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Abstract: This research focused on studying the flows of a null Cartan curve specified by the velocity
and acceleration fields. We have proven that the tangential and normal velocities are influenced by the
binormal velocity along the motion. The velocity fields are used to drive the time evolution equations
for the Cartan frame and the torsion of the null curve. The objective of this work is to construct a
family of inextensible null Cartan curves from the flows of the initial null Cartan curve. The surface
formed by this family of inextensible flows of the null Cartan curve is obtained numerically and
visualized. In this paper, we refer to the surface traced out by the family of the null Cartan curve as
the generated or constructed surface. We present a novel model for the inextensible null Cartan curve,
which moves with a constant binormal velocity to describe the process of constructing a family of null
Cartan curves. Through this model, the time evolution equation for the torsion of the inextensible
null Cartan curve arises as the Korteweg-de Vries (K-dV) equation, and we obtain and visualize the
soliton solutions. The soliton solutions represent the torsion of the family of null Cartan curves at
various time values. We construct the family of inextensible null Cartan curves and visualize the
generated surface. In addition, we investigate the flows of inextensible null Cartan curves specified
by acceleration fields, and we obtain the explicit relationships between the acceleration and velocity
functions. Finally, we provide an application for the inextensible flows of the null Cartan curve with
constant normal acceleration.

Keywords: inextensible flows; evolution of curves; motion of curves; null Cartan curves; time
evolution equations
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1. Introduction

The term “inextensible” refers to curves that maintain their arc length during motion.
A great deal of interest has recently been shown in the study of the differential geometry
of inextensible flows of curves (IFC). The (IFC) is currently seen as a fascinating topic in
differential geometry. It has numerous uses in physics, such as ice melting, rolling stones,
vortex filaments, flame propagation, and the magnetic moment vector along a classical
magnetic spin chain [1,2]. Many issues in image processing, computer animation, and
computer vision require the study of the flows of curves [3–7].

Many authors investigated the (IFC): Baş and Körpınar [8], and they derived some
conditions for inextensible flows (IF) of spacelike curves on oriented spacelike surfaces in
M3

1, where they were necessary and sufficient through the motion. Nasar et al. [9] studied
the motion of curves in En. Gaber [10,11] investigated the (IFC) in spherical space S3 and the
motion of spacelike and timelike curves in de-Sitter space S2,1 and obtained the associated
time evolution equations (TEEs) for curvatures as a system of (PDEs). Gürbüzü [12]
studied the (IF) of spacelike and timelike curves in R2,1. Körpinar [13] constructed a
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novel method for (IF) of timelike curves in Minkowski space R3,1 and characterized the
curvatures of a timelike curve. Uçum et al. [14] investigated the (IF) of partially null and
pseudo null curves in semi-Euclidean 4-space with index 2 (E4

2) and obtained (TEEs) for
the (IF). Yıldız [15] studied the time evolution of non-null curves in Minkowski space Rn

1
and derived the integrability conditions for the evolution. Yoon et al. [16] studied the
evolution of spacelike curves in Minkowski space and obtained the inextensible evolutions
of timelike ruled surfaces generated by the timelike normal vector and spacelike binormal
vector. Gaber [17] investigated the (TEEs) of curves in R3 according to Bishop frame of
type–1 and gave some new models to explain the comparison between the motion by Frenet
frame and the motion by Bishop frame of type–1.

In [18], a novel characterization of (IFC) based on the Fermi–Walker derivative and
also the Fermi–Walker parallelism in three-dimensional space was constructed. Through
the motion of charged particles under the action of electric and magnetic fields, the Fermi–
Walker derivative was obtained. In [19], a geometrical description for timelike biharmonic
particles in spacetime was presented, and the evolution of the curvatures of these particles
was computed based on the Bianchi type–I cosmological model.

Magnetic curve flows in various geometric manifolds and physical spacetime struc-
tures have recently been investigated. A novel method for (IF) of spacelike curves in
Minkowski space-time by using the Frenet frame of curves was established by [20], and the
properties for curvatures of a spacelike curve were defined. Additionally, [21] investigated
the (IF) of tangent bimagnetic particles in space. In [22], a novel representation of binormal
spherical indicatrices for magnetic curves was investigated. Additionally, the Bb−magnetic
curves were studied in terms of (IF) and some physical and geometrical properties of the
moving charged particles that corresponded to the Bb−magnetic curves were investigated.

In [23], for magnetic n-lines due to inextensible Heisenberg antiferromagnetic flow,
the fractional evolution equations were computed for constructing the soliton surface
associated with the inextensible Heisenberg antiferromagnetic flow. In [24], novel and
local conditions were proposed to characterize magnetic flux surfaces for inextensible
Heisenberg ferromagnetic flow in the binormal direction. During the evolution of the
magnetic vector fields, the accuracy of the theoretical methodology was verified. In [25],
Lorentz equations with magnetic b−lines in the binormal direction in Minkowski space
were computed. The equations of fractional flow for magnetic b−lines with inextensible
Heisenberg optical antiferromagnetic flow were calculated, and the optical soliton surface
was determined. In [26], a novel kind of spherical electromagnetic flow Sα−density of
Sα−optical fibers was investigated. In [27], the optical Hashimoto map corresponds to a
quasi-frame for timelike curves in three-dimensional Minkowski space was investigated,
and the effect on the q−Hashimoto map of specific flow equations like the equation of a
vortex filament and the Heisenberg antiferromagnetic flow was examined.

In the present paper, we study the inextensible flows of null Cartan curves (IFNCC)
in Minkowski space R2,1 by the velocity and acceleration fields. We study the (TEE) for
the pseudo arclength of the null Cartan curve (NCC), and we derive the necessary and
sufficient conditions for the (NCC) to be inextensible. Also, we derive the (TEEs) for the
Cartan frame, as well as the (TEE) for the torsion of the (NCC) in terms of velocity functions.
The main purpose of this work is to construct the family of (IFNCC) from an initial (NCC).
In this paper, we refer to the surface that is traced out by the family of inextensible (NCC)
as the generated surface or constructed surface. In other words, the surface is defined
as trajectories of evolving (NCC). We provide a novel model to explain the process of
constructing this family by choosing the case of inextensible (NCC) moves by a constant
binormal velocity. We obtain the soliton solutions that represent the torsion of the family
of (NCC) at different time values, and we plotted the solutions. In addition, we study
the (IFNCC) specified by acceleration functions, and we obtain the explicit relationships
between the acceleration and velocity functions. We present an application on the motion
of the (NCC) with constant normal acceleration.
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The current work is structured as follows: In Section 2, we introduce the geometric
concepts of the null curves in Minkowski space R2,1. In Section 3, we illustrate the main
results in the present paper. In Section 4, we discuss the method of construction family
of inextensible (NCC), and we present a new model. In Section 5, we give graphical
interpretations of the given model. In Section 6, we give some geometric descriptions
for the constructed surface by the family of (IFNCC). In Section 7, we investigate the
(IFNCC) specified by acceleration fields, and we give an application. Finally, we present
our conclusions.

2. The Geometric Concepts of Null Curves in Minkowski Space R2,1

Definition 1 ([28]). The three-dimensional Minkowski space R2,1 is the Euclidean space pro-
vided with Lorentzian inner product: 〈X, X〉 = −dx2

0 + dx2
1 + dx2

2, for {X = (x0, x1, x2) |
x0, x1, x2 ∈ R}. The inner product and the vector product of the two vectors X = (x0, x1, x2), Y =
(y0, y1, y2) ∈ R2,1 are defined by:

• 〈X, Y〉 = −x0y0 + x1y1 + x2y2.
• X×Y = (x2y1 − x1y2, x2y0 − x0y2, x0y1 − x1y0).

Let X be a vector in R2,1, the vector X is a spacelike vector if 〈X, X〉 > 0, timelike if
〈X, X〉 < 0, and null or lightlike vector if 〈X, X〉 = 0.

Definition 2 ([28]). Let α = α(u), α : I → R2,1 be a regular parameterized curve in Minkowski
space R2,1, the curve is defined as a spacelike curve if 〈α′, α′〉 > 0, timelike curve if 〈α′, α′〉 < 0,
and null if 〈α′, α′〉 = 0.

Definition 3 ([29]). The regular curve α : J ∈ R→ R2,1 is defined on some interval J ∈ R is a
null curve or if its tangent vector α′(u) is a future-directed null vector for each t ∈ J. A null Cartan
curve (NCC) is a null curve whose parameterization is given by the following pseudo-arc function s:

s(u) =
∫ u

0
ρ(u)du, (1)

where, ρ(u) =
√
‖α′′(u)‖ = 〈α′′(u), α′′(u)〉 1

4 .

Definition 4 ([30,31]). Assume that α : I → R2,1 be the (NCC), and let Fc = {T, N, B} be the
null Cartan frame defined at a point p along the curve, where T is a null vector, N is a spacelike
vector, and B is a null vector, and they satisfy the following:

• 〈T, T〉 = 〈B, B〉 = 0, 〈N, N〉 = 1, 〈T, B〉 = −1, and 〈N, B〉 = 〈N, T〉 = 0.
• T × N = −T, N × B = −B, and B× T = N.

Definition 5 ([30]). Let α : I → R2,1 be the (NCC) with the Cartan frame Fc = {T, N, B}. The
Cartan frame satisfies the following equations:

α
T
N
B


s

=


0 1 0 0
0 0 k 0
0 −τ 0 k
0 0 −τ 0




α
T
N
B

, (2)

where k and τ are the curvature and the torsion of the curve. The curvature k can be 0 when the
curve is a straight null line or 1 in all other cases. So, we can rewrite (2) as follows:

α
T
N
B


s

=


0 1 0 0
0 0 1 0
0 −τ 0 1
0 0 −τ 0




α
T
N
B

, (3)
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3. Main Results

Assume that α : J = [0, l]× [0, t]→ R2,1 is a one-parameter family of smooth (NCC)
in R2,1, let u be the parameter of the (NCC), 0 ≤ u ≤ l, and t is the time parameter. Assume
that s is the pseudo-arclength of the (NCC), and it is defined by:

s(u, t) =
∫ u

0
ρ(u, t)du, (4)

where
ρ(u, t) = 〈αuu, αuu〉

1
4 . (5)

The evolution equation for the (NCC) is governed by the law:

αt = λ T + ν N + µ B, (6)

where, λ = λ(s, t, τ, τs, τss, .....), ν = ν(s, t, τ, τs, τss, .....) and µ = µ(s, t, τ, τs, τss, .....) are the
velocity fields in the direction of the tangent, normal, and binormal vectors.

Theorem 1. Consider the motion of the (NCC) in Minkowski space R2,1, then the (TEE) of the
pseudo arclength is given by:

∂s
∂t

= ρt = −
ρ2

s
2ρ

(µs + v)− ρs

2
∂

∂s
(µs + v) +

ρ

2
(vss + 2λs − 2τ(µs + v)− τsµ) (7)

Proof of Theorem 1. Taking the t−derivative of (5), then

2ρ3ρt = 〈αuut, αuu〉. (8)

Since αu = ρT, by taking the u−derivative, then we have:

αuu = ρuT + ρ2N. (9)

Taking the u−derivative of (6), then we obtain:

αtu = (λu − ρντ)T + (νu + λρ− ρτµ)N + (µu + ρν)B, (10)

for simplicity we put:
Ω1 = λu − ρτν

Ω2 = νu + ρλ− ρτµ

Ω3 = µu + ρν

(11)

Then, (10) takes the form
αtu = Ω1T + Ω2N + Ω3B. (12)

Take the u−derivative of (12), then

αtuu = (Ω1,u − τρΩ2)T + (Ω2,u + ρΩ1 − τρΩ3)N + (Ω3,u + ρΩ2)B. (13)

By substituting from (9), and (13) into (8), we obtain

2ρ3ρt = −ρu(Ω3,u + ρΩ2) + ρ2(Ω2,u + ρΩ1 − τρΩ3) (14)

Substituting from (11) into (14) and by using the commutative condition ∂
∂u () = ρ ∂

∂s (), then
we explicitly have

ρt = −
ρ2

s
2ρ

(µs + ν)− ρs

2
∂

∂s
(µs + ν) +

ρ

2
(νss + 2λs − 2τ(µs + ν)− τsµ) (15)
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Hence, the evolution of the pseudo arclength ∂s
∂t = ρt depends on the velocities λ, ν, µ and

their derivatives λs, νs, µs with respect to s. Then, the theorem holds.

Definition 6. Consider the motion of the (NCC) in Minkowski space R2,1, the (NCC) is inextensible
if it preserves its arclength, so the time evolution of the pseudo arclength is vanishing ( ∂s

∂t = ρt = 0).

Lemma 1. Consider the motion of inextensible null Cartan curves (IFNCC) in Minkowski space
R2,1, then the tangential and the normal velocities are dependent on the binormal velocity and the
torsion by the following conditions:

ν = −µs,

λ =
1
2

(
µss +

∫
τsµds

)
.

(16)

Proof. Since the (TEE) of the pseudo arclength ρt is obtained by (15) in terms of tangential,
normal, and binormal velocities. Additionally, since the (NCC) is inextensible, then accord-
ing to the definition (6) of the inextensible (NCC), we have ρt = 0. By substituting in (15),
and comparing the coefficients of (ρ2

s ), (ρs), and (ρ), we obtain

ν = −µs, (17)

and
νss + 2λs − 2τ(µs + ν)− τsµ = 0. (18)

Substituting from (17) into (18), then

−µsss + 2λs − τsµ = 0. (19)

By integrating (19), the lemma holds. It is obvious that the values of the tangential and
normal velocities depend on the torsion of the curve and also the choice of the binormal
velocity.

Theorem 2. Consider the flows of the inextensible (NCC) defined by α : J = [0, l]× [0, t]→ R2,1,
and the (TEEs) for the Cartan frame are given by:

α
T
N
B


t

=


0 λ ν µ
0 ϕ1 ϕ2 0
0 ϕ3 0 ϕ2
0 0 ϕ3 −ϕ1




α
T
N
B

, (20)

where,
ϕ1 = λs + τµs,

ϕ2 = −µss + λ− τµ,

ϕ3 = (λs + τµs)s − τ(−µss + λ− τµ).

(21)

Proof of Theorem 2. Since the nul Cartan curve α(s, t) is inextensible. Therefore, ρt = 0
and the tangential, normal, and binormal velocities satisfy the conditions (16), and then the
parameters s and t commute, so we have:

αst = αts. (22)

Since the tangent vector is given by αs = T, by taking the t−derivative, we obtain:

αst = Tt. (23)
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Taking the s−derivative of (6), and using (3), then:

αts = (λs − τν)T + (νs + λ− τµ)N + (µs + ν)B. (24)

Using the velocities conditions (16) and substituting from (23) and (24) into (22), hence
we obtain:

Tt = (λs + τµs)T + (−µss + λ− τµ)N. (25)

Taking the s−derivative of (25), then

Tts =
(
(λs + τµs)s − τ(−µss + λ− τµ)

)
T +

(
(−µss + λ− τµ)s + (λs + τµs)

)
N

+ (−µss + λ− τµ)B.
(26)

Since Ts = N, then, by taking the t−derivative, we have:

Tst = Nt (27)

Using the velocities conditions (16) and the commutative condition Tts = Tst , then, we obtain:

Nt =
(
(λs + τµs)s − τ(−µss + λ− τµ)

)
T + (−µss + λ− τµ)B. (28)

Assume that the evolution of the binormal null vector B is given by:

Bt = a11T + a12N + a13B. (29)

Since the binormal vector B is null, 〈B, B〉 = 0, then 〈Bt, B〉 = 0, hence:

a11 = 0. (30)

Additionally, since 〈B, N〉 = 0, then 〈Bt, N〉 = −〈B, Nt〉, hence

a12 = (λs + τµs)s − τ(−µss + λ− τµ). (31)

Since〈B, T〉 = −1, then 〈Bt, T〉 = −〈B, Tt〉, hence

a13 = −(λs + τµs) (32)

Substitute from (30), (31) and (32) into (29), hence

Bt =
(
(λs + τµs)s − τ(−µss + λ− τµ)

)
N − (λs + τµs)B. (33)

For simplicity, we choose:

ϕ1 = λs + τµs,

ϕ2 = −µss + λ− τµ,

ϕ3 = (λs + τµs)s − τ(−µss + λ− τµ).

(34)

Hence,
ϕ1 = −ϕ2,s,

ϕ3 = ϕ1,s − τϕ2.
(35)

By substituting from (34) and (35) into (25), (28), and (33), we obtain:

Tt = ϕ1T + ϕ2N ,

Nt = ϕ3T + ϕ2B ,

Bt = ϕ3N − ϕ1B.

(36)

Hence, the theorem holds.



Universe 2023, 9, 125 7 of 16

By taking the t−derivative of (36), then we obtain the following lemma:

Lemma 2. Consider the inextensible flows of the null Cartan curve (IFNCC), then the second time
derivative of the Cartan frame can be given in terms of velocity functions by:

Ttt = (ϕ1,t + ϕ2 ϕ3 + ϕ2
1)T + (ϕ2,t + ϕ1 ϕ2)N + ϕ2

2B,

Ntt = (ϕ3,t + ϕ1 ϕ3)T + (2ϕ2 ϕ3)N + (ϕ2,t − ϕ1 ϕ2)B,

Btt = (ϕ2
3)T + (ϕ3,t − ϕ1 ϕ3)N + (−ϕ1,t + ϕ2 ϕ3 + ϕ2

1)B.

(37)

Lemma 3. Consider the (IFNCC) in R2,1, the (TEE) of the torsion τ is given by:

τt = −(ϕ3,s + τϕ1). (38)

Proof. Since τ = −〈Bs, N〉, by taking the t−derivative, then

τt = −〈Bst, N〉 − 〈Bs, Nt〉. (39)

Since Bs = −τ N , and from the second equation of (36), then we have:

〈Bs, Nt〉 = −τ〈N, Nt〉 = 0. (40)

Taking the s−derivative of the third equation of (36), then

Bts = −τϕ3T + (ϕ3,s + τϕ1)N + (−ϕ1,s + ϕ3)B. (41)

Substitute from (40) and (41) into (39), then the lemma holds.

4. The Method of Construction Family of Inextensible Null Cartan Curves in R2,1

In this section, our purpose is to obtain a family of (IFNCC). This is equivalent to
constructing the surface by the motion of an inextensible null Cartan curve. The process of
constructing a family of (IFNCC) can be described as follows:

Step 1. We choose specific values of the velocity functions (certain values of velocities are
based on physical phenomena, such as the motion of vortex filaments, where the
normal velocity equals the curvature of the curve). Then, we substitute these values
of the velocity functions into (38) to obtain the general solution that represents the
torsion of the (NCC).

Step 2. As soon as we determine the torsion, we substitute it into (3) and solve the system
numerically with specific initial conditions for s ∈ [s0, smax].

Step 3. Solve the (PDEs) systems (20) numerically by using specific initial conditions that
are given as the numerical results obtained from Step. 2 for t ∈ [t0, tmax].

Step 4. To validate the solutions, we can use the Cartan frame properties provided by
Definition 4.

Step 5. Now, we have the null Cartan curve α(s, t) = (α1, α2, α3) at every point (s, t),
then we can graph the family of (IFNCC) and visualize the surface generated by
this family.

Step 6. We use Wolfram Mathematica 12 to solve the (PDE) system (3) and (20), and we
visualize the surface from the family of (IFNCC).
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A Model of Construction of the Family of Inextensible Null Cartan Curves

If the binormal velocity µ = µ0 = const, by using (16), then ν = 0 and λ = 1
2 τµ0.

Then, the (TEE) of the torsion that is given by (38) takes the form of the Korteweg-de Vries
(KdV) equation, which is a non-linear partial differential equation of the third order:

τt = −
1
2

µ0(τsss + 3ττs). (42)

The general solution takes the form:

τ(s, t) = 4 c2
1 sech2(c1 s− 2c3

1µ0 t + c2). (43)

This solution represents the solitary wave solution. To visualize the soliton solutions (43),
we choose two values of the constant binormal velocity µ0 = −0.1 and µ0 = 0.3. Figures 1
and 2 represent the soliton solution (43) with the binormal velocity µ = µ0 = −0.1 and
µ = µ0 = 0.3, respectively, at different values of the time t = 0.1, 1.4, 2.6 for s ∈ [−2, 2],
t ∈ [0, 3], and c2 = 0.01.

(a) c1 = 0.4 (b) c1 = 0.7 (c) c1 = 1
Figure 1. Soliton solutions (43) for s ∈ [−2, 2], t ∈ [0, 3], µ0 = −0.1, c2 = 0.01. The curves with blue,
red, and black colors represent the soliton solutions at t = 0.1, 1.4, 2.6, respectively.

(a) c1 = 0.4 (b) c1 = 0.6 (c) c1 = 0.9
Figure 2. Soliton solutions (43) for s ∈ [−2, 2], t ∈ [0, 3], µ0 = 0.3, c2 = 0.01. The curves with blue,
red, and black colors represent the soliton solutions at t = 0.1, 1.4, 2.6, respectively.

Figures 3 and 4 represent the torsion of the family of (IFNNC) with the binormal
velocity µ0 = −0.1 and µ0 = 0.3, respectively. The curves with blue, red, and black colors
represent the torsion of the inextensible (NCC) at t = 0.1, 1.4, 2.6 for s ∈ [0, 2], t ∈ [0, 3], and
c2 = 0.01.

By substituting from (43) into (3) and (20), then by solving them numerically with
initial conditions α(0, t) = (0, 0, 0), T(0, t) = ( 1√

2
, 0, 1√

2
), N(0, t) = (0, 1, 0), and B(0, t) =

( 1√
2
, 0,− 1√

2
). Hence, we can get the family of (IFNCC) and we can construct the surface

from this family.
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(a) c1 = 0.4 (b) c1 = 0.7 (c) c1 = 1
Figure 3. Torsion of (IFNCC): τ(s, t) = 4c2

1 sech2(c1 s − 2c3
1 µ0 t + c3) for s ∈ [−2, 2], t ∈ [0, 3],

µ0 = −0.1, c2 = 0.01. The curves with blue, red, and black colors represent the torsion at t = 0.1, 1.4,
2.6, respectively.

(a) c1 = 0.4 (b) c1 = 0.6 (c) c1 = 0.9
Figure 4. Torsion of (IFNCC): τ(s, t) = 4c2

1sech2(c1s − 2c3
1 µ0 t + c3) for s ∈ [−2, 2], t ∈ [0, 3],

µ0 = 0.3, c2 = 0.01. The curves with blue, red, and black colors represent the torsion at t = 0.1, 1.4,
2.6, respectively.

At the constant binormal velocity µ0 = −0.1, we plot the family of (IFNNC) and the
generated surface from the family of (IFNCC) as illustrated in Figures 5 and 6, the curves
with blue, red, and black colors represent the evolution of the (NCC) at some values of the
time t = 0.1, 1.4, 2.6 for s ∈ [0, 2], t ∈ [0, 3], and c2 = 0.01.

(a) c1 = 0.4 (b) c1 = 0.7 (c) c1 = 1
Figure 5. Curves with blue, red, and black colors represent the family of (IFNCC) at t = 0.1, 1.4, 2.6,
respectively, for s ∈ [0, 2], t ∈ [0, 3], µ0 = −0.1, c2 = 0.01.
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(a) c1 = 0.4 (b) c1 = 0.7 (c) c1 = 1
Figure 6. Surface constructed by (IFNCC) for s ∈ [0, 2], t ∈ [0, 3], µ0 = −0.1, c2 = 0.01.

At the constant binormal velocity µ0 = 0.3, we plot the family of (IFNNC) and the
generated surface from the family of (IFNCC), as illustrated in Figures 7 and 8. The curves
with blue, red, and black colors represent the evolution of the (NCC) at t = 0.1, 1.4, 2.6 for
s ∈ [0, 2], t ∈ [0, 3], and c2 = 0.01.

(a) c1 = 0.4 (b) c1 = 0.6 (c) c1 = 0.9
Figure 7. Curves with blue, red, and black colors represent the family of (IFNCC) at t = 0.1, 1.4, 2.6,
respectively, for s ∈ [0, 2], t ∈ [0, 3], c2 = 0.01, µ0 = 0.3.

(a) c1 = 0.4 (b) c1 = 0.6 (c) c1 = 0.9
Figure 8. Surface constructed by the family of (IFNCC) for s ∈ [0, 2], t ∈ [0, 3], c2 = 0.01, µ0 = 0.3.

5. Graphical Interpretations

Solitons are a particular type of non-dispersive long wave that travels in the form of
packets at a constant velocity. They are additionally known as shallow-water waves with a
permanent shape. The soliton solutions of hyperbolic type, also known as dark soliton or
bright soliton. The soliton is known as the bright soliton when the solution is expressed in
terms of the (sech) function, and the dark soliton when the solution is expressed in terms of
the (tanh) function. Solitons are essential for the analysis of wave propagation for various
types of physical phenomena and related fields. Solitons have many applications in pure
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mathematics, applied mathematics, and biology. The soliton solutions are studied by many
researchers [32–36]. In this part, we describe the graphs of the previous model as follows:

The soliton solutions (43) are visualized in Figures 1 and 2 in 2−dimensions, and
in Figures 3 and 4 in the 3−dimensions. The soliton solutions (43) arise in the form of
hyperbolic (sech) function, so the soliton solutions of the type bright soliton. The term
4 c2

1 in the solition solution (43) represents the amplitude of the wave. It has a significant
effect on increasing the torsion of the curve. The shape of the soliton solutions depends
on the binormal velocity µ0 and the amplitude 4 c2

1. We illustrate the effect of changing
the amplitude 4 c2

1 and the changing the values of the normal velocity at µ0 = −0.1 and
µ0 = 0.3 on the soliton solutions in the domain s ∈ [0, 2], t ∈ [0, 3] with c2 = 0.01 as follows:

1. Case 1: Consider the binormal velocity µ0 = −0.1. The shape in Figure 1a for the
soliton solutions with c1 = 0.4 does not vary for different values of the time at
t = 0.1, 1.4, 2.6. The shape in Figure 1b, for the soliton solutions with c1 = 0.7 does not
change at different values of the time t = 0.1, 1.4, 2.6, but there is a little shift to the
left while as time increases. The shape in Figure 1c, for the soliton solutions with for
c1 = 1 does not change by increasing the time t = 0.1, 1.4, 2.6, respectively, and there
is a slight shift to the left. The soliton solutions represent the torsion of the family
of (NCC) and by increasing the amplitude, the torsion will increase, and it has the
following maximum values:

(a) For c1 = 0.4, the torsion has maximum value τ = 0.64 at s = −0.0250001 and
t = 2.470 ∗ 10−6.

(b) For c1 = 0.7, the torsion has maximum value τ = 1.96 at s = −0.0142857 and
t = 4.75746 ∗ 10−7.

(c) For c1 = 1, the torsion has maximum value τ = 4 at s = −0.00999962 and
t = −1.92635 ∗ 10−6.

2. Case 2: Consider the binormal velocity µ0 = 0.3. The shape in Figure 2a, of the soliton
solutions at c1 = 0.4 does not change for different values of the time at t = 0.1, 1.4, 2.6.
The shape in Figure 2b for the soliton solutions at c1 = 0.6 does not change at different
values of the time t = 0.1, 1.4, 2.6, respectively, but there is a slight shift to the right
while the time increases. In Figure 2c, for c1 = 0.9, the shape does not vary with
increasing the time t = 0.1, 1.4, 2.6, respectively, and there is a slight shift to the right.
The soliton solutions represent the torsion of the family of the (NCC) and by increasing
the amplitude, the torsion will increase, and it has the following maximum values:

(a) For c1 = 0.4, the torsion has maximum value τ = 0.64, at s = −0.0250001 and
t = −8.23183 ∗ 10−7.

(b) For c1 = 0.6, the torsion has maximum value τ = 1.44 at s = −0.0166667 and
t = 1.62604 ∗ 10−7.

(c) For c1 = 0.9, the torsion has maximum value τ = 3.24 at s = −0.0111111 and
t = 2.22144 ∗ 10−8.

3. The choice of the value of the amplitude 4 c2
1 affects the properties of the vectors T, N,

and B for the Cartan frame, where it can be used to verify the numerical solutions.
4. Figures 5 and 6, illustrate the flows of the family of the (NCC) at time t = 0.1, 1.4, 2.6

and the generated surface traced out by this family of the (NCC) for s ∈ [0, 2], t ∈ [0, 3],
and c2 = 0.01 with the binormal velocity µ0 = −0.1 for different values of the
amplitude with c1 = 0.4, c1 = 0.7, and c1 = 1.

5. Figures 7 and 8 illustrate the flows of the family of the (NCC) at the time t = 0.1, 1.4, 2.6
and the constructed surface traced by this family of the (NCC) at constant binormal
velocity µ0 = 0.3 for s ∈ [0, 2], t ∈ [0, 3], and c2 = 0.01 and different values of the
amplitude with c1 = 0.4, c1 = 0.6, and c1 = 0.9.

6. The Geometric Description of the Constructed Surface

Let M = Σt = α(s, t) be the surface traced out by the flows of (NCC).
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Lemma 4. For the surface M = Σt = α(s, t) in R2,1, the first fundamental quantities g11, g12, g22
are given by:

g11 = 〈αs, αs〉 = 0,

g22 = 〈αs, αt〉 = −µ,

g12 = 〈αt, αt〉 = µ2
s − 2λµ.

(44)

Lemma 5. Let the vector n(s, t) be a unit normal to the constructed surface M in R2,1. Then, it is
given by:

n(s, t) =
αs × αt

‖αs × αt|
=

1
µ
(µsT − µ N). (45)

The second fundamental quantities L11, L12, L22 can computed as follows:

L11 = 〈αss, n〉 = −1,

L12 = 〈αst, n〉 = −ϕ2,

L22 = 〈αtt, n〉 = (µst − λϕ2 − µϕ3)−
µs

µ
(µt − µs ϕ2 − µϕ1).

(46)

Definition 7 ([28]). The Gaussian curvature G and the mean curvature H for the surface M in
R2,1 are defined by

G = ε
det(I I)
det(I)

= ε
L11L22 − L2

12
g11g22 − g2

12
, H =

ε

2
L11g22 + L22g11 − 2L12g12

g11g22 − g2
12

, ε = 〈n, n〉. (47)

Lemma 6. Consider the surface M = Σt = α(s, t) in R2,1 constructed by the family of (IFNCC).
The Gaussian curvature G and the mean curvature H are given in terms of velocities as follows:

G =
µ(µst − λϕ2 − µϕ3)− µs(µt − µs ϕ2 − µϕ1) + µϕ2

2
µ(µ2

s − 2λµ)2 ,

H = −µ + 2ϕ2(µ
2
s − 2λµ)

2(µ2
s − 2λµ)2 ,

(48)

where ϕ1, ϕ2, ϕ3 are given by (21).

Now, we consider the surface constructed by (IFNCC) in model 1 that is specified by
velocity functions µ = µ0 = const, ν = 0, λ = 1

2 τµ0, and torsion given by (43).

Lemma 7. The first fundamental quantities g11, g12, g22 and the second fundamental quantities
L11, L12, L22 for the surface constructed by the family of the (NCC) in model 1, are given, respec-
tively, by:

g11 = 0, g12 = −τµ2
0, g22 = −µ0. (49)

and

L11 = −1, L12 =
1
2

τµ0, L22 = −
µ2

0
4
(2τss + τ2), (50)

Lemma 8. The Gaussian curvature G and the mean curvature H for the surface constructed by the
family of the (NCC) in model 1 are given respectively by:

G = − τss

2τ2µ2
0

, H = −
1 + µ2

0τ2

2µ3
0τ2

, (51)

where the torsion is given by (43).



Universe 2023, 9, 125 13 of 16

7. Inextensible Flows of Null Cartan Curve Specified by Acceleration Fields

In this section, we investigate the (IFNCC) specified by the acceleration fields. Consider
α : J = [0, l]× [0, t]→ R2,1 to be a one-parameter family of smooth (NCC) in Minkowski
space R2,1, and, let t and s are the time and the pseudo arclength parameters of the initial
(NCC), where 0 ≤ s ≤ l. Let α(s, t) be the flows of inextensible null Cartan curves that
satisfy (16). Consider the motion of the (NCC) specified by fields η1(s, t), η2(s, t) and η3(s, t)
in the direction of the tangent vector, normal vector, and binormal vector, respectively. The
law governing the motion is given by:

αtt = η1(s, t)T + η2(s, t)N + η3(s, t)B (52)

Lemma 9. Assuming that α(s, t) is (IFNCC), the relationships between the velocity functions that
describe the motion of (NCC) by (6) and the acceleration functions that govern the motion of (NCC)
by (52) are specified by:

η1,s − τη2 = ϕ1,t + ϕ2
1 + ϕ2 ϕ3,

η2,s + η1 − τη3 = ϕ2,t + ϕ1 ϕ2,

η3,s + η2 = ϕ2
2.

(53)

Proof. Take the s−derivative of (52), then

αtts = (η1,s − τη2)T + (η2,s + η1 − τη3)N + (η3,s + η2)B. (54)

Since αstt = Ttt, using the commutative condition αtts = αstt, then

Ttt = (η1,s − τη2)T + (η2,s + η1 − τη3)N + (η3,s + η2)B. (55)

Comparing (37) and (55), then the lemma holds.

Explicitly, by taking the t-derivative of (6) and using (20), then we have the following
lemma:

Lemma 10. The acceleration fields η1, η2 and η3 that describe the time evolution Equation (52)
can be given explicitly in terms of the velocity fields λ, ν and µ by the following:

η1 = λt + λϕ1 − µs ϕ3,

η2 = −µst + λϕ2 + µϕ3,

η3 = µt − µs ϕ2 − µϕ1,

(56)

where, ϕ1, ϕ2 and ϕ3 are defined in (21).

8. Application on Inextensible Flows of Null Cartan Curve Specified by Normal
Acceleration

Consider the (NCC) evolves by the constant normal acceleration function η2 = 1, and
assume that the tangential, and binormal acceleration vanish η1 = 0, and η3 = 0, then the
(TEE) governs the motion, takes the form:

αtt = N (57)

By substituting in (53), then

ϕ1 = 0 , ϕ2 = 1 , ϕ3 = −τ . (58)

Substituting from (58) into (38), then the torsion satisfies the following (PDE):

τ1,t = τ1,s (59)
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The (PDE) (59) represents the transport equation, and it has a general solution of the form:

τ(s, t) = f (s + t), (60)

where f (s + t) is an arbitrary function. Since αss = Ts = N, then by comparing with (57),
we have the following (PDE):

αtt = αss. (61)

The (PDE) (61), represents a one-dimensional wave equation. Consider the initial conditions
α(s, 0) = χ(s) = (χ1(s), χ2(s), χ3(s)) and αt(s, 0) = ψ(s) = (ψ1(s), ψ2(s)ψ3(s)), then the
general solution takes the following form:

α(s, t) =
1
2

(
χ(s + t) + χ(s− t) +

∫ s+t

s−t
ψ(x)dx

)
. (62)

It is critical to validate the solution by using the features of the frame defined in Definition 4.

Remark 1. In this application, to generate the surface α(s, t) from the family of (NCC), specific
initial conditions are used based on a certain physical phenomenon associated with the flows of
inextensible null Cartan curves.

9. Discussion

In this work, we investigate the flows of inextensible null Cartan curves by creating the
family of null Cartan curves from the initial null Cartan curve, and then we construct the
surface from the tracing out of this family of inextensible (NCC). Furthermore, we describe
the generated surface and provide certain geometric properties, such as determining the
first and second fundamental quantities, as well as Gaussian and mean curvatures. This
study differs from earlier studies since it describes not only the torsion of the family of
curves, but it also well characterizes and visualizes the family of the null Cartan curves
at different values of the time. This research can be used to solve several physical and
engineering problems involving curve flows.

10. Conclusions

In the current paper, we investigate the inextensible flows of null Cartan curves
(IFNCC) in Minkowski spaceR2,1 using the velocity fields (6) and the acceleration fields (52).
We acquired the following new results:

1. The (TEE) for the pseudo arclength of the null Cartan curve is obtained, and the
necessary and sufficient conditions for the null Cartan curve (NCC) to be inextensible
are derived. These conditions show that the tangential velocity (λ) and the normal
velocity (ν) are dependent on the binormal velocity (µ) and on the torsion (τ) by (16).

2. The (TEEs) (the first and the second-time derivatives) of the Cartan frame are derived
in terms of the velocity fields by (20), and (37), respectively.

3. The (TEE) for the torsion τ is obtained in terms of the velocities (38).
4. The flows of inextensible (NCC) is constructed, and we present a novel model to

describe the process of constructing this family of (IFNCC) with velocities µ = µ0 =
const, ν = 0 and λ = 1

2 τµ0. In this model, the (TEE) of the torsion of the inextensible
(NCC) appears in the form of the Korteweg-de Vries (K-dV) equation. We obtain the
soliton solutions for the (K-dV) equation, and we graph these solitons for different
time values with certain amplitudes. By using the value of the torsion, we visualize the
flows of the initial (NCC), then we visualize the generated surface of these flows for
different values of the constant velocity µ0 and various amplitudes. Additionally, we
compute the first and second fundamental quantities for the generated surface, as well
as the Gaussian curvature G and mean curvature H (49), (50) and (51), respectively.
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5. The investigation of (IFNCC) specified by acceleration functions (52) is presented.
Additionally, we obtained the explicit relationships between the acceleration functions
η1, η2 and η3 and the velocity functions λ, ν and µ by (53) and (56).

6. We provided an application for the inextensible flows of (NCC) with constant normal
acceleration. In this application, the time evolution equation of torsion arising as a
first order (PDE) given by (59). It is known as the transport equation, and it has the
general solution given (60). In addition, in this application, the flows α(s, t) of the
(NCC) satisfy (PDE) (61), and it represents a one-dimensional wave equation, and it
has the general solution of the form (62).
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