γ(c)
[

Γ(c− a− b)
Γ(c− a)Γ(c− b)

+ e−2ikr Γ(c− a− b)∗

Γ(c− b)∗Γ(c− a)∗

]
. (33)

Taking into account the relations

Γ(c− a− b)
Γ(c− a)Γ(c− b)

=

∣∣∣∣ Γ(c− a− b)
Γ(c− a)Γ(c− b)

∣∣∣∣eiδl , (34)

Γ(c− a− b)∗

Γ(c− a)∗Γ(c− b)∗
=

∣∣∣∣ Γ(c− a− b)
Γ(c− a)Γ(c− b)

∣∣∣∣e−iδl , (35)

and substituting them into Equation (33), we find

2F1(a, b; c; y)→ Γ(c)
∣∣∣∣ Γ(c− a− b)
Γ(c− a)Γ(c− b)

∣∣∣∣e−ikr
[
ei(kr+δl) + e−i(kr+δl)

]
. (36)

This equation can be written in a more convenient form. First, we use the iden-
tity 2 cos x = eix + e−ix and then rewrite 2 cos(kr + δl) = ei(kr+δl) + e−i(kr+δl). Next, by
certifying that cos(kr + δl) = sin(kr + π/2 + δl), we make

cos(kr + θ) = sin
(

kr− π`

2
+

π

2
(`+ 1) + δl

)
. (37)

The expression above provides us with the asymptotic behavior of the solution u(y)
for r → ∞, i.e.,

u(y) ∼ sin
(

kr− π`

2
+

π

2
(`+ 1) + δl

)
. (38)

Comparing this result with the boundary condition (15), the phase shift δθ is found,
and its expression is given by

δl =
π

2
(`+ 1) + arg Γ(c− a− b)− arg Γ(c− a)− arg Γ(c− b). (39)

Substituting the parameters (30)–(32) into (39), we obtain

δl =
π

2
(`+ 1) + arg Γ(2iκ)− arg Γ(d + iκ − ∆)− arg Γ(d + iκ + ∆). (40)

It is important to emphasize that the phase shift depends explicitly on the parameters
α and ξ, through `, d, and ∆, which shows that δl is affected by the curvature generated by
the global monopole.

4. Analysis of Bound States

Similarly to the Coulomb potential, the Hulthén potential also admits bound state
solutions. The bound state energies can be found from the S-matrix. According to general
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scattering theory, the poles of the S-matrix in the upper half of the complex plane are
associated with the bound state energies. Using the result for the phase shift (40), the
S-matrix can be written as

S = e2iδl , (41)

= eiπ(`+1)e2i arg Γ(2iκ)e−2i arg Γ(d+iκ−∆)e−2i arg Γ(d+iκ+∆). (42)

The poles of the S-matrix are given by the poles of the gamma functions Γ(d + iκ − ∆)
and Γ(d + iκ + ∆) in Equation (40). However, we must remember that the function Γ(z)
has poles at z = −n, where n is a non-negative integer. Thus, analyzing the poles of
Γ(d + iκ − ∆), we obtain

d + iκ − ∆ = −n. (43)

Using the parameters given in Equation (24), we find

d + i
√

2MEnl
h̄αξ

−
√
℘2 − 2MEnl

h̄2α2ξ2
= −n. (44)

Finally, solving Equation (44) for Enl , we obtain the energy eigenvalues

Enl = −
(d + n− ℘)2(d + n + ℘)2

β(d + n)2 , with β =
8M

α2h̄2ξ2
. (45)

These energies can also be obtained by solving Equation (19) for bound states. We
achieve this by solving Equation (19) via the Frobenius method. We use solutions of
the form

u(y) = yγ(1− y)νh(y), (46)

where ν and γ are arbitrary constants to be determined and h(y) is an unknown function.
Note that the solution (46) is finite at regular singular points y = 0, y = 1, and y = ∞.
Substituting this solution into Equation (19), we find the differential equation

h′′(y)+
[

2γ− (1 + 2γ + 2ν)y
y(1− y)

]
h′(y) +

ν2 − κ2
b

(1− y)2 h(y)

+

[
℘2 − 2γν− γ2

y(1− y)

]
h(y) +

γ(γ− 1)− λ2

y2(1− y)
h(y) = 0, (47)

where κb = kb/ξ, kb =
√
−2MEnl/h̄α > 0, with “b” labeling bound states. The parameters

ν and γ are determined by canceling out the coefficients

ν2 − κ2
b = 0, (48)

γ(γ− 1)− λ2 = 0, (49)

from which, we find
ν1 = +κb or ν2 = −κb (50)

and
γ1 = d or γ2 = 1− d, (51)

respectively. For bound state solutions, we must choose ν1 and γ1 above, which leads to
the equation

y(1− y)h′′(y) + [ζ3 − (1 + ζ1 + ζ2)y]h′(y)− ζ1ζ2h(y) = 0, (52)
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where

ζ1 = γ1 + ν1 +
√
℘2 + ν2

1 , (53)

ζ2 = γ1 + ν1 −
√
℘2 + ν2

1 , (54)

ζ3 = 2γ1. (55)

Equation (52) is a hypergeometric differential equation. It is known that the singular
points of this equation are regular. Therefore, we can assume series solutions around y = 0
of the form

h(y) =
∞

∑
s=0

as ys+c, with a0 6= 0. (56)

By substituting the solution (56) into the differential Equation (52), we obtain the
indicial equation

a0[c(c− 1) + ζ3c] = 0, (57)

whose roots are

c1 = 0, (58)

c2 = 1− ζ3. (59)

and the recurrence relation

as+1 =
(s + c)(s + c + ζ1 + ζ2) + ζ1ζ2

(s + c + 1)(s + c + ζ3)
as, for s > 0. (60)

The general solution of (52) is written as

h(y) = A h1(y) + B h2(y), (61)

where A and B are, respectively, the coefficients of the regular and irregular solutions at the
origin, with

h1(y) =
∞

∑
s=0

(ζ1)s(ζ2)s
(1)s(ζ3)s

ys = 2F1(ζ1, ζ2, ζ3; y) (62)

and

h2(y) = y1−ζ3
∞

∑
s=0

(ζ1 + 1− ζ3)s(ζ2 + 1− ζ3)s
(2− ζ3)s(1)s

ys, (63)

= y1−ζ3 2F1(ζ1 + 1− ζ3, ζ2 + 1− ζ3, 2− ζ3; y). (64)

The solution (46) is given by

u(y) = A yd(1− y)κb
2F1(ζ1, ζ2, 2d; y)

+ B y1−d(1− y)κb
2F1(ζ1 + 1− 2d, ζ2 + 1− 2d, 2− 2d; y) (65)

Since ζ3 is not an integer and u(y) = 0 at y = 0 (or r → ∞), we shall take B = 0. Thus,
the relevant solution is

u(y) = Cnl yd(1− y)κb
2F1(ζ1, ζ2, 2d; y), (66)

where Cnl is the normalization constant. To obtain bound states energies, we must require
that the series 2F1(ζ1, ζ2, 2d; y) terminates, resulting in a polynomial of degree n. This
means that, in the recurrence relation (60), we must impose that an+1 = 0, which leads to
(with c1 = 0)

n(n + ζ1 + ζ2) + ζ1ζ2 = 0 (67)
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or
2nκb + d2 − ℘2 + 2dκb + 2dn + n2 = 0, (68)

which, solved for κb, provides

κb =
℘2 − (d + n)2

2(n + d)
> 0, with n + d 6= 0. (69)

Using the relation

κb =

√
−2MEnl

h̄2α2ξ2
> 0, (70)

in Equation (69), and solving the resulting equation for Enl , we obtain

Enl = −
(d + n− ℘)2(d + n + ℘)2

β(d + n)2 , with β =
8M

α2h̄2ξ2
, (71)

which is just Equation (45). To ensure the validity of the relation (70), we must require in
Equation (69) that

℘2 > (d + n)2, (72)

which gives the upper values for n

n < |℘| − d, with d ∈ R ℘ ∈ R (73)

or, more explicitly,

n <

∣∣∣∣ 2M
h̄2α2ξ

(
Ze2 −K(α)

)∣∣∣∣−
[

1
2
+

1
2

√
1 +

4l(l + 1)
α2

]
. (74)

Equation (74) establishes a condition for the occurrence of bound states and, in addition,
determines the range for the quantum number n where such states must appear. It should
be emphasized that the energies (71) could be obtained directly by substituting κ → ikb in
Equation (21). This leads us to the solution (66). The characteristics of the hypergeometric
function are well known. As mentioned above, when ζ1 = −n, with n = 0, 1, 2, . . . , and
ζ3 6= 0,−1,−2, . . ., the function 2F1(ζ1, ζ2, ζ3; y) becomes a polynomial. In this way, the
wave function for bound states (as a function of r) reads

u(r) = Cnl

(
1− e−ξr

)d
e−kbr

2F1

(
−n, d + κb −

√
℘2 + κ2

b , 2d; 1− e−ξr
)

, (75)

and the expression for the bound state energies can be found in the condition

d + κb +
√
℘2 + κ2

b = −n, (76)

which, solved for Enl , leads us again to Equation (45), which, written in its explicit form,
reads

Enl = −
α2h̄2ξ2

8M

 2Mξ

h̄2α2ξ2

(
Ze2 −K(α)

)
n +

√
4l(l+1)+α2

2α + 1
2

−
(

n +

√
4l(l + 1) + α2

2α
+

1
2

)2

. (77)

It can be verified that, for ξ → 0 and keeping the other parameters fixed in Equation (77),
Enl assumes finite values. In Table 1, we show some energy values for α = 0.7 and different
values of l.
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Table 1. Energies in the limit ξ → 0 for n = 1 and different values of l (Equation (77)). We assume
that h̄ = 1, M = 1, Z = 1, e = 1, n = 1 and α = 0.7.

En,l Values

E1,1 −0.0472842
E1,2 −0.0236029
E1,3 −0.0141781
E1,4 −0.0094620
E1,5 −0.0067639
E1,6 −0.0050758
E1,7 −0.0039496
E1,8 −0.0031608
E1,9 −0.0025868
E1,10 −0.0021561

It is important to mention that, for Ze2 = 0 (absence of the Hulthén potential), the
system admits bound states only for K(α) < 0, i.e., only for the attractive electrostatic self-
interaction. However, with the presence of the Hulthén potential, the system also admits
bound states for K(α) > 0. Indeed, this is evidenced in Figures 1 and 2, where the result
of the superposition between the potentials VH(r) and VSI(r) is shown more explicitly.
Therefore, bound states are possible only when VH(r) + VSI(r) < 0.

We can study the energies (77) by sketching them as a function of the parameters
involved. In all of the energy plots that we illustrate here, we choose, for convenience, to
analyze the state with n = 1 and use h̄ = 1, M = 1, Z = 1, and e = 1. In Figure 5, we plot
the energy levels with n = 1 for different values of l. We can see that |E10| > |E11| > |E12|
following the order of the α values considered. We also see that the separation between the
energy levels with l = 0 corresponding to a given value of α is greater than the separation
between the energy levels with l > 0. For l > 2, we observe an inversion between the
energy levels with a given value of α when we compare them with the energy levels with
l < 2. In this case, |E1l | increases for l > 2.

α = 1.1 α = 1.2

α = 1.3 α = 1.4

α = 1.5

0 2 4 6 8 10
-0.15

-0.10

-0.05

0.00

l

E1 l

(a)

α = 0.5 α = 0.6

α = 0.7 α = 0.8

α = 0.9

0 2 4 6 8 10
-0.15

-0.10

-0.05

0.00

l

E1 l

(b)

Figure 5. Energy levels (Equation (77)) with n = 1 as a function of l for ξ = 0.1. In (a), we display
the energies corresponding to different values of α > 1 and, in (b), values of α < 1. An inversion
between the two profiles is observed at l = 2.

Figure 6 shows plots of energy levels as a function of α for n = 1 and two different
values of ξ. Since the parameter ξ refers to the screening parameter of the Hulthén potential,
it must control the profile of these energy levels for some particular choice of the other
parameters. As can be noticed, ξ = 0.01 (Figure 6a and ξ = 0.5 (Figure 6b) produce different
plots, which correspond to distinct physical situations. In the case shown in Figure 6a, we
see that, for values of α in the range of 1.1 to 1.4, there is a decreasing tendency followed by
an increase in |E1l |. For α > 1.4, we see that |E1l | decreases. On the other hand, Figure 6b
reveals that |E1l | increases as α is increased.
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l = 1 l = 2 l = 3

l = 4 l = 5

1.0 1.2 1.4 1.6 1.8 2.0

-0.05

-0.04

-0.03

-0.02

-0.01

α

E1 l

(a)

1.0 1.2 1.4 1.6 1.8 2.0
-2.0

-1.5

-1.0

-0.5

0.0

α

E1 l

(b)

Figure 6. Energy levels (Equation (77)) with n = 1 as a function of α for (a) ξ = 0.01 and (b) ξ = 0.5.

We also investigate how the energy levels are modified by considering different choices
for the parameter ξ. In Figure 7, we plot the energy levels E1l as a function of ξ for the
particular case when α = 1.5. As we can see, there is a range of ξ where |E1l | decreases,
whereas, for the other values, |E1l | increases. For increasing values of l, |E1l | also increases
(see, e.g., the energy curve with l = 4 (solid black curve) in Figure 7a). The various energy
profiles illustrated in Figures 5–7 can be more easily interpreted when we make a reading
of Figures 1 and 2. The energy intervals where |E1`| becomes small correspond precisely to
the localized regions where a potential well begins to emerge. |E1`| can increase or decrease
by adjusting the parameters involved.

The energy (77) can be compared with other models in the literature. For example, if
we take α = 1, we obtain the energies

Enl = −
h̄2ξ2

2M

 2MZe2

h̄2ξ

2(n + l + 1)
− n + l + 1

2

2

. (78)

Moreover, by making the changes ξ = δ and M = µ in Equation (78), we find exactly the
expression (24) of Reference [72], which also coincides with Equation (32) of Reference [85].

l = 0

l = 1

l = 2

l = 3

l = 4

0.0 0.2 0.4 0.6 0.8 1.0

-5

-4

-3

-2

-1

0

ξ

E1 l

(a)

0.0 0.1 0.2 0.3 0.4 0.5
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

ξ

E1 l

(b)

Figure 7. Energy levels (Equation (77)) with n = 1 as a function of ξ for α = 1.5. In (b), we show the
range from (a) to ξ = 0.5.

5. Conclusions

In the present manuscript, we investigated the problem of the quantum motion of an
electron in the presence of the Hulthén potential in the global monopole spacetime. Due to
the existence of the global monopole background, it is necessary to consider the arising of a
self-interaction potential. Under such conditions, we started from the Schrödinger equation
with vector coupling in spherical coordinates. Then, we obtained the corresponding radial
equation through the standard procedure in the literature. By analyzing several profiles
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of the effective potential, we verified that the problem can be solved for both bound and
scattering states. We confirmed this by sketching profiles of the effective potential as a
function of r for different choices of the α parameter and considering some particular values
for the parameter ξ. We used the exponential function transformation approach and an
approximation for the centrifugal potential to transform the radial equation coming from
the Schrödinger equation into a differential equation of the hypergeometric type. We solved
this equation for scattering states and found an expression for the phase shift. We adopted
the following procedure to find an expression for the bound state energies: we first obtained
the S-matrix. Then, we analyzed its poles. We examined the profile of energies considering
the situation where the self-interaction potential is attractive and repulsive. Through some
sketches, we showed that both this potential and the α parameter could modify the bound
state energies. We also investigated the probability density function and its dependence on
the parameters α, ξ, and the quantum number n. Alternatively, we also solved the problem
for bound states using the Frobenius method and confirmed that the bound state energies
and wave functions are the same as those already obtained. The justification for using the
Frobenius method is that it provides us with an expression that establishes a condition for
the occurrence of bound states (Equation (74)).
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